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Abstract

In this article we examine the implementation of the semi-Lagrangian method in a
high resolution version of the ECMWEF forecast model. Novel aspects include the application
of the semi-Lagrangian scheme to a global model using the ECMWF hybrid coordinate in the
verticél, and its use in a baroclinic spectral model in conjunction with a reduced Gaussian grid
in the horizontal. The former Eulerian vorticity-divergence formulation is first converted into
a momentum-equation formulation which is considerably more economical, thanks in part to
the incorporation of Legendre transform efficiencies that were previously demonstrated for
the shallow-water equations. The semi-Lagrangian formulation is presented in detail, together
with a discussion of computational aspects that are relevant for executing the high resolution
model efficiently on a modestly parallel supercomputer. The impact of formulation changes
is assessed via numerical experiments on a set of 12 independent cases. In particular it is
shown that, by virtue of using a larger timestep, the semi-Lagrangian version is several times
more efficient than the Eulerian scheme; that the hybrid-coordinate configuration maintains
its design advantage over the sigma-coordinate version in the stratosphere; that the "vertically
non-interpolating” scheme performs better than the "fully interpolating” method; and that the
increase in horizontal resolution from T106 to T213 (enabled in part by the gains in model

efficiency) has a significant positive impact.
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1. Introduction

Since the original demonstration of the efficiency advantage of the semi-Lagrangian
semi-implicit method over a decade ago by André Robert, this numerical integration scheme
is being used in an increasing range of atmospheric models. Most of the applications have
been in gridpoint models. Shallow water equations studies have included three time-level
versions by Robert (1981, 1982) and Staniforth and Temperton (1986), and two time-level
schemes by Temperton and Staniforth (1987), Purser and Leslie (1988), McDonald and Bates
(1989), and Co6té and Staniforth (1990). There also have been various applications in
baroclinic gridpoint models. Three time-level sigma- coordinate versions have been presented
by Robert et al. (1985) and Tanguay et al. (1989), and the extension of the three time-level
approach to a non-hydrostatic coordinate has been demonstrated by Tanguay et al. (1990) .
Bates and McDonald (1982), McDonald (1986), Leslie and Purser (1991), McDonald and
Haugen (1992), and Bates et al. (1993) have developed two time-level sigma-coordinate
schemes, McDonald and Haugen (1993) have presented the two time-level extension to a
hybrid vertical coordinate, and Golding (1992) has applied a split two time-level semi-
Lagrangian scheme in a non-hydrostatic model.

For spectral models, a semi-Lagrangian semi-implicit shallow water equations model
was presented by Ritchie (1988) for a three time-level version, and adapted by Coté and
Staniforth (1988) for a two time-level scheme. Baroclinic three time-level spectral model
formulations have been demonstrated by Ritchie (1991) for operational numerical weather
prediction in a sigma-coordinate model, and recently by Williamson and Olson (1994) for
climate simulations with a hybrid coordinate model.

In a broader context, the semi-Lagrangian scheme as incorporated in spectral numerical
weather prediction models may be considered as an economical variant of the spectral

Lagrange-Galerkin method (Siili and Ware, 1991).



Experience at ECMWF (Simmons et al., 1989) suggested that the accuracy of medium-
range forecasts had steadily improved with increases in resolution. Consequently, in its four-
year plan for the period 1989-1992, ECMWF proposed development of a high-resolution
version of its forecast model. A target resolution of a spectral representation with a trian gular
truncation of 213 waves in the horizontal and 31 levels in the vertical (T213/1.31) was set,
entailing a doubling of the horizontal resolution and an approximate doubling of the vertical
resolution in the troposphere compared to the T106/L.19 configuration that was operational
at the time (Simmons et al., 1989). In view of the anticipated computer resources, it was
clear that major efficiency gains would be necessary in order to attain this objective. These
gains have been provided by the introduction of the semi-Lagrangian treatment of advection
permitting a substantial increase in the size of the timestep, the use of a reduced Gaussian
grid giving a further advantage of about 25%, the introduction of economies in the Legendre
transforms, and improvements to the model’s basic architecture.

