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: , v ABSTRACT :
All the computations associated to the operational meteorological data assimilation are usually carried
out after the so called cut-off-time, i.e. a few hours after the assimilation period. In this article we
propose an alternative implementation of the four-dimensional variational assimilation where some
of the computations occur during the 24-hour assimilation period. The feasibility of the approach

. is first validated with an assimilation system built around a low resolution barotropic grid point
model. The results are then confirmed with a multi-level primitive equation model with real
observations. The main result of these experiments is that the peak computer power requirement of
the four-dimensional variational data assimilation may be significantly reduced by the suggested
approach.

1. INTRODUCTION

Numerical weather prediction (NWP) is facing a major change as the Optimum Interpolation (OI) analysis
method (Gandin, 1963) is gradually giving way to the variational assimilation: the techniques to extract
observational information and to provide initial conditions for deterministic prediction models are changing
(Parrish and Derber, 1992). The implementations of OI imply choices that are necessary in the OI-
environment but which may be relaxed in a different environment. One such constraint related to the OI
is discussed in this article and an alternative solution to implement the variational assimilation will be

suggested.

At present, the most widely used data assimilation method is OI which provides an estimate of the analysis
value at model grid points by constructing a statistically optimal linear combination of observations. That
is achieved (e.g. Lorenc, 1986) through

x, =x, + BH' (HBH' + 0)'(y - Hx,) , 6))
where x, and x, are the vectors containing the analysis and the background values, respectively. The
observations, making up the vector y, are related to x, through the linear observation operator H which
defines the components of x, that has been observed. The observation errors enter through the covariance
matrix O and the uncertainty associated with x, is described by the short-range forecast error covariance
matrix B, as x, usually is a 6-hour forecast from the previous analysis. Matrix inversion and transpose are

denoted by ! and ', respectively.

The matrix inversion involved in (1) is an expensive operation and the amount of observations that can be
handled simultaneously in OI has to be limited. At the European Centre for Medium-range Weather
Forecasts (ECMWEF) that dimension limit is currently 621. Because of this restriction, the analysis
calculation is made for boxes where a small areal subset of the observations is used in one time. The global
fields are formed by blending adjacent boxes together and thus most of the available observations ’can be

used in the OI- analysis (Lorenc, 1981; Shaw et al, 1987).



Despite of the areal division of the observations to overcome the matrix size restriction, a limitation
concerning the operatidnal iniplementation of OI lies just here. Although in theory OI can be formulated
as a sequential aigorithm’ (Jazwinski, 1970; Courtier, 1987), in practice it remains as a static assimilation
method. Therefore, once the matrix inversion in (1) is completed, the analysis canﬁot be influenced any
more. Consequently, in Ol it is of paramount importance to choose the best possible set of observations
to enter the analysis before the matrix inversion. The operational implementation of OI is thus constrained,
as the best way to choose the areal subset of observations is to wait until the end of the period from which
the observations are collected. The assimilation of the observations can thus begin only after a cut-off-time
- from 3 to 12 hours in different applications - after the end of the current assimilation period. This allows

delayed observations (e.g. by slow telecommunication) to be used in the assimilation process.

Most operational NWP centres have indeed adopted a sequential algorithm for data assimilation and
forecasting. This implies a concentrated computing demand just after the cut-off-time, when the assimilation

requires peak computer power (Fig 1, uppermost panel).

In the following, the focus is on the four-dimensional variational data assimilatioh (4D-Var) which consists
essentially of the minimization of a cost function J (e.g. Courtier et al, 1993)
1 1w 4

J(x(ty) = E(x(to) -x)' B (x(tp)-x,) + E?:; Hx(t)-y) O; (Hx()-y) )
Here x(f) denotes the model initial state at the beginning of the assimilation period T, i.e. the control
variable of the problem, whereas the following states x(%,) at time i are obtained through the time integration
of the forecasting model. The observation operator H; can be a simple interpolation function if an
observation is made of a model variable but it can be a complicated routine, eg. a radiative transfer model
in the case of radiance measurements. The subscript ; in the observation error covariance matrix O, (omitted

hereafter) states that the matrix O is dependent on the observations available at the time i.

The formulation (2) is chosen so that when the time dimension in (2) is not considered and H is linear, x,
of (1) would minimize the cost function; this shows the equivalence of OI and three-dimensional variational
data assimilation. Equation (1), on the other hand, corresponds to the analysis step of the Kalman filter and
minimizing (2) leads to the same solution that would be obtained with the Kalman-filter in the case of linear
dynamics and assuming a perfect model, resulting in the best estimate of the atmosphere at the end of the

assimilation period (e.g. Rabier et al, 1993).

Equation (2) can be written symbolically as a sum

T
J=Jdqd, = J,,+Z; 1, ©)
3=l



where J, and J, are the background and the observation terms, respectively. J, measures the misfit between
the model initial state at ¢ = ¢, and all available information from before the assimilation period, summarized
by the background field x,. J, measures the distance of the model state to the observations at appropriate
times during the assimilation period. The term J, consists of several individual terms J,; corresponding to
short time slots of the assimilation period T and can be written as a sum as in (3). The cost function can
also include some dynamical or physical constraints or a measure of distance to other possible source of
information in form of an additional weak constraint term J, in sum (3). In the present study, term J, is
a penalty for the presence of gravity waves which are measured by the distance of model initial state to the
slow manifold (Courtier and Talagrand, 1990). For more details on the formulation of the cost function

see e.g. Heckley et al (1992) and Vasiljevic et al (1992).

