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Summary: The theory of internal gravity waves is reviewed with particular emphasis on
properties which are relevant to the problem of parametrization of wave-induced drag in nu-

" merical models. Observational techniques for gravity wave study are also described. Finally,
a simplified account of a gravity wave drag parametrization scheme is given.

1. INTRODUCTION

It is now well-known that momentum transport associated with sub-grid scale orographic effects
needs to be included in numerical weather prediction models in order that they should reproduce
observed climatologies. Evidence for this is presented, for example, by Palmer et al. (1986). It is fur-
ther recognised that the principal process involved in the vertical transport of momentum on sub-grid
scales (i.e. less than a few hundred kilometres) is that of orographic gravity wave propagation. This
paper describes the major physical processes involved in the generation, propagation and dissipation of
orographic gravity waves and relates them to simple parametrizations of the sub-grid scale momentum
transport. Sections 2-10 are concerned gravity wave theory. Sections 11 and 12 deal with observational
techniques and in section 13 a simple gravity wave drag parametrization scheme is described.
2. LINEAR INTERNAL GRAVITY WAVES

We consider linear internal gravity waves with zero phase speed (appropriate for orographic waves)
and horizontal wavevector K = ‘(k, £). The vertical velocity in a field of such waves may be represented

by a Fourier superposition of modes:

[o o] o0
w(z,y,z):/ / Wk, £, z)e =) dkde. (1)
—o0 J~00
It is readily shown that @ satisfies the vertical structure (Taylor-Goldstein) equation:
d*® N K2+ %) U"k+V'"
dz? (Uk + Vi)? Uk+ Ve
where N is the Brunt-Viisili frequency and U = (U(z), V(%)) is the mean flow velocity. Consider

~ (B + )| D=0 (2)

a simple mean flow which is independent of height. We can always take V' = 0 by an appropriate

rotation of coordinates. If we look for a solution which is wave-like in the vertical, i.e.
D~ eimz, (3)

then
2

N
2 2 _
FrmsT @
It follows that if m is real (i.e. the flow is wave-like in the vertical) then the horizontal wavelength A;

must satisfy the condition

2r 27U
/\m = '%' > —N . (5)
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If the horizontal wavelength is less than this value, then m is imaginary and the wave amplitude decays
exponentially with height.

It is the wave-like modes, with wavelengths greater than 27U/N which are associated with oro-
graphic drag. The critical wavelength 2w U/N is usually a few kilometres and is therefore not resolved

by numerical weather prediction models (except for some regional models).

3. OROGRAPHIC STRESS
Orographic stress is the force per unit horizontal area exerted on the atmosphere by orography.
Fundamenté.l processes are:
(a) stratification;
(b) turbulence (on boundary layer scale);
(c) rotation (on large scales).
Here we are concerned primarily with the orographic stress caused by the generation of internal gravity
waves and we are therefore concerned mainly with the effects of stratification.
The essential mechanism of internal gravity wave drag may be illustrated by the example of

two-dimensional, wavy orography (Fig. (1)).

/\/\/\\\*

Fig. 1 Streamlines for stratified flow over “wavy” orography. If the horizontal wavelength is large enough,

internal gravity waves will be generated and the phase lines will slope with height.

The slope of the lines of constant phase in Fig. (1) is the cause of the force on the orography. The
Bernoulli equation for an incompressible flow (a good enough approximation here) is
UZ

5 + 24 ¢z = constant on streamlines. (6)
Po

This equation indicates that regions of high velocity will be associated with low pressure and wice
versa. Fig. (2) shows the pressure pattern associated with the streamlines shown in Fig. (1). This
allows us to examine the pressure force on any layer of fluid lying between two streamlines (see Fig (3)).
It is evident from the figure that the forces on the upper and lower sides of the layer are of opposite
sign and if the wave-field does not change in amplitude with height, it seems likely that the resultant

force is zero. We shall see later that this is indeed the case.
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Fig. 2  Regions of high and low pressure in a wave field, according to Bernoulli's equation.
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Fig. 3  The external horizontal pressure forces on a layer of fluid lying between two streamlines.
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Fig. 4 The pressure force on the atmosphere due to the orography (the orographic stress) and the

pressure force on the orography due to the atmosphere.

