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1.  THE ADJ OINT EQUATIONS
The adjoint equauons have been introduced in Meteorology by Marchuk (1974) and thelr use is hsted in
Courtier et al (1993) 'Here we shall concentrate on the practical aspects of their apphcatlons 10 dynam1cal

meteorology. Let G be an operator, differentiable almost eVerywhere, which computes the output
parameters v from the input parameters u:

v = G@) | | R O
G may be available in practice as a FORTRAN program like a numerical weather prediction model. For

perturbations 8u and 8v of # and v, the Taylor formula provides the following equality, valid to first

order: ‘
v =G, du S : @
where G, is the tangent-linear operator of G linearized in the vicinity of . The matrix representing G,

is the Jacobian matrix of G. In most meteorological applications, 8u and 8v are vectors of size 10° to 107
(the latter being valid for the T213L31 ECMWF operational model and the former for a T42L19 version).

The Jacobian matrix cannot then be explicitly computed (and even stored). However, the following two
results make i‘t'possibie in practice to apply the ‘ope'r.ator G', to an input vector 8u and its transpose fo an

input vector 8v.

A It is possible to write a FORTRAN program which solves (2) once the FORTRAN program for (1)
is available. Its cost is of similar order of magnitude as (1).

B .- Ttispossible to write a FORTRAN program of similar cost to (1) which computes an output vector

- 8u for a given input vector- §v:
3, - G. 3, o D G
where G", is the transpose of G,. This can be generalised to the adjoint G, of G, through

appropriate metric (inner product) changes.

Result A is trivial in practice since the result of (2) could e.g. be obtained to first order by finite differences
in the direction 8u from two integrations of (1): this is the methodology generally followed in most
sensitivity experiments. For an exact solution to (2), Morgenstern (1973) discusses the complexity of

tangent-linear algorithms. However, result B is not trivial and relies on the Baur-Strassen theorem (Baur
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and Strassen, 1983; Morgenstern, 1985). In the following we shall describe the practical applications of
results A and B.

2. SENSITIVITY ANALYSIS
Let us consider J(v) a function of the output parameters v. We assume J "simple" in that an analytic
expression of the gradient of J with respect to v, V,J is available (note that this is not a restriction, it is

always possible to consider J as a simple function of something, e.g. J=J).

By deﬁnitiqn of V,J; one has for any perturbation 8v (and to first order)

AJ = Jv+8v) - J(v) = <V, J, v>.
8v may be related to du using (2)

AJ = <VJ, G' bu>
by definition of the adjoint operator

AJ = <G V], 8u>
which implies that

VJ - GV | - )
Result B then implies that it is possible to compute the sensitivity of J with respect to the input parameters
u: the gradient of J with respect to u is obtained by applying the adjoint of the tangent-linear operator G/ .

to the gradient of J with respect to v.

2.1  Sensitivity to initial conditions

Here we consider u as the initial conditions of a numerical weather prediction model and J as one output.
Courtier (1987), using a shallow-water model, identified a tidal wave problem in nonlinear normal mode
initialization. Errico and Vukicevic (1992) presented a case of lee cyclogenesis. Fig 1 (their Fig 2) presents
the initial conditions of surface pressure and 500 hPa height while Fig 2 (their Fig 1) presents a 36h forecast
produced by the PSU/NCAR MM4 model. Fig 3 presents the sensitivity to the initial conditions of the
predicted surface pressure at point P (centre of the low). One notices that the sensitivity is localized. A

more intense synoptic wave (stronger ridge over the Atlantic and deeper over France) would lead to a deeper

lee cyclogenesis.

Rabier et al (1992) studied the sensitivity of the baroclinic instability of Simmons and Hoskins (1978) to
the initial conditions 24 hours before, during the 24 hours of most intense cyclogenesis. They showed that
it is easy to eliminate the gravity waves signal present in the sensitivity pattern using the adjoint of nonlinear

normal mode initialization as can be seen comparing Fig 4 (their Fig 3) and Fig 5 (their Fig 5). The vertical
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p,; Dbasic state

Fig1 Initial conditions of the forecast. Left: surface pressurs, right: 500 hPa height. 4 March 1982 18h00. (From
Errico and Vukicevic, 1992).

