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INTRODUCTION

Our understanding of atmospheric convection and its role in the general circulation has advanced
substantially in the last decade or two, as has our ability to représent the relevantrphysical processes in
numerical models. NWP and climate models have reached a stage that demands increasingly sophisticated
parametrizations; likewise forecasters are increasingly under pressure to predict the location énd {inten'sity
of convective storms and systems such as squall lines and convective complexes.k This note will'briéﬂjy
review the basic role of convection and its ’climatdlogy’, the way current ideas differ from more traditional
concepts of larger scale/convective scale interaction, and acknowledges the critical part played by convection
and its coupling with the planetary boundary layer in the problems of tropical/extratropical interaction and

low-frequency variability.

Some emphasis is placed on the importance of shallow convection throughout, and is a deliberate attempt
to redress what has arguably been an imbalance in earlier discussions of the significance of convection, and

reflects in part the ideas discussed in Section 4.

1. GENERAL CONSIDERATIONS
Convection is responsible for supplying the atmosphere with the majority of the solar energy absorbed at
the earth’s surface. In so doing, convection communicates to the atmosphere the horizontal temperature

gradients upon which larger-scale motions depend. Convection influences the large-scale circulation

through:

. Latent heat release

. Vertical transports of mass, heat, moisture, horizontal momentum and pollutants
. Convective cloud fields, which play a major role in the earth’s radiation balance.

In the Tropics deep convection strongly couples the subcloudlayer entropy to the free atmosphere

temperature and largely determines the moisture structure through the delicate balance between drying of
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the atmosphere by subsidence and moistening from convective fluxes and evaporation of precipitation.
Estimates from models suggest that about three-quarters of the total condensate comes from convection, and
more than half of this re-evaporates. Shallow convection in the Tropics occurs over the oceans virtually
all the year round, and over much of the land where it modulates the diurnal cycle of surface fluxes and
precipitation. For the oceanic boundary layer, shallow convection maintains the vertical structure of
temperature and moisture by cooling and moistening the upper part of the PBL thus counterbalancing tﬁe
wannihg and drying due to subsidence. This process ventilates the PBL by carrying water vapour up and
mixing with the drier free atmosphere; this in turn promotes iﬁcreased surface evaporation, and hence
increased moisture supply for the inflow into the convergent regions of deep convection such as the ITCZ.
Convection is a major process in determining the tropical ciimate, including the Hadley and Walker
circulation, the monsoons and the sﬁperiinposed high frequency transience epitomised by cloudclusters of

varying scales.

Deep convection is responsible for many of the severe weather events e.g. floods, tomadoes, squalls, hail,
lightning etc. Both in the tropics and higher latitudes, it sometimesvbecomes organised into larger scale
“‘systems such as squall iines, cloudclusters, MCCs etc. A partiéularly dramatic form is, of course, the
hurricane/typhoon, a major challenge to the latest generation of forecést modeis in the tropics, and a problem

for extratropical weather forecasting when they move poleward and become extratropical.

2. SOME STATISTICS

To illustrate the ubiquity Qf convection especially over the oceans, the réader is referred to the cloud atlases
of Warren et al (1988), examples of which are éhown in Figs 1a-c. These shéw that shallow (cumulus)
convection is observed about half the time with a mean cloudcover of 10-15% over the oceans.. An
interesting further observation shown in Fig 1d is the remarkable uniformity in the observed cumulus
qloudbase height which is between 500 and 600 m over muéh of the 6Cean throughout the year. There is
a weak dependence on sea-surface terﬁperature, but the statistics represent evidence for the quasi-balance
and stability of the marine boundary layer which maintains a relative humidity of about 75-80% and a

dewpoint depression of 4-5°K over a wide range of conditions. A more quantifiable statistic of convective
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Fig 1 Climatology of cumulus clouds over the ocean (not cumulonimbus) (Warren et al, 1988)
a) DJF frequency of occurrence, b) JJA frequency of occurrence, ¢) DJF average cloud amount, d) DJF average
base height.
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Figi continued
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activity can readily be made from model diagnostics. ‘ These inevitably reflect assumptions about model
parametrizations, but should give reasonable insight into quantities such as cloudbase massl flux. Figs2a,b
show a 30-day mean distribution of convective mass fluxes at about 900 mb for July (see also Figs 3a,b for
January diagnostics). While the fluxes for deep convection are unsﬁrpriSing, with a distribution familiar
from precipitation plots, those for shallow convection are perhaps less familiar, being dominated by the

winter hemisphere oceans and higher latitude summer continents (as well as the subtropical oceans).

For the January example, Fig 4 shows the global mean vertical profiles of the component convective mass
fluxes. The maximum in the boundary layer is marked and, alfhoﬂgh uncertainties in the model
parametrizations could reduce this maxima by up to 20%, the basic distribution is clear. It is interesting

to note that the mean values of shallow mass flux represent a cycling of PBL mass in about one day.