If we now examine the layer of air in contact with the wavy ground, we can see both the effect of

the orography on the atmosphere as a whole and also the effect of the atmosphere on the orography
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(Fig. (4))-

Of course Newton’s third law relates the force on the orography (Foreg) to the force on the

atmosphere (Fatmos):

Forog =L atmos-

(7

This means that, although we are interested in the force on the atmosphere, we can, if we wish,

measure the force on the orography (see §11).

4. INTERNAL GRAVITY WAVE STRESS

The way in which internal gravity waves transmit stress may be illustrated using two dimensional,

shallow Boussinesq theory. We shall neglect mean wind shear for now.

' B p’bi
Uﬁz—‘%(z)

!

8z \po) " po dz "
o, 0w _
dz = 0z

We also need the vertical displacement of fluid elements, (:-
o w'.

Oz

By assuming a steady plane wave solution:

! ! .
[u', w', £ B—} = ['12, o, P, R] glkztmz)

Po’ Po

we obtain the so-called “polarisation relations”:
ikUT = —ikP;
ikUD = —imP — gR;

1 dpo

ikUR + —
Po dz

~ o,

kU 4+ 1m® = 0.

The horizontal force per unit area on a wavy surface can be found as shown in Fig. (5).
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5  Horizontal pressure force on a material surface deformed by internal gravity waves.

From Fig. (5) we can see that

Horizontal force per unit area = pg—.
z

Averaging horizontally over a wavelength we get:

Average horizontal force per unit area = p"é—z-. -

But

o w

oz U
and from the polarization relation

p' = —poUu'.
Hence
Average horizontal force per unit area = F’ = —pou/w’.

(18)

(19)

(20)

(21)

(2’2)

In order to see how this affects a thin layer of fluid between material surfaces, consider Fig. (6).
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Fig. 6  Resultant force due to wave stress on a layer of thickness §z.

Total force on layer = (F + §F) - F
= (F + gf—ﬁz) - F

0z
9 adanl
= ——E—;(pou w')dz (23)
The mass of layer per unit area is pgéz and so the horizontal equation of motion of the layer is
ow 0, — . ,
b = <o (power). (24)

Hence the resultant force is only non-zero when pou’w’ changes with height. pou'w’ is the wave-induced
vertical flux of horizontal momentum.

Gravity wave parametrization is fundamentally concerned with representing the change with
lieight of pou'w’ (or Iﬁore generally the vector (pou'w’, ppv'w'), where the prime denotes sub-grid scale

gravity wave motion.

5. THE ELIASSEN-PALM THEOREM

Before considering how to represent the height variation of the wave-induced flux of horizontal
momentum in large scale médels, it is useful to consider any fundamental dynamical constraints which
this quantity is likely to obey. The most important such constraint is expressed by the Eliassen-Palm

theorem (Eliassen and Palm 1961). This can be stated as follows:

For a steady wave field in the absence of dissipation, the vertical fluz of horizontal mo-
mentum pou'w’ is independent of height except at levels where the mean wind U is zero

(critical levels).

A derivation of the Eliassen-Palm theorem is given in the appendix. The consequence of ’the
Eliassen-Palm theorem is that the wave stress only causes a non-zero force on the atmosphere near
critical levels or where diésipative processes act.

We can now illustrate a conceptual idea of how and where wave-induced mean forces are likely

to act on the atmosphere (see Fig. (7)).
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Fig. 7 The overall picture showing where there is likely to be a wave induced mean force (drag) on the

atmosphere.