The layout for the remainder of the paper is as follows. In section 2 we present the
reformulation of the Eulerian model in order to transform the vorticity-divergence formulation
into a momentum-equation version in preparation for a subsequent semi-Lagrangian vector
treatment of the equations of motion. The vertical discretization of the ECMWF hybrid
coordinate on a staggered grid is also considered. The semi-Lagrangian treatment is discussed
in some detail in section 3, including the adaptation to accommodate the reduced Gaussian
grid. Section 4 deals with several important computational details that are relevant for
efficient execution of the high resolution model on a modestly parallel supercomputer. A
series of numerical experiments performed in order to assess the impact of formulation and
numerical parameter changes is presented in section 5, followed by a concluding discussion

in section 6.



2. Eulerian reformulation

Following Ritchie (1988,1991), the first step in developing a semi-Lagrangian version
of the ECMWF spectral model was to convert the existing Eulerian {-D (vorticity-
divergence) model to a U~V formulation, where U and V are the wind images defined by
U=ucosb, V=vcosO (u and v are the components of the horizontal wind in spherical
coordinates, and 0 is latitude). In this section we describe the Eulerian U~ V model.
(a) Continuous equations

First we set out the continuous equations in (A,0,7n) coordinates, where A is
longitude and m is the hybrid vertical coordinate introduced by Simmons and Burridge
(1981); thus n (p, p,) is a monotonic function of the pressure p, and also depends on the
surface pressure p_ in such a way that

n (0, p,) =0 and n (p,. p,) =1.

The momentum equations are
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where a is the radius of the earth, 7 is the n-coordinate vertical velocity (\=dn/dt), ¢

is geopotential, R is the gas constant for dry air, and T', is the virtual temperature defined



T, = T(1+{R,/R4-1}q)

where T is temperature, g is specific humidity and R, 1s the gas constant for water vapour. P,
and P, represent the contributions of the parameterized physical processes, while X, andk,,
are the horizontal diffusion terms.

The thermodynamic equation is
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where k=R / Coa (de is the specific heat of dry air at constant pressure), w is the p-
coordinate vertical velocity (w=dp/dt), and & =Cpy/ Cpg (C,y 1s the specific heat of water
vapour at constant pressure).

The moisture equation is
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In (2.3) and (2.4), P, and P, represent the contributions of the parameterized physical
processes, while X, and K are the horizontal diffusion terms.

The continuity equation is

202) ). ) -0 o

where V is the horizontal gradient operator in spherical coordinates and v,= (u, v) is the
horizontal wind.
The geopotential ¢ which appears in (2.1) and (2.2) is defined by the hydrostatic

equation:
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while the vertical velocity w in (2.3) is given by
1 o)
- _ D
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Expressions for the rate of change of surface pressure, and for the vertical velocity 7, are

obtained by integrating (2.5), using the boundary conditions 1 =0 at =0 and at n=1:

1
%is = —{V.(yH—g%)dn, (2.8)
n
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Since we use 1n(p,) rather than p, as the surface pressure variable, it is convenient to

rewrite (2.8) as

1
% (In py) = *El—;gv.(y}lg—ﬁ)dn . (2.10)

(b) Vertical discretization
To represent the vertical variation of the dependent variables U, vV, T and g, the
atmosphere is divided into NLEV layers as illustrated in Fig. 1. These layers are defined by
the pressures at the interfaces between them (the "half-levels"), and these pressures are given
by
P = A T BrnPs (2.11)

for 0<k<NLEV. The A,,,, and B,,, are constants whose values effectively define the
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Fig. 2 Schematic diagram illustrating "quasi-cubic” interpolation.
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vertical coordinate.

The prognostic variables are represented by their values at "full-level" pressures p,.
Values for p, are not explicitly required by the model’s vertical finite-difference scheme,
which is described below.

The discrete analogue of the surface pressure tendency equation (2.10) is

NLEV

d 1
—— (1 = -— V. A 2.12
3¢ (10 Py o 1?2:1 (v ADy) (2.12)
where
Apk = Prvy, ~ Prwp - (2.13)
From (2.11) we obtain
3 NLEV 1
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where D, is the divergence at level k,

3 1 oU, av,
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ABk = .Bk+1/2 - Bk—’ﬁ . (2.16)

The discrete analogue of (2.9) is

k
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and from (2.11) we obtain
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where —aa—t (In p,) is given by (2.14).