The formulation of the minimization problem implies an assimilation period T over which the model is
integrated and the comparison with the available observational information is made. The methods currently
envisaged to implement 4D-Var in an operational environment (e.g. Pailleux, 1989 and 1993; Courtier et
al, 1993 and 1994; Derber et al, 1992; Rabier et al, 1993) are based on a configuration similar to those used
in OI implementations: the assimilation of the observations starts after the end of assimilation period, when
the cut-off-time is reached (Fig. 1, middle panel). In 4D-Var the assimilation period T can be as long as
24 hours whereas in Ol a typical assimilation period is six hours. The amount of observations may therefore

be large in 4D-Var compared with OL

The calculation and minimization of the cost function is a computer intensive task. The main limitation for
the application of full variational approach is the requirement for peak computer power. Methods for better
preconditioning of the problem (Courtier et al, 1994) and for an incremental approach (Derber et al, 1992;
Courtier et al, 1993 and 1994) have been proposed to reduce the computational cost. The former allows
the solution of the assimilation to be achieved with a smaller computational effort. The latter is an
approximation of the full problem and allows one to regulate the time used for the assimilation and the
accuracy of the solution, depending on how much the linear model is simplified for the minimization. It
also provides a way of including certain physical processes into the 4D-Var without developing the adjoint

of the full forecast model.

2. PARTITIONING OF THE COMPUTATIONS OVER THE ASSIMILATION PERIOD

We propose an alternative approach to the implementation of variational assimilation by relaxing the
constraiﬂt related to the completeness of data, keeping in mind that the real limitation for the application
of 4D-Var is the peak computer power. We envisage a quasi-continuous process of data assimilation which
exploits the inherent freedom of 4D-Var to begin the assimilation with an incomplete set of observations.

The assimilation is started before all the observations are available and the assimilation task is distributed



in time. Although the set of observations is incomplete, the assimilation is still global. The aim is to reduce

the minimization task that otherwise should be completed in one calculation.

2.1 Basic principles of the approach
Let us divide the assimilation period T into N sub-windows, the duration of each being T/N. The length
of T may be 24 hours and N is a suitable integer, e.g. 4.

The first time-partitioned assimilation (A ,) is done with the observations that have arrived during and by
the end of the first sub-window. There is thus available at ¢ = T/N a fraction 1/N of the total number of
observations of the assimilation T period if a constant observation flow is assumed. These observations will
be preprocessed after a suitable spell of time (or sub-cut-off-time) shortly after ¢ = T/N. The background
information is available in the form of x, valid at the beginning of the assimilation period ¢ = ¢,. The vector
x, may also be used as the initial point of minimization as it has an optimal fit to observations just before
the current assimilation period. The background and observational error covariance matrices, B and 0, that
are needed in the calculation of the cost function are the usual ones used in 4D-Var (Courtier et al, 1993).
This first assimilation is identical to the normal 4D-Var except that the assimilation period is T/N instead
of T. After completing the first assimilation task, the result of the minimization is stored in the form of a

model field valid at ¢ = ¢,

At the end of the second sub-window, the amount of observations has increased by roughly a fraction 1/N.
There may also be observations that logically belong to the first sub-window but which arrived too late to
be used in assimilation A,. These can be included into the second assimilation process (A,) which extends
over two consecutive windows from ¢ = ¢, to ¢ = 2T/N using all the observations that have arrived by ¢ =
2T/N. The background information, x, and B, is unchanged whereas the initial point of this minimization
is the result of the assimilation A, which fitted the observations that arrived between ¢ = £, and ¢ = T/N and

should be a better approximation of the atmosphere than x;.

The quasi-continuous variational data assimilation proceeds in this way by assimilating the available
observations already during the assimilation period and improving repeatedly the model initial state. The
assimilation period increases each time by a period of 7/N. Comparing the normal and quasi-continuous
4D-Var at the end of T when the last assimilation is beginning, the difference is that the model initial state,
or the estimate for the analysis at £ = ¢), has undergone N-1 iterative improvements. Fig 1 (lowermost panel)
shows schematica]ly how the computations proceed in the quasi-continuous approach compared with a
normal 4D-Var implementation (Fig 1, middle panel). In the quasi-continuous approach there are no strict
scheduling requirements for the assimilation tasks other than the logical order and the requirement that the

last assimilation must finish before the time-critical forecast job can be started.



In the normal implementation of 4D-Var, where the minimization is performed in one calculation over T,
the cost function J can be written according to (3) in the case N = 4 as follows

J=Jb+Jo=Jb+Jal+J02+J03+Jo4 (4)
The quasi-continuous approach A consists of a set of consecutive assimilation tasks with a different cost
function to be minimized each time. These are ' '

A J=J,+J,

Ay J=dy+ g+ dy

'A3: J= Jb + Jo] + JoZ + ‘,03

Ay JT=dy e dy v dy, + T+ dy, | o )
The initial point of minimization A; is always the result of the previous minimization task A;,. This
algorithm actually bears a similarity with the Kalman filter where the background is combined repeatedly
with the observations to produce an updated background (e.g. Lorenc, 1986). In (5) the background is also

combined with the latest observations but to form a new initial point of minimization through the iterative

search. The background itself remains unchanged thronghout the assimilation.