6. WAVE BREAKING AND SATURATION

It is shown in the appendix that the vertical flux of wave energy is not constant with height when
there is a mean shear. This is just one reason for the wave amplitude varying with height. Another
reason is the so-called “density effect”. Both of these processes can be illustrated by a useful property
of waves: the conservation of wave action. Neglecting dissipation, this may be expressed to a good

approximation by the Bretherton and Garrett equation (Bretherton and Garrett 1968): -
0 (FE 7] E
(@) * 7 () (29)

1 1
E = Spo(u” + w") + 5poN*(* (26),

E is the wave energy density:

¢g. is the vertical component of the group velocity and
&} = |w - Uk| (27)

is the Doppler-shifted or intrinsic frequency. For stationary waves w = 0 so |&| = |Uk| and for a
stationary wave field, the time derivative in Eq. (25) may be neglected. The effect of variation of U
with height is described in the next section. The effect of varying density with height is qualitatively
as follows. Define a scale height for density, H. Then roughly

Po = poge""/H. (28)

Since F o pp and E « (u'? + w'?), it seems plausible that since the wave action flux ¢, E/|Uk| must

2 A full justification requires examination of the full
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equations of motion and it is readily shown that
wuy 0 opgt = e (29)

p o pif? = e, | (30)
The. density effect causes a growth of wave amplitude with height and this leads to overturning of

material surfaces (Fig. (8)). This is “wave breaking”. Turbulence is generated and the waves dissipate.

Over-furning streamlines (breaking)

X (km)

Fig. 8 * Material surfaces in a wave field showing the increase in amplitude with height due to the density

effect, and the consequent overturning of surfaces. -

Clearly wave-breaking will reduce the émplitude of the waves. A simple model of this involves
the so-called saturation hypothesis (e.g. Lindzen 1981). According to this idea, there is just sufficient
‘turbulence generation to limit the wave amplitude so that material surfaces become locally vertical
but do not overturn. An estimate of the wave amplitude required for saturation may be made as

follows. The linearised potential temperature equation is

o6 o' de

where O(z) is the mean potential temperature and 8’ is the perturbation. Assuming two dimensional

=0. | -~ (31)

plane waves with y wavenumber zero, we have
iU+ 532 = o (32)
dz

using the notation of §4. The vertical displacement amplitude E can be related to the vertical velocity
amplitude @ using Eq. (12):

ikUC = ©. ~ | (33)
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From Eq. (32) and (33) it follows that

60 doe . T ik '
5= & (Lmimle™). (39
It is evident that overturning occurs if
. R 1
(| > —. 35
Q> o (35)

7. CRITICAL LEVELS

Let us assume that the mean flow varies with height slowly so that the dispersion relation, Eq. (4)
is still valid. Then
. NZ 1/2
m=iC——N> : (36)

The group velocity for internal gravity waves can be obtained by retaining time dependence in the

i(kz+mz—wt)

linearised equations of motion and looking for wave mode ~ e The dispersion relation

then becomes
Nk

m. (37)

w—-Uk=4%

The vertical component of the group velocity (i.e. the velocity of energy propagation) is ¢y, = dw/dm.

It follows that
g = Wf% (38)
We can now deduce from Eq. (36) and Eq. (38) what happens as waves approach a critical level (i.e.
a level where U = 0):
1. m — oo. The vertical wavelength tends to zero.
2. ¢y, — 0. Wave energy takes an infinite time to a,rrive.'

Now from the Bretherton and Garrett equation, Eq. (25), we know that for a steady field of

stationary waves

csz—UEE = constant. (39)

From Eq. (36) and (38) it is easily shown that as U — 0
Can
vk <V

and hence
1

as the critical level is approached. In practice, the increase in wave amplitude causes the waves to

break and dissipate. Fig. (9) shows schematically the type of wave pattern which results.
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Fig. 9  Material surfaces for an internal gravity wave field approaching a critical level at 20 km. Note the

severe overturning.

8. LEE WAVES AND VERTICALLY PR.OPAGATING WAVES

~ Let us return to the vertical structure equation, Eq. (2), and consider a plane wave mode with
£ = 0 (there is no loss of generality here because for any wave mode we can always rotate the axes to

‘that the wave-vector is along the z-axis).

&5 [N U '
iz [U‘z.‘ U “kz]“’zo | -
The quantity
N o1aU
U2 U dz? =L - (42

is called the “Scorer parameter”. There are two distinct cases:

(a) €2 > k*. These are generally longer wavelength waves. There is vertical propagation, phase lines

slant with height and there is a non-zero wave stress.