Vertical advection of a variable X is now given by

The discrete analogue of the hydrostatic equation (2.6) is

p -+
i — Oy = —Rg(T,) In—k% (2.20)
Dy v,
which gives
NLEV D,
e = G + Y, Ry(T,);In—I% (2.21)
F=k+1 Bj-w

where ¢, is the geopotential at the surface. Full-level values of the geopotential, as required
in the momentum equations (2.1) and (2.2), are given by
G = braye + @R (T (2.22)

where a,=1n2 and, for k>1,

Pr-v Dy
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The remaining part of the pressure gradient terms in (2.1) and (2.2) is given by

R (T 1
R, (T, Vlnp), = dA(pv)k{(ln ik”z ) VD, + akV(Apk)} (2.24)
k k-2

with a, given by (2.23) for all k.
Finally, the energy conversion term in the thermodynamic equation (2.3) is discretized
as

kT,
(1+(6-1)@p
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where o,=1n2, a, is defined by (2.23) for k>1, and
Cre = BBy, = BeviBraws - (2.26)
The reasons behind the various choices made in this vertical discretization scheme are
discussed by Simmons and Burridge (1981); basically the scheme is designed to conserve
angular momentum and energy for frictionless adiabatic flow.
(c) Time discretization
To introduce a discretization in time, together with a semi-implicit correction, we
define the operators
8.x= (x*-x")/2A¢t,
A, X= (X*-2X+X7) ,
where X represents the value of a variable at time £, X* the value at time (t+At),andX"

the value at (t-At) . In preparation for the semi-Lagrangian treatment to be developed in
Section 3, we also introduce the three-dimensional advection operator

A(X) = -—1—(U—ai{+VcosB£() + ﬁ-g%.

acos?20' OA a0 227

Introducing the semi-implicit correction terms, Equations (2.1)-(2.4) become:

8.U + A(L) - £V + %{—@lmc{f 9
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kT, B B
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where B is a parameter of the semi-implicit scheme; the classical scheme (Robert 1969) is
recovered with B=1. The semi-implicit correction terms are linearized versions of the

pressure gradient terms in (2.1)-(2.2) and the energy conversion term in (2.3). Thus T,isa

reference temperature (here chosen to be independent of vertical level), while Y and T are

matrices such that
NLEV

(YD) = aiRT, + ¥ RyT,1 (p1+”=) , (2.32)
J=k+1 Pg-vz
r k-1
(s = xT{—2_1n[EE%)S (pApF) + ain) | 2.33)

Apy Di-v, F=1
where the half-level pressures appearing in (2.32), (2.33) are reference values obtained from
(2.11) by choosing a reference value (pg ) of p,, and the coefficients a} are based on these

reference values. The reference values adopted for the semi-implicit scheme are 7,=300K and

pZ=800hPa.
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The integrated surface pressure tendency equation (2.14) becomes

NLEV
8. (lnp,) + ¥ {2DAp, + (v,.Vinp)as} =-Ba wp) @39
k=1 " Ps 2 =
where
1 NLEV
vo= -1 ¥ DAp; . (2.35)
Ds j=]_

(d) Horizontal grid

A novel feature of the model is the optional use of a reduced Gaussian grid, as
described by Hortal and Simmons (1991). Thus, the number of points on each latitude row
is chosen so that the local east-west gridlength remains approximately constant, with the
restriction that the number should be suitable for the FFT (nN=2P395%). After some
experimentation, the "fully reduced grid" option of Hortal and Simmons was implemented,;
all possible wavenumbers (up to the model’s truncation limit) are used in the Legendre
transforms. A small amount of noise in the immediate vicinity of the poles was removed by
increasing the number of gridpoints in the three most northerly and southerly rows of the grid
(from 6, 12 and 18 points in the original design of the T213 grid to 12, 16 and 20 points
respectively). Courtier and Naughton (1994) have very recently reconsidered the design of
reduced Gaussian grids.
(e) Time-stepping procedure

The time-stepping procedure for the Eulerian U-V version of the model follows
closely that outlined by Temperton (1991) for the shallow-water equations. At the start of a
timestep, the model state at time (£-At) is defined by the values of U, V, T, g and1n p,

on the Gaussian grid. To compute the semi-implicit corrections, the (t-At) values of
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divergence D, dP/0A and dP/dp are also held on the grid, where p=sin6 and

P=YT+ R4T,1n p, . (2.36)