Fig2 Same as Fig 1 but 36 hr forecast valid for 6 March 1982 6h00. (From Errico and Vukicevic, 1992).
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-

Fig 3  Sensttivity of the surface pressure forecast at point P with respect to the height field at level ¢ = .4 (~ 400 hPa)
initial conditions. (From Errico and Vukicevic, 1992).

328



Courtier, P’& Rabier F: The Use of Adjoint Equations...

120 °W |

100 °W (A4 AL

80 W [

60 W [

180 ° 160 °E

Lo o€

120 €

i.[--100 °E

/780 °€

Fig 4  Sensitivity of the logarithm of the surface pressure at point A (middle of the surface pressure Iow) to the 500 hPa
meridional wind 24 hours earlier. (From Rabier et al, 1992). '
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Fig5 Same as Fig 4 but with the adjoint of non linear normal mods initialization included. (From Rabier et al, 1992).
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structure of the sensitivity showing a maximum in the low troposphere is depicted in Fig 6 (their Fig 10)
which is consistent with other baroclinic instability studies. This gi'avity wave signal was not visible at the
36-hour range in the Errico and Vukicevic work reported in the previous paragraph since it had already been

dissipated at the boundaries (however, it was visible at very short range).

Rabier et al (1993) performed a feasibility study of the use of the adjoint equations for routinely monitoring
the sensitivity of the short-range (48 hour) fo_re’caSt errors with respect fo the initial conditions. The norm
used is the quadratic invariant of the'lineaﬁze:,d pﬁﬁxiﬁve equations in the vicinity of a state of rest and the
cost function is the square norm of the difference between the operational 48h forecast and the verifying

analysis.

The experiments used a T63L31 adiabatic model (with horizontal and vertical diffusion and a surface drag).
The adjoint integration is performed in the vicinity of an adiabatic trajectory originated from the ECMWF
analysis valid 48 hour before. At the end of the adj'oinlt integration, the adjoint of nonlinear normal mode
initialization is performed. ’ |

Figs 7, 8 and 9 present the rms over the month of January 1993 of the | gradient of the cost function with
respect to the initial conditions of vorticity at model level 11 (~250 hPa); level 18 (~500 hPa) and level 26
(-850 hPa). In agreement with Rabier et al (1992), the gradient is stronger with respect to mid troposphere
vorticity. It is stronger over the oceans than over the continents which is consistent with better data

coverage over the continents.

Fig 10 shows the average over the month of January 1993 of the analysed 500 hPa geopotential height. The
maxima in the Atlantic of Fig 9 are located in the cyclone track going from Newfoundland to Norway. The

maximum located north of the Hudson Bay corfeSponds to the descending branch of the arctic jet.

Fig 11 presents the temporal variation of the cost function (forecast errors square norm), of the square norm
of the gradient and of the rms of the gradient with respect to the vorticity at level 26. All three curves are
normalized and of average 1. Itis clear that there is few day to day variability in the forecast error norms.
However, the sensitivity to the initial conditions can vary a lot and by as much as a factor of 4. There is

no apparent correlation with the day to day variability of the medium range scores (Fig 12).

There is significant vertical variation of the rms of the gradient with respect to vorticity as can be seen from
F1g 13. Furtheﬁnoxé fhe day to day vaﬁability is signiﬁcaﬁt (*25%) with, in addition, a few exceptional
cases. The average over the 30 cases is presenied in Fig 14. Fig 15 presents the vertical variation of the
contribution of vorticity to the cost function (rotational part of the kinetic energy of the error multiplied by
the layer depth) for the individual cases of January 1993 and Fig 16 the average. The maximum of error

is at the jet level whereas, as we have seen, the maximum of sensitivity is located in the low troposphere.
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Fig 6 Cross section of the gradient of the average of the logarithm of the surface pressure over the low with respect

to the initial conditions 24 hours earlier. Left: vorticity, right: temperature. (From Rabier et al, 1992).
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Fig 7  RMS computed over the month of January of the gradient of the 48 hour forecast errors with respect to the
vorticity at level 11 (~ 250 hPa).
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Fig 8 Same as Fig 7 for level 18 (~ 500 hPa).
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Fig9 Same as Fig 7 for level 26 (~ 850 hPa).
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Fig 10 500 hPa geopotential height averaged over the month of January 1993,
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Fig 11 Temporal variation over January 1993 of the cost function (forecast errors square norm), of the square norm of
the gradient and of the RMS of the gradient with respect to vorticity at level 26. All curves are normalized and
of mean unity.
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Fig 12 ECMWF operational forecast scores for the month of January 1993.