If we assume a stable observational network, the formulation (5) suggests a way to estimate all the
ob‘serva.tion terms J,; by those currently available. That can be done by taking into account the number of
observations available compéred to the total amount and weighting accordingiy. An alternative algorithm
B can then Be wriften in the case N = 4 as

B,: J=Jb+4JoI

Bz: J=J, + 2(J01 + Joz)

4
BS: J = Jb + E(JaI +"I02 + Joi)

B,: J=J, +J, + Jy +d3 + J 4 &)

This algorithm is sub-optimal in the sense that it is not equivalent to the optimal Kalman filter, i.e. in (6)
the ad hoc weights given to the observations do not appear in the Kalman filter. Numerical results show
the algorithm (5) to be superior to (6) and therefore (6) will not be developed further. The quasi-continuous
approach will refer in the following to the algorithm (5).

2.2 Preconditioning of the minimization
The quasi-continuous approach allows the possibility of gathering preconditioning information of the

minimization during the assimilation process. In the quasi-Newtonian iterative search of the minimum of



cost function J (Gilbert and Lemaréchal, 1989), the nth estimate of the control variable x is updated through

the formula
X1 =%, — W—f) . Vx,,‘l(xn) . : < ; -

The gradient -vector of the cost function with respect to the controi variable,‘Vx J, is obtained through
integration of the adjoint model. The dimension of the square matrix containing the second pa.rtiel
derivatives, the Hessian V 2J(x), equals the dimension of the control variable and would be the optimal
preconditioning of the minimization problem. However, the Hessian is unknown and is too large in most
meteorological applications to be handled explicitly. Therefore only an approximation, denoted by an
overbar, is available in (7). The diagonal of the Hessian provides useful information to determine the
optimal descent direction and step length in (7), as reported by Thépaut and Moli (1990) who exph01t1y

calculated the Hess1an in the case of a low dimensional model

The gradlent -vectors evaluated during the course of the mnmmzatlon can be used to estimate and to update
the d1agona1 of the Hessian matrix, thereby 1mprov1ng the convergence. In the first few steps no
information of this kind is available, if not explicitly provided. One could think of using the Hessian from
the previous day, which has been found to improve the convergence (Courtier, 1987; Courtier et al, 1994).
The quasi-continuous approach provides, in prmmple a possibility to use the Hessian information of the
assimilation A, as preconditioning when startmg the a351m11at10n A, The 1dea is to estimate the dlagonal
elements of the Hessian in the first assimilation and pass that information to the next assimilation in the
quasi-continuous chain which in turn passes the most recent update to the next one, and so forth. There

may be, however, a practical difficulty. The Hessian is given by equation

V2Ix) = B + H'O'H ’ ®)
where B, H and O are as defined in (1). Although the matrix B may be kept constant over the whole
assimilation period, O may not, because it is dependent on the observational network. In the quasi-
continuous approach the intention is to use a larger set of observations in each successive assimilation and
therefore the matrix O will be different and, consequently, also the Hessian. Numerical experiments will

show how this aspect of quasi-continuous approach works in practice. One may note that (8) equals the

inverse of the analysis error covariance matrix at the beginning of the assimilation period.

2.3 The convergence and the length of assimilation period

The rate of convergence when minimizing J using the adjoint of a primitive equation model varies with the
length of the assimilation period and also during the minimization (Thépaut and Courtier, 1991). Generally,
the shorter the assimilation period, the faster the convergence. Li et al (1993) and (1994) draw similar
conclusion. The convergence also tends to slow down when approaching the minimum of the cost function

as the minimization starts to be saturated. Therefore, the experimentation with the quasi-continuous



approach is planned accordingly. The first assimilation tasks of short assimilation period utilize the
associated rapid convergence. By searching only an approximate solution of the minimum of the cost
function in the assimilations A,, A, and A;, the rapid convergence at early stages of minimization is thus
also utilized. As the largest scales converge most rapidly (Thépaut and Courtier, 1991), terminating the
minimization before the saturation implies that the small scale structures have not effectively been generated

in the model initial state.

3. FEASIBILITY STUDY WITH A BAROTROPIC MODEL

3.1 The model and construction of variational problem

We use a barotropic vorticity equation model for a feasibility study. The model variable, the 500hPa
geopotential height, is given in the National Meteorological Center’s (NMC) polar-stereographic grid, at a
total of 1404 grid points north of 20°N. The number of degrees of freedom is 1236 as there is no tendency
at the boundaries. The grid interval is 381km at latitude 60°N. The model is described in detail in Rinne
and Jdrvinen (1993).

The experimental framework uses the model to produce synthetic observations, hereafter simply referred to
as the observatzons, distributed along the assumlatlon penod T. This is done by choosing randomly one
initial COIldlthIl of the model hereafter referred as the truth, from analyses provided by the NMC. Then
a spatially umform but sparse set of grid point values of forecast fields at full hours are selected as
observations y, to which random errors are added. The number of observations equals 1236 with 51 or
52 observations at each full hour {1, 2, ..., 24} after the initial time. There is, in other words, exactly one
observation in each gnd point (excluding the boundary) dunng the 24-hour assimilation period. The
background fleld xb is equal to the truth plus random errors added everywhere but on the boundary.