3. WINTERTIME CONVECTION OVER THE OCEANS

The marked maxima in the above massflux statistics over the wintertime oceans emphasises the major
importance of convection in these areas as cold, dry continental and polar air is rapidly and extensively
warmed and moistened as it advects over the relaﬁvcly warm oceans. The ability to adequately represent
the convection is essential to communicate the very large surface fluxes (~1 Kw/mzj to the atmosphere and
hence define the lower tropospheric baroclinity; this oceanic boundary layer air then takes part in further
baroclinic developments etc. A cross-section of this convgcﬁve activit}:llas cold éir moves out over the
ocean is shown in Fig 5; the progressive deepeningy of the convective layéf and i;‘rans}ition_from shallow to

deeper convection is very apparent.

Forecast models often show error growth from these regions and it is likely that inaccuracies in modelling
the physics in such conditions may be a significant factor. It is also interesting to note that recent studies
of singular vector structures used in the ensemble prediction system often show maximum amplitudes in

thege regions in the lower troposphere.
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integration).
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4. CONVECTION AND ITS ENVIRONMENT |
Although historically convection was studied mostly in the form of ’explosive’ severe storms characteristic
of the summer continents e.g. mid USA, the appreciation of the quasi-equilibrium that characterises
atmospheres in which convection is a dominant process has been prominent in more recent studies. The
ideas of Ludlam (1980), Betts (1973) for shallow convection and the parametrization approaches of Arakawa
and Schubert (1974) and Betts and Miller (1986) are detailed in the book by Emanuel (1994), and promoted

in Emanuel et al (1994). The reader is referred to these, but the following briefly summarises the concepts.

While accepting the relevance to forecasters of ’triggered’ strong convection in situations of large
Convective Available Potential Energy (CAPE), most atmospheric convection is in approximate statistical
equilibrium with its environment (e.g. dry convective boundary layers, trade cumulus, stratocumulﬁs and
deep tropics). In these cases the temperature and moisture profiles are controlled by the convection, and
the temperature tied directly to the subcloudlayer entropy. Thus there exists an intimate:coupling between
the convection and the processes which act to destabilise the atmosphere. Observations show rather small
variations in CAPE compared to the generation rates of CAPE by subcloudlayer entropy changes for
example. Application of the quasi-equilibrium concept and associated characteristic thermodynamic structure
to the parametrization of convection has proved successful especially for global models integrated for longer
than a few days. It is a more open question as to whether short-range, higher resolution forecasting
(especially for the extratropics) needs a more general approach in drder to capture the location, timing and

intensity of showers and storms.

5. TROPICAL/EXTRATROPICAL INTERACTION

The fundamental phenomena of tropical/extrairopical interaction, ENSO and related low-frequency variability
depend critically on convection. -For numerical models to capture the flow dynamics and variability
associated with these large-scale phenomena, it is essential that the models adequately capture the temporal
and spatial variations in-convective activity, and its sensitivity to sea-surface temperature as the high
correlation between SST and the occurrence of deep convection has been well-established. A critical process

- is the representation of the interaction of convection with the planetary boundary layer and the surface fluxes
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of heat, moisture and momentum. The coupling of these fluxes to the PBL properties and hence to the
convection provides the link between sea-surface temperature and its gradients and the atmospheric flow.
Likewise, the ability of convection to modulate the surface fluxes either through modifying the PBL
thermodynamics or by the generation of turbulence provides feedbacks both in the atmosphere and ocean.

No attempt will be made here to discuss in detail such a wide field which includes studies of:

® Direct interaction of tropical cyclones recurving into the extratropics

. Rossby wave dispersion from deep convection regions
- "PNA’ type modes
- Extra-tropical variability
- Medium-range forecast skill

(e.g. Wallace and Guzler, 1981; Hoskins and Karoly, 1981; Palmer, 1988)

. SST anomaly studies and seasonal forecasting possibilities (e.g. Palmer and Anderson, 1994)

. The impact of convection in the Indonesian/West Pacific region on model systematic errors and

extratropical blocking behaviour (e.g. Ferranti et al, 1994).

. GCM relaxation experiments which study the sensitivity of extratropical errors to tropical ones and

vice-versa.

6. REMARKS

This brief review of the significance of convection has considered rather broad issues. Two areas that have
not been discussed are the related aspects of slantwise convection and convective momentum transports.
While acknowledging the importance of both processes in specific circumstances, it would seem that the
impact of these convective processes in NWP and climate modelling requires much more study. It may well
be that a proper parametrization of these may significantly improve on current impacts, and lead to better
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models. On the other hand, current models do not necessarily display such large deficiencies that would

indicate major shortcomings in convective processes.
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