The model state at time ¢ is defined by the spectral coefficients of , D, T, gand Inp, .
Legendre transforms followed by Fourier transforms are then used to compute
¢, D, U V, T, 81/du, q. 3g/du, Inp, and d(1n p,) /ou attime t on the model
grid. Additional Fourier transforms are used to compute the corresponding values of
oU/9A, O0V/OA, OT/OA, dg/dA and 8(1n D) /0A. The meridional gradients of U7 and V
are obtained using the relationships

o _ v _ alcos?0 ,

cosf M - 3
av _ 2 _ OU
cosege— = aDcos?0 an

All the information is then available to evaluate the terms at time £ on the left-hand
sides of (2.28)-(2.31) and (2.34), and thus to compute "provisional” tendencies of the model
variables. These tendencies (together with values of the variables at t-A t) are supplied to
the physical parameterization routines, which increment the tendencies with their respective
contributions. The semi-implicit correction terms evaluated at time-levels (t-A£) and &
are then added to the tendencies. Ignoring the horizontal diffusion terms (which are handled
later in spectral space), and grouping together the terms which have been computed on the

grid, (2.28)-(2.31) and (2.34) can be written in the form

o+ PALOE _ g 2.37)
v+ —Bg—tcosﬁ% = R, (2.38)
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T* + BALID* = R, (2.39)

g* =R, (2.40)

(In p,)* + BAtvD" = R; .

The right-hand sides R,-R, are transformed to spectral space via Fourier transforms

followed by Gaussian integration. The curl and divergence of (2.37) and (2.38) are then

computed in spectral space, leading to
{* =curl (R, R,) (2.42)
D* + BAtV2p* =div (R, R,) . (2.43)
Equations (2.39), (2.41) and (2.43) can then be combined with the aid of (2.36) to obtain an

equation of the form

(I + “—(Z:—l)[‘) (DM = (D)} (2.44)

for each zonal wavenumber m and total wavenumber 1, where the matrix

I'=B>(At)?*(Yz + R4T,V) (2.45)

couples all the NLEV values of (D.")* in a vertical column. Once D* has been found, the

calculation of T* and (1n p_)* can be completed, while g* and (* have already been
obtained from (2.40) and (2.42).

Finally, a "fractional step" approach is used to implement the horizontal diffusion of
vorticity, divergence, temperature and specific humidity. A simple linear diffusion of order

2p is applied along the hybrid coordinate surfaces:

K, = - (~1)PKV%PX (2.46)
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where X = {, D or g. It is applied in spectral space to the (£+At) values such that ifx,”

is the spectral coefficient of X prior to diffusion, then the diffused value X™ is given by

X0 = (2 e 2L Py 2.47)
a

A modified form of (2.47) is also used for the temperature T, to approximate diffusion on
surfaces of constant pressure rather than on the sloping hybrid coordinate surfaces (Simmons,
1987). The operational version of the model uses fourth-order horizontal diffusion (p=2).
(f) Time-filtering

To avoid decoupling of the solutions at odd and even timesteps, a Robert filter
(Asselin 1972) is applied at each timestep. The time-filtering is defined by

X, =X+ e(X; - 2X + X*) (2.48)

where the subscript £ denotes a filtered value, and X-, X and X* represent values at
(t-At),tand (t+At) respectively.
Because of the scanning structure of the model (see Section 4), it is convenient to
apply the time-filtering in gridpoint space, and to split (2.48) into two parts:
X,=X+8e(X; - 2X) (2.49)
X,=X,+¢ex" . (2.50)
The "partially filtered" values computed by (2.49) are stored on a gridpoint work file and
passed from one timestep to the next. Thus, the information available after the transforms to
gridpoint space consists of partially filtered values at time (t-At) together with unfiltered

values at time t. The filtering of the (t-At) fields can then be completed via (2.50), which

after shifting by one timestep becomes:

14



Xrp=X; + ¢eX. (2.51)

The computations described in Section 2(e) are performed using these fully filtered values at

time (£-At) and the unfiltered values at time . Once (2.51) has been implemented, values
of X, are also available to implement (2.49) for the partially filtered values to be passed on

to the next timestep.
(g) Remarks

Ritchie (1988) noted that for a spectral model of the shallow-water equations, the U-V
form and the {-D form gave identical results (apart from round-off error). In extending this
work to a multi-level model, Ritchie(1991) found that this equivalence was not maintained.
This was in fact a result of some analytic manipulations in the vertical, used to eliminate
between the variables in solving the equations of the semi-implicit scheme, which were not
exactly matched by the finite-element vertical discretization of Ritchie’s model.