The cost function is constructed from (2) with a few simplifications. B and O are replaced by constant error
variances of the background o, and of the observations Gyz, respectively. The synthetic observations appear
at model grid point locations and therefore the observation operator H reduces to a projection. In the

filtered model there are no gravity waves and so the term J, is missing. The cost function J now takes the

form
’ N
Jatt) = 4, + Jy = ;2 (x (1)-x,)2dA, + —}j Z L)y @)1, ©)
i- }-1 i=1 a

The summations run over the number of grid points (N), over observational times (T) and over the number
of observations (M). Here N=M=1236 and T=24. The areal elements dA sum up to unity over the grid and

normalize the squared departures at different latitudes to have the same weight in the cost function.



The cost function J is controlled through the model initial state x(f,), which is the control variable of the
problern. - For the minimization the partial derivative of J with respect to the control variable x(¢,) is

needed. - The partial derivative of the first term .of (9) for grid point { is simply

(a’zé)__(x(to) x,,,)dA R | - (10)
) o Sl e e

This term forces the solution towards the background field and in the absence of observations, x(z,) = x,
would minimize (9). The second term does not contain x(¢;) but only model variables of later time steps

that are related to x(¢,) through the model equation. . The term

ar, "\ : T _ : S an
(ax(to))i : : : R : ' o

is achieved through integration of the adjoint of the tangent linear model using

) _L(x.(t.) - y,(t))dA, - (12)
iy ), o A

as the adjoint model variable. The resultmg term forces the solutlon towards the observations. In the
absence of the background field x, the solutlon minimizing the cost functlon would have a very close fit
to the observations. The development and testing of the adJomt of the barotropic model is described in

detail in Jdrvinen (1993) following Courtier (1987), T. alagrand (1991) and Failleux et al (1991).

3.2 Desngn of the assimilation experlments ,

The aim of these assimilation expenments is to compare the cost of the qua51-contmuous and the normal
4D-Var in terms of computing time. Care was taken to minimize the artificial variation in computing time
from one experiment to another. The experiments were performed on a workstation where the main load
éome from the vexperi'ment itself. The computing time fluctuations wereismall, typically 1-2% between two

identical tasks.

In each experiment; the initial point of the minimization is a 12-hour forecast ‘from the truth. A normal 24-
hour 4D-Var assimilation is performed starting from this initial point, to find the minimum of the cost
function. The minimization is ‘terminat»ed when the decrease of the cost function per iteration becomes
smaller than a predefined criterion. The cdrresponding value of the cost function J, as well as the
computing time to reach it, are used as reference values. This first normal 4D-Var assimilation to provide

reference values is hereafter called the control assimilation.

Next, the quasi-continuous approach is applied. bThe initial point of the minimization of the first 6-hour

assimilation A, is the same as in the control case. The convergence of the minimization over this short
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assimilatioﬁ period is very rapid and only an approximate solution of the minimum of the cost function is
sought. This improved initial point of minimization, i.e. the control variable after the 6-hour assimilation
A, is then used as the initial point of minimization in the 12-hour assimilation A,. An approximate solution
of the minimization is again sought. The next assimilation of 18-hours (A ;) further improves the initial
point of minimization. The final 24-hour assimilation A, uses the latest improved initial point of
minimization. In these experiments, the initial value of the cost function of assimilation A, was about 1/20
or 1/30 of the corresponding value of the control assimilation. The minimization is terminated as soon as
the reference value of the cost function of the control assimilation is reached. This last assimilation A, uses
most computing time, as only here the actual minimum of the cost function in the quasi-continuous approach

is sought. -

3.3 Cost comparison of assimilation experiments

Five assimilation experiments were carried out using independent NMC- analyses dated 13 and 25 Dec
1965, 7 and 20 Jan 1966 and 2 Feb 1966, all at 00UTC. Several flow types are therefore covered. The
error variance in the background o,> and in the observations ¢,” is 100 m>. The variational problem (9) is
insensitive to this level of error variance as long as it is the same in both terms J, and J,. If the error
variances were different for the background and observations, the cost of the minimization would also
change implying, according to (9), a change in mutual weight of terms J, and J,. In the 6-, 12- and 18-hour
assimilations (A, A, and A;) only 5 iterations are performed with on average a total of 8-10 simulations,
i.e. evaluations of the cost function. The minimization is carried out with a quasi-Newtonian conjugate

gradient routine of the NAG- library (E04DGF).

The average total cost of performing the quasi-continuous assimilations A ;, A,, A; and A, compared to the
cost of the 24-hour control assimilation is 64%. The cost of the 24-hour assimilation A, alone compared
to the cost of the 24-hour control assimilation is 41%. These figures indicate the potential in the quasi-

continuous approach.

To verify that the solution of the minimization is the same in the quasi-continuous and control assimilations,
we calculated the mean squared difference between the solution and respectively the truth, the background,
the initial point of minimization and the observations in both the quasi-continuous and cont'rol cases. With
an iterative search of the minimum of the cost function, there is an infinite number of possible solutions.
The statistics were, however, very close to each other in the quasi-continuous and control assimilations and
one could consider the solution to be effectively the same. The difference in computing time needed to

achieve these solutions cannot be explained by the difference in the two solutions.