(b) £2 < k*. These are generally shorter wavelength waves. There is no vertical propagation. Phase

lines are vertical and the amplitude decays exponentially with height. There is zero wave stress.

Lee waves are a special case of 2 > k%. Suppose that there is a layer close to the surface in which

22 > k? and above this £2 < k% (Fig. 10). v
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Fig. 10 Vertically propagating and trapped waves.

1. Lower layer. £2 > k2. Superimposed upward and downward (reflected) propagating waves, giving
no phase slant with height.
2. Upper layer. £2 < k?. Decay of wave amplitude with height.
The wave energy is trapped in the lower layer. As there is no-slant of phase lines, the wave induced
stress would appear to be zero. However, there can still be a drag, because the waves extend an
infinite distance downstream and there is a drag at very large distances from the orography. This is

more difficult to calculate or measure than the vertically propagating case (Bretherton 1969).

9. STRONGLY STRATIFIED FLOW OVER OROGRAPHY

When the flow is strongly stratified, rather different processes occur. Consider air flowing towards
a mountain at a height { below the summit. Can it get over the summit, or does it have to go around?
Suppose that the wind speed is U and the Brunt-Vaisild frequency is N. Then the kinetic energy per

unit volume of air is

K.E. = %poUz)\. (43)
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If the air rises a distance ( in order to get over the top, then at i-ts'highest point it has gained potential

energy given by

P.E.:%mgv?gﬂ; (44)

This can only happen if the initial kinetic energy is greater than the final potential energy, i.e.
1 772 _l_ N2 2 o R 45
2P0U > 5Po ¢ ; (45)

which means that

U
< =. 46
¢ <% (46)
Air initially at a lower level must flow around the mountain. The importance of stratification is

measured in terms of the Froude number Fr given by
Fr=—— - o - (47)

where H is the mountain height. The condition for the air to be able to flow over the mountain is

therefore

( < — =FrA. S (48)

This resalt is only approzimate because it doesn’t ;take full account of the dynamics, but it is a good
guide. It also means that it is only the flow over the summit region (< FrH from the summit) which
Cdn generate internal gravity waves, because the lower flow is approximately horizontal. The main
contribution to the drag therefore comes from the summit region. The qualitative picture of fhe flow -

is shown in Fig. (11).
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Fig. 11 Flow over and around a mountain under strongly stratified conditions.

10. BREAKING LEE WAVES AND HIGH DRAG STATES

The importance of wave breaking for wave-induced mean forcing has been emphasised in earlier
sections. In §8 we also described how trapped lee waves could exert a drag force at large distances
from the orography. Another phenomenon occurs when lee wave trapping is accompanied by low
Froude numbers. Then the flow is highly nonlinear and lee wave breaking tends to occur directly over
the orography. High drag states occur preferentially when the lee waves are trapped within a layer of
thickness H, the depth of which satisfies the condition

U (3r

where D is the depth of any region of upstream blocked flow. This theory was developed by Smith
(1985) and supported by numerical experiments (e.g. Bacmeister and Pierrehumbert 1988) and by
laboratory experiments (e.g. Rottman and Smith 1989). In the atmosphere, the upper boundary to
the trapping layer is usually a critical level. Fig. (12) shows this type of flow schematically. Note the

internal hydraulic jump behaviour.
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Fig. 12 Schematic illustration of the streamline pattern‘cérresponding to a high-drag state with breaking

lee waves.

11. SURFACE-BASED MEASUREMENT OF GRAVITY WAVE DRAG

-
o

Pressure difference (hPa)
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Fig. 13 Drag on the Pyrénées measured using microbarographs during a 2 month period durihg the PYREX
‘experiment. The points are individual measurements of the pressure difference between stations

~ on either side of the mountain range. (From Bougeault et al. 1993.)