337



Courtier, P & Rabier F: The Use of Adjoint Equations...
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Fig 13 Vertical variation of the RMS of the gradient of the 48 hour forecast errors with respect to vorticity. All individual
cases for the month of January 1993. Vertical scale: model level.
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Fig 14 Same as Fig 13 but for the average.
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Vertical variation of the kinetic energy of the 48 h errors
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Fig 16 Vertical variation of the kinstic energy of the 48 hour farecast error. Al individual cases of January 1993.
Vertical scale: model level.
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Vertical variation of the kinetic energy of the 48 h errors
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Fig 16 Same as Fig 15 for the average.
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This is consistent with the resulis obtained by Rabier et al (1992). This feasibility study led to an
operational implementation of the sensitivity computations in February 1994. The results of this routine

monitoring and case studies are described in Rabier et al (1994).

2.2 Sensitivity to parameters

The input parameters u are not necessarily the initial conditions of a numerical weather prediction model
but may rather be some parameters like the orography for an atmospheric model or the atmospheric forcing
for an ocean circulation model. Hall et al (1982) applied the approach to compute the sensitivity of a
radiative convective model to 312 parameters (including basic physical constants). Courtier (1987)

computed the sensitivity of short range forecast errors to orography in a shallow-water model.

3. ESTIMATION
The adjoint method allows computation of the gradient of a cost function with respect to some parameters
in an efficient way. It is then possible to minimize the cost function using descent algorithms like conjugate

gradient or quasi-Newton (Le Dimet and Talagrand, 1986). This may be applied to several problems like:

3.1 Variational assimilation

Pailleux (1990) proposed a 3D variational analysis scheme (3D-Var) as an alternative to the Optimal
Interpolation (OI) scheme. A cost function measuring the departure between the state to be estimated and
the various sources of information (background, observations, slow-manifold) is minimized. The adjoint
of the operators involved in the distance to the background, to the observations or to the slow manifold
allows computation of the gradient of the cost function. 3D-Var is under pre-operational evaluation at
ECMWEF. It is described in detail in Courtier et al (1993). Similar ideas have been implemented
operationally at NMC (Parrish and Derber, 1992),

The main a priori advantages of 3D-Var as compared to the OI are, first, more flexibility for the description
of the spatial structure of the short-range forecast error: both the NMC and ECMWF implementation use
spatial correlations which are a non-separable (between the vertical and horizontal direction) function of the
spatial distance. The second advantage lies in the easy use of weakly nonlinear observation operators, which

is the case for most of the satellite data.

Another strength of the variational formulation is that it readily extends to the time dimension: 4D-Var.
One then seeks a model trajectory which best fits the available information (minimize a cost function
measuring the distance of the model trajectory to the available information). The gradient of the cost
function is evaluated integrating the adjoint of the forecast model. Thépaut et al (1993) and Rabier et al
(1993) demonstrated the ability of 4D-Var to generate flow dependent structure functions. Being iterative,

4D-Var is expensive since it requires several integrations of the model and its adjoint. Ideas to reduce the
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cost by introducing simplifications in the 4D-Var formulation are discussed in Courtier et al (1994): the
incremental approach approximates the full sized minimization problem by a quadratic problem involving
a lower resolution model. The cost reduction is sufficient to foresee an operational implementation within

a few years.

3.2 Parameter estimation - inverse problems

Variational assimilation can be seen as a particular inverse problem (Tarantola, 1987) where one estimates

some geophysical parameters from observations.

Thépaut and Moll (1990) developed the adjoint of a fast radiative transfer model for inverting TOVS
radiances. Smedstad and O’ Brien (1991), together with data assimilation, retrieved parameters of their ocean
model. Marais and Musson-Genon (1992) estimated soil parameters fitting a vertical column model to

screen level observations.