In our first experiment the minimization was terminated in the assimilations A ,, A, and A 3 well before the
actual minimum of the cost function was reached. We also made an experiment with a single NMC-analysis
where the actual minimum is sought in each minimization A,, A,, A; and A, The total computing time of
the quasi-continuous assimilation is now longer than that of the 24-hour control assimilation. To study this
in more detail, the mean squared difference between the model state and the observations is displayed in
Fig 2 over the 24-hour assimilation period in two experiments: the search of minimum is either inaccurate
in the 6-, 12- and 18-hour assimilations A,, A, and A, (panel a) or accurate (panel b). In the case of an
accurate search of the minimum of J, the computing time of the assimilations A4 ,, A, and A; was two-fold
compared with the case of an inaccurate search. Note that the comparison with observations is made e.g.
for the 6-hour assimilation A, for the period of 24-hours even though the assimilation itself covers only the
first 6-hours. It seems to be that the difference between the model state and the observations is small only
over the assimilation period in question, i.e. for A, during the first 6 hours, for A, during the first 12 hours
and so forth. Furthermore, this in only weakly dependent on the accuracy of the minimization. If this had
not been the case, one-would have expected an improvement of convergence in following assimilation A4, ,.
Therefore it is beneficial to set a loose criterion to terminate the minimization in the assimilations 4 »A,

and A,.

In the barotropic experiments, the computational cost of the quasi-continuous approach is lower than in the
control assimilation, provided we perform an approximate minimization in'the assimilations A pA,and A,
On average, the total cost of the quasi-continuous assimilation compared with the 24-hour control
assimilation is 64% and the 24-hour assimilation A, costs 41% of the 24-hour control assimilation. No
benefit is achieved by saturating the minimization in the assimilations 4, A, and A, because of the small
scale flow patterns that develop in short assimilation periods. These are not realistic on longer time scales
and the system has to get rid of the energy associated with these structures during the subsequent
assimilations. It is better to seek an approximate solution before the last assimilation and consider the quasi-
continuous approach as a possible preconditioning method of minimization. The following chapter will cast

some light on how approximate the solution in assimilations A4, A, and A 3 should be.

4. EXPERIMENTS WITH THE ECMWF 4D-Var ASSIMILATION SYSTEM

The feasibility study with a barotropic model showed that the quasi-continuous 4D-Var is a potentially
beneficial approach to the variational data assimilation problem. However, the results of the simplified
experiments may not be directly applicable to an operational data assimilation problem. Therefore the
evaluation is repeated with an assimilation system of larger dimension and with real observations. In this
section we experiment with the ECMWF 4D-Var data assimilation system which can provide a more reliable

estimate of the possible benefits of the quasi-continuous approach.
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4.1 Description of the assimilation experiments

The atmospheric model used in the experiments is the ECMWF global primitive equation model in adiabatic
form truncated at horizontal resolution T21 and discretized in the vertical to 19 levels. There are 28072
degrees of freedom. The only physical processes present in the model are horizontal and vertical diffusion
and a simplified surface friction. The adjoint of the model also includes these processes so the model and
its adjoint are consistent. - The cost function is as defined in (2) with a constraint J, to control the amount

of gravity waves present in the solution (Thépaut et al, 1993b).

The set of operational observations is dated 13 Oct 1987 and four sub-sets from 15 to 21UTC, 15 to
03UTC, 15 to 09UTC and 15 to 15UTC (14 Oct 1987), respectively, are created. Table 1 summarizes the

number of observations of different types available in the assimilation periods.

15-21UTC 15-03UTC 15-09UTC 15-15UTC

SYNOP (v, T) 1554 3126 4723 6352
AIREP (u, v) , 1060 2356 3790 5262
SATOB (u, v) 364 1734 3248 4822
DRIBU (v, T) 297 582 833 1051
. TEMP (u, v, z) . .2996 22619 24914 45613
PILOT (u, v) 2618 4382 6984 8732
z 8889 34799 44492 71832

Table 1. The number of observations of different types in the assimilation experiment. The parameters
considered are horizontal wind components (u and v), temperature (7) and geopotential height (2).
Observation types are denoted by SYNOP for synoptic surface observations, AIREP for aircraft reports,
SATOB for.geostationary satellite winds, DRIBU for drifting buoys, TEMP for radio-sonde observations
and PILOT for wind soundings.

The number of most observation types increase steadily in time, except temp-soundings. This is due to the
fact that Soﬁnding observations are predominantly carried out at two observation times, 00 and 12 UTC.
Furthermore, they are concentrated on continental areas. This spatial and temporal inhomogeneity of the
sounding network is sigﬁjficant as they form the main information source among the observations. The
largest change in the observational network occurs when going from a 6- to a 12-hour assimilation period
as the total number of observations grows by a factor of four. Note that humidity does not appear in
Table 1 siﬁce the model used is dry. The total number of pieces of information in Table 1 is more than two
times the number of degrees of freedom of the T21-model. In all these experiments, the partitioning of the
observations is performed a posteriori, and therefore the data sets are partial but complete. In the
operational data assimilation with the quasi-continuous approach, the data sets may be partial and incomplete

due to the irregular arrival of observations.