In the case of the model described here, the corresponding elimination between the
variables 1s purely algebraic, and the equivalence between the U-V form and the {-D form
is maintained apart from one small exception due to the use of the hybrid vertical coordinate.
In the U-V model, the gradients of the geopotential ¢ are computed in gridpoint space (from
the spectrally computed gradients of T, g and 1n p,), while in the {-D model ¢ itself is
computed and transformed separately into spectral space, where its Laplacian is added into
the divergence equation. Since ¢ is not a quadratic function of the model variables there is
some aliasing, which is different for the two versions of the model. In practice the differences
between the {-D model and the U-V model were found to be very small, and in the case of
a pure sigma-coordinate the two models would be algebraically equivalent.

The U-V model is nevertheless considerably more economical than its{-D
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counterpart in terms of the number of Legendre transforms required. In addition to the
transform of ¢ referred to above, four Legendre transforms are saved in the treatment of the
wind fields using the procedures described by Temperton (1991) for the shallow-water
equations. The number of multi-level Legendre transforms is thereby reduced from 17 to 12
per timestep. |
(h) T, as spectral variable

In preparétion for a further reduction in the number of Legendre transforms required
by the semi-Lagrangian version of the model, the modified Eulerian version includes an
option to keep the virtual temperature T, rather than the temperature T as the spectral
variable. In the time-stepping procedure, Legendre transforms followed by Fourier transforms
are used to compute T,, O0T,/0u and OT,/0A at time t on the model grid; the
corresponding vaues of T, 9T/0u and 8T/9A are then computed using the corresponding
values of g, dg/du and dg/dA. The thermodynamic equation (2.3) is then stepped forward
in fime exactly as before. After the physical parameterization routines, the "provisional" value
of T(t+At) is combined with g(t+At) fo compute a provisional value of T, (t+At).
The semi-implicit correction terms evaluated at time-levels (t-At) and t are then added
to the provisionai value of T, (t+At), just before the transform back to spectral space.

There are corresponding slight changes in the semi-implicit correction terms. The

linearized hydrostatic matrix Y in (2.28)-(2.29) and (2.36) now operates on T, rather than

on T. From the point of view of the semi-implicit scheme, (2.30) has implicitly been replaced

by an equation of the form

8,7, = ... - LA, (zD) < 2.52)

16



although as explained above it is not necessary to formulate or compute the missing terms

explicitly. Hence, (2.39) is replaced by

Ty + PAt1D* = R,/ (2.53)

and the solution of the semi-implicit equations in spectral space proceeds just as before.
This change of spectral variable results in only insignificant changes to a 10-day
model forecast, but permits useful economies in the semi-Lagrangian version to be described

in the next section.
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3. Semi-Lagrangian formulation
(a) General description
The general form of the model equations is

dx _ ox _
gt 3¢ +A(X) =R (3.1)

where the three-dimensional advection operator A was defined in (2.27). A three-time-level
semi—Lagrangian treatment of (3.1) is obtained by finding the approximate trajectory, over the

time interval [t-At, t+At], of a particle which arrives at each gridpoint x at time

(t+At) . Equation (3.1) is then approximated by

X" - X

SAE - R°® (3.2)

where the superscripts +, 0, - respectively denote evaluation at the arrival point (x, t+At),
the mid-point of the trajectory (x-@, ¢), and the departure point (x-2q, t-At) . Since
the mid-point and the departure point will not in general coincide with model gridpoints, X~
and R°® must be determined by interpolation.

It is more economical (and, as discussed later, gives better results in some

circumstances; see also Tanguay et al., 1992) to evaluate the right-hand side of (3.2) as

RO = _:ZL_ [R(x-2e,t) + R(x,t)] (3.3)

since only a single interpolation [of the combined field X (£-A t) +A trR(t) at the point
(x-2a) ] is then required in order to determine X*.