As noted in §3, gravity wave drag observations may be based either ﬁpon observations of the
waves within the free atmosphere or on measurements of the pressure force on mountains. The latter
appfoach has been carried out on several occasions usillg microbarographs (e.g. Smith 1978; Richner
1987; Bougeault et al. 1993; Vosper 1994). The idea is to set up an array of microbarographs on a
mountain or mountain range and to measure the small pressure difference between the upstream and
downstream sides of the mountain. Typical pressure differences are usually less than 5 hPa and so
long-term stability to better than about 0.5 hPa is required. Unless all the instruments are situated at

the same height to a high degree of accuracy, the pressure differences are dominated by a hydrostatic
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contribution which plays no part in the drag. This can be eliminated either by very accurate surveying
or by subtracting out pressure time averages obtained from low wind conditions when the dynamical
contribution to the pressure is small. Care must also be taken to eliminate the effect of the synoptic

pressure gradient, if the horizontal size of the array is sufficiently large.
The interpretation of measurements can often be enhanced using detailed models of the local flow.

Examples of pressure difference and drag measurements made using microbarographs are shown

in Figs. (13) and (14).
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Fig. 14 Pressure difference measured across Black Combe, Cumbria, U.K. during a 10 day period, com-
pared with the difference of 2pU? during the same period. The close correspondence between the
two measurements is a consequence of Bernoulli's equation, Eq. (6). (From Mobbs and Vosper

1994.)
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12. . OBSERVATIONS OF INTERNAL GRAVITY WAVES

_Radiosonde Ascent Eskmeals 26.Nov 1991
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Fig. 15 The vertical velocity measured using radiosonde and aircraft over Cumbria, showing a large am-
plitude lee wave. Also shown for comparison are the predictiohs of a linear wave model (Vosper

1994).

Estimation of wave-induced stresses may be made by direct observations of the waves. ‘There
have been many such studies and they are too numerous to list here. Techniques include aircraft mea-
surements, radiosonde measurements, radar and satellite observations. Just as with surface pressure

measurements, interpretation can be enhanced using local model calculations.

Some observations of large amplitude lee waves, made using an aircraft and radiosondes, are
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shown in Fig. (15). The comparison with some linear wave model computations is also shown.

13. BASIC PRINCIPLES OF GRAVITY WAVE STRESS PARAMETRIZATION

In this section we give a simplified account of some of the principles involved in parametrizing
gravity wave stress in numerical weather prediction models. It is based on the parametrization sug-
gested by Baines and Palmer (1990). Two regimes are identified, corresponding to strongly stratified
flow (Fr < 1) and weakly stratified flow (Fr > 1). Mdre precisely, the distinction between the regimes is
based on an inverse Froude number v= N ur/U, where i is the standard deviation of the orographic

helght within a grld cell

13.1  Weakly stratified flow — v < 1
We wish to parametrize the effect of the wave induced stress due to vertically propagating or
trapped grav1ty waves and 50, as we saw in §4, it is neceqszny to estimate 1, = pou ww'. From the

continuity equa,tlon Eq. (11)

' = —%w'
and from Eq. (12)
ikUC = B.
Therefore .
pomw'?

e 1
= poklmlU*C? = poklmIU2

Irl = pofirwr] =

Assummg horizontal wavelengths large compared with U/N (the hydlostatlc assumption), 1t follows
from the dispersion relation, Eq. (36), that

N , ;
Im| =3 (50)
and hence
1
Il = 5p0kUNC. (51)

In practice, the stress at the surface (pressure level p;) is a vector To,(ps) = (71, 72) which is expressed
in the form |

Tw = Ki1poUNpd (A1, Az) (52)

where K is a tunable constant and A, A; are functions of the anisotropy of the orography and the
angle between the surface wind vector and the principal axis of the orography.