The assimilation experiment is performed in a similar way as in the barotropic case. First, a 24-hour 4D-

Var control assimilation is carried out to provide the reference for the quasi-continuous case. The initial
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point of minimization is the background x, which is a short range (6-hour) forecast. An essential point of
the control assimilation is to determine the degree of convergence which corresponds to an acceptable
solution of the control variable x. The large-scale features of the field are resolved quickly in the
minimization process and this corresponds to a rapid convergence at early iterations whereas the small scale
features develop more slowly. Thus one has to let the minimization proceed until the convergence starts
to show signs of saturation -and the decrease of the cost function per iteration'is very small. In this
experiment, the criterion to terminate the minimization in the control assimilation is chosen to be
100 iterations and no more than 105 simulations, which follows the 4D-Var experimentation practice at
ECMWE. The value of the cost function J is reduced to 0.51 compared with its initial value during this

minimization, while for J, the reduction is to 0.48.

To highlight the slow convergence during the last iterations one may note that 95% of the total reduction
of J is achieved a]réady by ,rbughly the 35th iteration. For the quality of the following forecast, the
remaining 5% is; nevertheless, important. Control assimilations with 30 iterations are also performed for

6-, 12- and 18-hour periods to get comparisons of the values of cost function and its rate of decrease.

The quasi-continuous assimilation begins with a 6-hour assimilation (A,) where the initial point of
minimization is the same background x, as in the control assimilation. A fixed and small number of
iterations (from 10 to 30) is pérformed with this, the shortest assimilation. This is due to the result of the
barotropic experiments where no gain is achje\}ed by saturating the minimization. The result of the
minimization is theﬁ used as the initial point of the next assimilation (4,) and the same procedure is
repeated for the 12- and 18-hour periods. The termination criterion of the final 24-hour assimilation A is
100 iterations or 105 simulations, as in the 24-hour control assimilation. CPU-time used for the
minimization is monitored during the compufaﬁons. The minimization is carried out with a quasi-Newton
limited memory algorithm (M1QN3) where the diagonal elements of the) Hessian are updéted during the
minimization (Gilbert’ and Lemaréchal, 1989). This is the aforementioned possibility to provide the
preconditioning infdrmation by A, to the subsequent assimilation A;,, 1» 1.e. the 6-hour assimilation provides
preconditioning for the 12-hour assimilation and so forth. There are consequently two sets of experiments
which are hereafter referred to "warm restart” and "cold restart" experiments depending on whether the

Hessian information is or is not used in the assimilations A, respectively.

4.2 Resulﬁ of the assimilation experiments

As the intention in the quasi-continuous assimilations A, A, and A; is to perform an approximate
minimization, the number of iterations can be chosen empirically. Three alternatives with 10, 20 and 30
iterations are tested using both cold and warm restart of minimization. The number of gradient evaluations

updating the Hessian is fixed to 9 in all experiments. Table 2 gives the values of J, at the initial poi‘nt of
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the minimization in the assimilations A,, A; and A, relative to the control values. Also a computing time

to perform the assimilations A, A, and A; is given, in relative terms.

4 N A’o,z A]o,.? | A‘Iﬂ,4 ‘ Zt

cold restart 10 0.91 0.67 0.64 0.15
cold restart 20 0.93 0.60 0.60 0.32
cold restart 30 0.96 0.57 0.59 0.47
warm restart 10 0.91 . 0.67 0.63 - 015

" warm restart 20 0.93 0.59 0.59 0.32
..warm restart 30 - 096 0.57 - 0.59 0.47

Table 2. The values of-J, at the initial point of minimization in the assimilations A,, A, and A, Here
N is the number of iterations performed in the assimilations A, A, and A, AJ,, AdJ,; and Ad,,
indicate the initial value of J, in the assimilations A,, A, and A, divided by the corresponding control
value, respectively. Xtis defined as a sum of computing time of the assimilations A,, A,and A, divided
by that of the 24-hour control assimilation.

According to Table 2, J, at the initial point of minimizations A,, A; and A, is reduced due to performing
the quasi-continuous assimilations A;. In the 24-hour control assimilation with 100 iterations, J,, is reduced
from 1 to 0.48 in relative terms. In the quasi-continuous case, J, is already at the initial point of the
minimization of the assimilation A, about 0.6, in relative terms. Increasing the number of iterations above
10 in the 6-hour assimilation A, is not beneficial for the following 12-hour assimilation A,, whereas in the
12- and 18-hour assimilations A, and A; the rcversé is true. The warm restart seems to be only slightly
more efficient than the cold restart. The above reduction of the value of the cost function J, at the initial
point of minimization A, is achieved through a considerable computing time, from 15% to 47% of the cost

of the 24-hour control assimilation (depending on N). This is compensated, however, as will be seen later.

Figure 3 shows the cost function and its gradient in the 24-hour assimilation A, in three cases where
different number of iterations in the assimilations A, A, and A; is performed. Figures 3a-c show that
although J, at the initial point of minimization is considerably smaller in the 24-hour assimilation A,
compared with the control assimilation, the subsequent rate of convergence is also notably reduced. The
three J, -curves in the Figs 3a-c saturate at about the same value, as happen also to the curves of J, and J..
That is quite reasonable as the observations, the formulation of variational problem and the atmospheric
model are the same and therefore sooner or later the minimum of a quadratic problem has to be recovered,

independently on the method.