The right-hand sides of the time-discretized model equations also contain semi-implicit

correction terms, which in the Eulerian model took the form
A, X= (X* - 2X° + X°)

where the superscripts refer to time-levels, and to a single common gridpoint. In the semi-

18



Lagrangian version of the model, the semi-implicit correction terms take the form

A X=(X(x,t+A L) -X(x, t)) + (X(x-2¢, t-At)-X(x-2a,t)) (3.4)

and again the terms to be evaluated at the departure point (x-2g) can be added to other
right-hand side terms before interpolation. Notice that the evaluation of A ,.X, and both ways
of evaluating RO, are all centered in space and time.

To obtain accurate results from a semi-Lagrangian integration scheme, it is necessary
to choose the order of interpolation carefully (see for example Staniforth and Coté, 1991). In
practice it has been found (for the model described here) that linear interpolation is adequate
for the terms evaluated at the midpoint of the trajectory, but that cubic interpolation is
essential for the terms evaluated at the departure point. Cubic interpolation in three
dimensions is expensive, and fortunately a "quasi-cubic" interpolation (suggested by Philippe
Courtier) was found to give essentially equivalent results. The technique is illustrated in Fig.
2 for two-dimensional interpolation on a regular grid. The target point is at (x,+a&, y,+B) .
In the first step, four interpolations are performed in the x-direction: linear (rather than the
usual cubic) interpolations to the points (x,+a,y;,) and (x,+a&,y,,), and cubic
interpolations to the points (x+e,y;) and (x +&,y,,) . In the second step, one cubic
interpolation is performed in the y-direction, to evaluate the field at the target point. The
number of "neighbours" contributing to the result is reduced from 16 to 12. The generalization
to three dimensions is straightforward and results in a significant saving, the number of
neighbours being reduced from 64 to 32, and the computation being reduced from 21 one-
dimensional cubic interpolations to 7 cubic plus 10 linear one-dimensional interpolations.

For the reduced Gaussian grid described in Section 2(d), the mesh is no longer regular.
However, it is easily seen that the extra complication is relatively minor provided that the first

step in the interpolation is performed in the A -direction.
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The order of the interpolation in the vertical is reduced to linear when the evaluation
point lies between the two highest model levels, or between the lowest two model levels.
Extrapolation beyond the top or bottom levels is not allowed.

(b) Finding the departure point
Extending the procedure of Robert (1981) to three dimensions, the midpoint (x-¢)

and the departure point (x-2g) of the trajectory for each arrival point x are found by

iteratively solving the equation

¢ =Atvix-ea,t) | , (3.5)
where v in (3.5) is the three-dimensional wind field (u, v, %) . Since 1 was never explicitly
required in the Eulerian version of the model (see Egs. (2.18)-(2.19) for the Eulerian
discretization of vertical advection), it is necessary to construct this field for the trajectory
calculations. As 1 is already specified at the upper and lower boundaries (1 =0 at n=0 and
at 1) =1),‘it would be natural to construct 1 at the half-levels (i.e., vertically staggered with
respect to u and v), and indeed a preliminary version of the model was coded that way.
However, it is more convenient to hold the three velocity components at the same set of
points (which also coincide with the arrival points), so the formulation was changed to use1
at the "full" levels. Thus, the vertical velocity used in (3.5) is defined by

1[f. @ )
snge) - hae) ] 6

k—;z
&)

where Mdp/0n is already defined by (2.18) and

flk:

(@) _ Ap, _ AA,/p, + AB, 3.7)

o'y Any = Ps AA/p, + AB,

In deriving (3.7) we have used (2.11) together with a formal definition of n . itself (which
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again was not required by the discretized Eulerian dynamics):
N = 2en/Po + B (3.8)
where p, is a constant pressure (chosen to be 1013.25 hPa).
The iterative procedure for solving (3.5) is analogous to that used by Ritchie (1991)

in a ¢ -coordinate model. Given an estimate ¢ ¥ after k iterations, the next iteration is given

by

%(k+l) = A ty(%_g(k) , B) (3.9

where the vertical (n)) component of the displacement is found first. The vertical component
of ¢‘® on the right-hand side of (3.9) is then updated before the horizontal components are
found taking into account the spherical geometry following Ritchie (1987,1988). The first
guess is given by
a® = Atv(x, t) . (3.10)

The calculations include approximations to the spherical geometry away from the poles,
following Ritchie and Beaudoin (1994). In agreement with previous work (reviewed by
Staniforth and Co6té 1991), little sensitivity was found to the order of interpolation used in the
trajectory calculations, and linear interpolation appears to be sufficiently accurate. After
providing a first guess via (3.10), a single further iteration was found to be adequate.