It is necessary to know nat only the surface stress but also how the stress varies withbheight. The
height variation depends on the profiles of U and N. Consistent with the hydrostatic approximation,
the theory of §8 indicates that wave trapping will occur if there is a level above which £; < 0. The

procedure to be adopted in that case is to allow the stress vector to decrease linearly to zero within
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the trapping layer. If there is no trapping, then waves may encounter a critical level. If so, the stress is
held constant with height up to a level close to the critical levei and is then decreased rapidly to zero
to represent wave absorption. The other factor which may affect the wave-induced stress is saturation.
Should this occur, then the wave amplitude will be limited according to Eq. (35), so that Eq. (51)
should be replaced by ' '

1 pokU3 '
= 2R (53)
2 N

In practice, the saturation effect is represented‘ in a more sophisticated manner. Rather than assuming
that wave breakdown only occurs when isentropic surfaces become vertical, a local Richardson number

is calculated and it is assumed that breakdown occurs when this falls below a critical value (usually

1/4).

13.2 Strohgly stratified flow — v > 1

In this case, the flow .i‘s nonlinear. As described in §9, there is a tendency er flow at levels below
U/N from the mountain tops to flow around the mountains, not over them. In a fegion of éomblex
orography, this will tend to cause the flow to be around the whole region at low levels. The effect may
be parametrized by adding a large drag force at levels below distance U/N below the mountain tops
(which for simplicity may be assumed to be at height 2u3).

At levels above 2up — U /N, two processes need to be represented. Firstly there will be saturated
vertically propagating modes and secondly there is the possibility of high drag states associated with

hydraulic low and breaking lee waves. To represent these effects, the stress vector is written as
T= Ty + Thr. | ’ (54)

The wave stress T, may be represented in a similar way to that described in Eq (53). Specifically,
KypoU®
N

where A;, Ay are the same functions as in Eq. (52) and K7 is another tuning parameter. p; is the

Tw(pt) = (AI,AZ) (55)

pressure at distance U/N below the mountain tops. The height variation of 7, is represented in the
same way as for the v < 1 case. The hydraulic contribution Ty, is represented as follows:

K3poU®
Tr = N

The factor v — 1 represents the weakening of the hydraulic effect as v approaches 1 and the flow

(v - 1)‘(A1,A2). (56)

becomes less strongly stratified. In this case, a rather different height variation of Ty is assumed. As
noted in §10, high drag states occur for certain values of the depth A of the lee wave trapping region.
These are given by Eq. (49), which may be simplified by neglecting upstream blocking and higher

order trappin.g modes giving
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Since U and N are in fact functions of height, this may be more usefully written in the form

/ Tz = 6D

Tpr is then allowed to decrease linearly to zero between the distance U/N below the mountain tops

and height H.
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APPENDIX. DERIVATION OF THE ELIASSEN-PALM THEOREM

The linearised momentum equations (2-D here, but it works in 3-D) are:

poU%i+po?iU ’=—%—1:; o (A1)
pana—TZ= %p +pogzl, (A2)
Ug—(:+ g = 0; | (A3)
%‘;—+%—= : E (A4)

We can form wave energy equation from Eq. (1) x v’ + Eq. (2) x w'

% [B—(;E(u'2 +w?)+ p'u'] 4 (p' - pog w'd' = ——pog—u’w'.
From Eq. (A3) and .
U g:% =w' (A5)
it follows that , 5 ‘
)
v gt =0
If U # 0 it follows that _
dé
- R
¢ = P

The wave energy equation becomes
0
oz

This equation can be averaged horizontally if the waves decay at +oo (this excludes perfectly trapped
lee waves) giving

d dUv
[poU(u'2+w’2+N2C2)+P ] E(p w')—- Po—’z'uw

O =, WU ' k
az(p w') = —pg 3 " (A6)

This equation reveals a significant result:
The vertical fluz of wave energy varies with height when there is shear.

Now take Eq. (1) X (poUu' + p'):
0
9z

averaging this horizontally

dU
! ! I=
P w.+p0——dzpw 0

[PozU u'? + po Uplul+ }+ng§Eu:
poUuw’ = —p'w'. (A7)
Hence, from Eq. (A6) and Eq. (A7)

dU

Y TN = sl o
é)z(poUuuz) pou'w' o~

which implies that
g;(pou’w’) =0 except where U = 0.

This means that the vertical flux of horizontal momentum is independent of height except near levels
where U = 0. These are critical levels.

324