The norm of the gradient of the cost function is shown in Figs 3d-f, which also display a running average
over 10 values for each curve. The norm of the gradient is reduced by about 3 orders of magnitude in
100 iterations. A common feature in Figs 3d-f is that the norm of the gradient is initially smaller in the

quasi-continuous case compared with the control assimilation and it stays smaller during the Whole
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minimization process. Thus, in the quasi-continuous-24-hour assimilation A, the latest update of the cost
function is consistently closer to the minimum than in the control assimilation.” Moreover, the difference
is the larger the more iterations are performed in 6-, 12- and 18-hour assimilations A, A, and A,.
Figure 3d-f also shows that the use of a warm restart is beneficial for the minimization, which implies that

it is possible to extract useful Hessian information even when partial sets of observations are used.

Figures 3d-f provide a way to estimate the cost reduction of a 24-hour assimilation due to the quasi-
continuous aﬁproach. The norm of the gradient is a more sensitive criterion for terminating the
minimization than the reduction of J itself. It takes fewer iterations in the quasi-continuous approach than
in the normal one to reach any value of the norm of the gradient. An estimate of this gap is presented in
Table 3. The results are based on a single case, so a general figure can be deduced only by looking at
several different cases. The curve of running average over 10 gradient values of Figs 3d—f is used and any

local variations on that curve have been ignored.

N AN N AN
cold restart 10 : +0 warm restart 10 15
cold restart 20 10 warm restart 20 30
cold restart 30 20 warm restart 30 40

Table 3. A subjective estimate of the cost of a 24-hour assimilation using the quasi-continuous
approach. Nis as in Table 2 and AN is defined as a difference in the number of iterations between

the 24-hour quasi-continuous assimilation A, and the control assimilations when the same solution is .~
reached as measured with the norm of the gradient. '

When considered with the computing time (Table 2) to perform the assimilations A4,, A, and A;, Table 3
indicates, that the total cost of 4D-Var can be expected to remain about the same, or slightly more
expensive, with the quasi-continuous approach. However, the redistribution of the computing task implies
that the cost of the final 24-hour assimilation A, is decreased considerably without increasing the total cost
of the assimilation, provided that only a small number of iterations is performed in the assimilations A, A,
and A;. According to Fig 3d-f, the improved initial point of minimization and the warm restart contribute

about equally to the cost-effectiveness of the quasi-continuous approach.

Above, only the pure computing time to run the minimization is considered. On the other hand, the model
trajectory, i.e. model states over the assimilation period against which the observations are compared, grows
linearly with the assimilation period as well as the amount of observations to be held in memory. If the
computing time is weighted with the memory requirement, the quasi-continuous approach would seem even

more beneficial compared with the normal implementation.

14



Figures 3a-c show that the difference in the value of J,in different approaches may not be significant after

about 60 iterations and therefore judgement on the performance of the two approaches to the assimilation
problem is difficult to make. However, by concentrating on a small range of values of J, (from 1.3« 10°

to 1.5+ 10° in Figs 3a-c) provides qualitatively similar estimates of cost reduction of the 24-hour assimilation
A, as deduced previously from Figs 3d-f. An interesting point here is that the more horizontal the J, -curve
becomes, the larger grows the difference in the quasi-continuous and control assimilations in terms of
number of iterations. The argument holds also in Figs 3d-f. Although the different approacheé eventually
end up to the same solution, on this limited range of iterations the difference in number of iterations seems

to increase.

5. DISCUSSION AND CONCLUDING REMARKS
The concept of qu;isi-coﬁtinuous 4D-Var has been evaluated for its effectiveness for an operational

meteorological data assimilation.

In the normal implemehtation of 4D-Var the minimization task takes place after the current assimilation
period when all the observational information is available. In the quasi-continuous approach, the
assimilation is partitioned into smaller tasks. The iterative nature of the variational assimilation allows one
to start the minimization with an incomplete set of observations. The practical approach envisaged here is
to start the assimilation of a 24-hour period with the observations from the first 6-hour period and to
perform only an approximaté search of the minimum of the cost function J. As soon as more observations
become available the assimilation is started é\gain over a longer period but using the result of previous
assimilation as initial point of minimization. In the present study, the length of assimilation period is
gradually increased from 6 hours to 12, 18 and, finally, to 24 hours thus providing a continuously improved
estimate of the analysis field. Only in the final assimilation an accurate search of the minimum of J is

performed. The result of the assimilation is the same in the normal and in the quasi-continuous approach.

As discussed by Thépaut and Courtier (1991) and Li et al (1993) and (1994), the longer the assimilation
period the slower the convergence. This is due to the dynamics, linear or non-linear, that modify the
Hessian of the problem thus affecting the conditioning. Therefore the computing time required in the quasi-
continuous approach is not as long as one would expect simply by adding together each separate
assimilation period {T/N, 2TI/N, ..., T} and assuming the same convergence properties of the minimization

as for the assimilation period T.