33 Nonlinear equilibration

Vautard and Legras (1988) were looking for "weather regimes"” defined as the large scale patterns of the
flow which are on average stationary (a statistical equilibration occurs between self interaction and feedback
from the small scales). They solve a nonlinear optimization problem in which the cost function is the
statistical average of the large scale tendencies. With the statistical averaging defined using ergodicity
hypothesis through a long time interval averaging, the authors faced a difficulty: while the time interval was

becoming longer and longer, the cost function was converging to an asymptotic value, but not its gradient.

A trivial (and non meteorological) example is the following:

Let ft,x) = xcos x where x is the phase space variable and ¢ time. We have
%‘ f Tf(t,x)dt - %‘ sin Tx. Since sin Tx is bounded, we have lim 1 sin Tx = O whereas its derivative
0 T=e0

with respect to x: cos Tx has no limit when T tends to infinity.

Vautard and Legras solved the problem using an ensemble mean. This points to a difficulty in using the
adjoint technique for climatic application: the adjoint is still useful for computing the gradient of a cost
function with respect to its input parameters. However, care has to be taken in the definition of the cost

function for its gradient to keep a physical meaning.

4. KALMAN FILTERING

Assuming that the forecast error’s evolution is governed by the tangent-linear model, the evolution from

time ¢ to time t+T of the covariances of forecast errors B reads

B(t+T) = R(t,t+T) B(®) R'(t,t+T) 343 &)
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where R(t,t+T) is the resolvent of the tangent-linear model between times ¢ and #+T (see e.g. Jaszwinksi,

1970). Here we have assumed the model to be perfect, no source term is present (the reader will easily

generalise to an imperfect model in the following discussion).

This equation is often solved as
B(@+T) = R(t,t+T) (R(t,t+T) B@®)
by doing product of matrices. This generally requires less CPU time than the original formulation since R

has to be evaluated only once. However, it requires the storage of R(t,z+T) B(f).

Let us now consider the vector e; which has 0’s everywhere except at the i * position where itis a 1. ThenB(t+T)e,
provides the covariances of forecast errors between e, and all the other model variables: if e; represents,

for example, the surface pressure at a given location, then B(t+T)e, provides the covariances of the forecast
errors of the surface pressure at this particular location with the surface pressure and all other variables at
all grid points of the model. Thus we also obtain the variance of error of the surface pressure at this point.

R(t,t+T), B(H) and R(t,t+T) being available as operators, B(t+T)e; is computed efficiently. This relies on

the use of the adjoint model R*.

Bouttier (1993) applied this approach to a global vorticity equation model. Fig 17 (his Fig 4) presents the
autocorrelation function of a point with its neighbour at the initial time and for 6 and 24 hour forecasts.
One should notice the significant deformation induced by the flow. In order to go from covariances to

correlations, he had to compute the diagonal of the covariance matrix (and then the full matrix).

He also computed the 24 hour prediction of the variances of errors induced by idealised flows and by a real
situation. Fig 18 (his Fig 20) shows a case of difluence. He relates the maximum of error to the position
of the maximum of the jet through barotropic instability which is then advected (and not to difluence in
itself). Fig 19 (his Fig 21) presents the forecast of variances of error in the case of a large-scale wave. The
maximum of variance is located in the eastern part of the trough. It is consistent with a result obtained by
Barkmeijer (1992). As in Veyre (1991), the approach has been applied to a real situation. The maximum

amplification of error is located in the areas of barotropic instability.

5. SINGULAR VECTORS
Let R(t,¢+T) be the resolvent of the tangent—hnear model over time ¢, t+T. Let <,> be a norm which
measures the forecast errors, for example the quadratlc invariant of the primitive equations linearized in the

vicinity of a state of rest. Let 8u(f) be the initial errors and 3u(z+T) the errors at time ¢+T. We have:
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Fig 17 Evolution of the autocorrelation field relative to point (45N, 35 W) in a barotropic vorticity equation model (from
Bouttier, 1993).
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Fig 18 Forecast of height error (6) in the vicinity of the idealised meteorological situation (a) (from Bouttier, 1993).
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Fig 19 Same as 18 for large scale wave.
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<8u(t+1), du(t+T)> = <R(t,t+T)du(f), R(t,t+T)5u(t)>

= <R*(t,t+T) R(t,t+T) du(t), du()>

which is extreme for the considered norm when R*(t,t+T) R(t,t+T)8u(f) is proportional to u(f).