The convergence of the successive minimizations is improved in the quasi-continuous approach due to the
better initial point and the better preconditioning of the minimization process. The first of these results is

rather obvious as the closer to the minimum of J one begins the minimization the better. The second result
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arises because it is possible to extract useful Hessian information with use of partial sets of observations
even when there is a strong spatial and temporal inhomogeneity in the observational network. The
improvement due to the preconditioning is of the same order of magnitude as that due to the use of a better

initial point of minimization.

In the experimental assimilations with a low resolufion barotropic model and using synthetié observations,
the computing time of the quasi-continuous assimilation was 64% of the time for thé 24-hour control
assimilation. The cost of the final 24-hour quasi-continuous assimilation was 41% of the cost of the control
assimilation. With a’ primitive equation model and with real observations the total cost of the quasi-
continuous assimilation is approximately the same as that of the normal implementation. The éost of the
final 24-hour quasi-continuous assimilation is in the most favourable case only 60% of the cost of the 24-
hour control assimilation. The reason for this distinction in results in the cases of different models lies
presumably in the simplicity of the barotropic problem and in the homogeneity of the distribution of the
synthetic observations. In the quasi-continuous assimilation the trajectory of the model is shorter and there
are less observations in memory until the last assimilation, resulting in a reduction in computer demand

when the computing time is weighted with the memory requirement.

A possible interpretation of Athe cost effectiveness of the proposed approach follows. Thépaut et al (1993a)
and (1994) showed that 4D-Var makes implicitly use of the fastest growing singular vectors to modify the
covariance matrix of the background errors. The use of large scale information late in the assimilation
period will modify large scales late in the assimilation together with small scales earlier in the period. The
modification of the small scales early in the period can easily be below the observability. However, 4D-Var
will also produce large Scale changes upstream at initial time along the orthogonal of the unstable manifold.
These latter changes may be obsérvabie, and therefore analysable with 3D-Var or a 6-hour 4D-Var, using
observations availablé in the early part of the period. The interpretation is then that forcing convergence
only on the large scales in the early quasi-continuous assimilations, and forcing it on all scales later in the
last quasi-continuous assimilation, has analogies with multi-grid technique which has been shown to be

effective for elliptic problems.

One aspect of the quasi-continuous approach is, as illustrated in Fig 1, that there appears extra time after
the cut-off-time compared with the normal 4D-Var. That time originates from the faster completion of the
final 24-hour quasi-continuous assimilation. Firstly, this suggésts that a 24-hour 4D-Var assimilation using
quasi-continuous approach can be possible even for operational centres having fairly short cut-off-time as
a constraint. Secondly, there is a potential for a forecast improvement either by delaying the cut-off-time
and allowing some late observations to enter the assimilation process or by searching more accurately the

minimum of the cost function. The latter case causes an additional cost but the time-critical forecast task
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can be started in both cases at the same wall-clock time. Computing some information about the analysis
error covariance matrix to be used for cycling the 4D-Var, e.g. through a simplified Kalman filter, could

be considered as well.

In the quasi-continuous approach the assimilation code remains unchanged whereas the organisation of the
computing resources will become more complicated. The demand for system time increases as the
initialization of assimilation tasks as well as the result of minimization and the preconditioning information
has to be handled several times. From a pure operational point of view, the quasi-continuous approach may
be tolerable as the 4D-Var assimilation task is divided into smaller parts of which only the last is time and
memory critical. During the period T, the scheduling of the quasi-continuous assimilations can be flexible.
The observation handling has to be partly reorganized as there will be N different assimilations and
preprocessing tasks to be executed and some extra checking may become necessary. Although there will
appear some extra work in ordering and checking of observations, the irregular arrival of observations does

not affect the result of assimilation.

A less trivial aspect which needs to be studied concerns applying non-Gaussian error statistics to the
observations. Error statistics of this kind may be used in quality-control of observations which is integrated
into the variational assimilation giving smooth transition from datum rejection to its acceptance rather than
strict limits applied as a separate step independently on the assimilation (Lorenc and Hammon, 1988). The
topology of the functional J may in this case become complicated and eventually possess several minima.
In such a case, there is a risk during the course of minimization to fall into a non-optimal secondary
minimum. It may be therefore necessary not to saturate the minimization on the early quasi-continuous

assimilations and to ensure the following assimilations to proceed to an optimal solution.

In the near future, the next generation remote sensing instruments will provide a considerably larger amount
of atmospheric measurements than at present. The observations with high spatial and temporal resolution
eventually leads to the necessity of more continuous data processing and assimilation methods. The quasi-
continuous approach is one possible step in this direction utilizing the possibilities provided by the

variational data assimilation.
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Fig 1 A schematic presentation of an Ol implementation (uppermost panel), of a normal 4D-Var (middie panel) and that
of a quasi-continuous 4D-Var approach (lowermost panel). The ordinate € describes computing power demand due
to the assimilation of observations. Vertical intersections denote two time-levels: the cut-ofi-time of normal 4D-Var
and the starting of the time critical forecast run. A,, A, A;and A, refer to the quasi-continuous assimilations.
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Flg 2 ‘Mean squared dlfference between the model state and the observattons over the 24-hour assnmllatlon period in the

quasi-continuous assimilations.
-(a) The case where an inaccurate search of minimum of cost functlon is performed in assimilations A,, A,and A,
{b) The same, but for an accurate search. Note that the solid {ine is virtually the same in (a) and (b).
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