The initial perturbations du(f) which will lead to the largest error according to the chosen norm are then
given by the dominant eigenvectors of R*(t,t+T) R(t,¢+T). The eigenvectors/eigenvalues of

R*(t,t+T) R(t,t+T) are called the singular vectors/values of R in linear algebra. Finding the most unstable

perturbations is thus reduced to an eigenvalue problem which may be solved using a Lanczos iterative

algorithm. This requires only to be able to compute R*(t,t+T) R(t,t+T) applied to some vectors which

makes the algorithm tractable, even for a large-scale problem.

The important point to note is that the eigenvalues of R*R can be very different from the square of those

of R. Let us consider the simple and purely dissipative example illustrated in Fig 20. The trajectory starts
from a circle of equi-energy. As there is a strong dissipation along the horizontal axis, the trajectory reaches
the axis of weak dissipation without moving significantly along that direction. Then it converges toward
the state of rest. This illustrates that, even in a purely dissipative system, it is possible to have growth of
energy for a finite time. This happens when two eigenvectors of R are close to parallel but associated to

significantly different eigenvalues.

This is a common feature of meteorology and Farrel (1989) used this concept for understanding baroclinic
instability. Molteni and Palmer (1993) computed the singular vector of the tangent-linear version of a 3-
level quasi-geostrophic model. The singular vectors computed depend significantly on the time interval
chosen: in Fig 21 (their Fig 5), 12 hours, two days and height days. This subsequent evolution is also

clearly different, with a strong impact of being optimal for a given range.

Buizza (1993) computed the singular vectors of a T21L.19 primitive equation model. He found it necessary
to include a simple vertical diffusion and surface drag in order to prevent spurious structures at low level.
Fig 22 (his Fig 5) presents the spectrum of the eigenvalues detained for a different time interval. When the
time interval is increased, the separation between the first few singular vector increases. The meteorological
structures are stable from a one day time interval up to three days. 36 hours is a good compromise between

the cost of the method and the meteorological significance of the singular vectors.

Fig 23 (his Fig 6) presents the 6 dominant eigenvectors for a 36 hour time interval at time ¢, and at time

t, + 36 hours. They all grow very fast and propagate eastward. The vertical structure depicted in Fig 24
348



Courtier, P & Rabier F: The Use of Adjoint Equations...

<

Fig 20 Schematic phase space diagram of a purely dissipative 2D dynamicél system. The >> << denotes a strong
dissipation in this direction whereas the > < denotes a weak dissipation. The trajectory starting from a circle of
equi-energy starts with an energy increase and then converges toward the state of rest.
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Fig 22 Spectrum of the singular values for different time intervals. (From Buizza, 1993).
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Fig 24 Vertical structure of the dominant singular vectors. (From Buizza, 1993).
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(his Fig 7) shows_ a maximum at around 600 hPa at time f, which is then located at 300 hPa at timez,

+ 36 hours. This is consistent with baroclinic instability theories and with the sensitivity experiments
repoirted in section 2.

6. CONCLUSION

The concepts presented in this paper were introduced in the early days of numerical weather prediction.
Sasaki (1958) may be seen as a precursor to 3D-Var, Thomson (1969) introduces the ideas behind 4D-Var,
Jones (1965) introduces Kalman filtering while Lorenz (1965) uses the singular vectors. The adjoint models
bring the feasibility of the practical implenientation for large-scale problems. Other applications may
emerge in the future if applying the transpose of a matrix to a vector is required for an efficient algorithm.
At this stage, we should mention the second order adjoint (Wang et al, 1992) which allows the computation

of the Hessian of a cost function applied to a vector in a minimization problem.

The use of the adjoint model has a major limitation: it requires the tangent-linear model to be
meteorologically realistic for a finite amplitude perturbation. 4D-Var results and, quite convincingly, the
recent sensitivity study of Rabier et al (1994) indicate that this is indeed the case for the adiabatic evolution
of perturbations of order of magnitude comparable to the analysis error, over a 2-day time interval. The

stiffness of the adiabatic primitive equations does not seem to be a critical problem.,

However, the introduction of physical parametrizations seems to be more critical. Significant progress is
being made by Vukicevic and Errico (1993), Zou et al (1993) and Zupanski (1993), but it is probably fair
to say that much work remains to be done in this area. This might even impact on the physical

parametrization design with regularisation widely introduced in the formulation.
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