Once the midpoint (x-g) of the trajectory has been found, the departure point
(x-2a) is immediately obtained (in the horizontal, the backward extension of the trajectory
is along a great circle). In the vertical, if the departure point is then above the first (or below
the last) model level, it is modified to lie on the first (last) level.

In solving (3.9), it is necessary to convert between a displacement in terms of the

spatial coordinates and the corresponding displacement in terms of "gridlengths”, in order to
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select the correct three-dimensional block of points for the interpolation routine. This is
simple in the horizontal, since the mesh length is constant in the A-direction (at a given
latitude), and almost constant in the @-direction. It is more difficult in the vertical, where the
grid spacing changes rapidly, and the conversion algorithm for the vertical displacement
makes use of an auxiliary grid defined with high uniform resolution.
(¢c) "Non-interpolating” scheme in the vertical

An alternative formulation of the semi-Lagrangian scheme in three dimensions was

suggested by Ritchie (1991). Equation (3.1) can be rewritten as

d,X ., 0x . 0X .. 0Xx
* U4 _ - 2 * 2 3.11
dt+n8n R"an+"an (3.11)
where
dX _ 0X
dc " o tAX

and A, is the horizontal part of the advection operator defined in (2.27). In (3.11), f* is
defined to be a vertical velocity which would lead to the departure point of the trajectory at
time (t-At) lying exactly on a model level. This model level is chosen to be the one
closest to the true departure point. Equation (3.11) is then approximated by

X'-X" _

_ 9% yo 4 4e (08X o 12
SAE (Rnan) + 0 (=) (3.12)

on

where the superscripts +, 0, - respectively denote evaluation at the arrival point (x, t+A¢£),
the midpoint (x-g, £) and the departure point (x-2g, t~At) of the modified trajectory.
Since the modified departure point lies by definition on a model level, no vertical

interpolation is required to evaluate X~. As discussed in section 3(a) above, it is also possible
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to evaluate the terms on the right-hand side of (3.12) by averaging the values at (x-2¢, t)

and (x, t); in this case no vertical interpolation at all is required. Notice that a separate

interpolation is required to evaluate the second term on the right-hand side of (3.12) since the

quantity ©y*, defined by

A* = 211 (3.13)

where n* and 1~ are respectively the arrival and departure levels of the modified trajectory,
is meaningful only at each gridpoint.

If the vertical velocity (or the timestep) is sufficiently small, then the modified
departure point lies on the same model level as the arrival point, f* is zero and the treatment
of vertical advection becomes purely Eulerian. In general there is an Eulerian treatment of the
advection by the "residual vertical velocity” (7 -1*), which is small enough to guarantee
that the Eulerian CFL criterion for vertical advection is respected. Thus, the "non-
interpolating" scheme maintains the desirable stability properties of the "fully interpolating"
scheme.

There is a subtle but important difference in the way the iterative scheme (3.9) is
implemented to determine the modified trajectory in the non-interpolating scheme. As before,
the first step at each iteration is to update the estimate of the vertical component of the
displacement. The implied updated departure point is then moved to the closest model level.
In the second step, the horizontal components are then updated using the winds evaluated at
the midpoint of the modified trajectory. Notice that this gives a result different from that
obtained by simply carrying out the trajectory calculation of the fully interpolating scheme

and then projecting the departure point to the nearest model level. The modified procedure
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described above is easily seen to be more consistent by considering the case in which the
vertical velocity is not zero, but is small enough for the modified trajectory to be horizontal
(1 *=0). The discretization is then equivalent to a purely two-dimensional semi-Lagrangian
scheme, the trajectory being computed using the horizontal wind field evaluated on a single
model level.

An incidental advantage of the "non-interpolating” scheme over the "fully
interpolating" scheme is that it resolves any ambiguities about the treatment of departure
points above the top model level or below the bottom model level; the modified departure
points automatically lie on the top or bottom level. The treatment of vertical advection
becomes Eulerian, which is well-defined at the top and bottom levels. Thus, the non-
interpolating scheme removes the need for artificial "nudging" of the departure points or
extrapolation of quantities to points above or below the domain of the model levels.

Smolarkiewicz and Rasch (1991) have extended the principle of the "non-interpolating”
semi-Lagrangian formulation to generate a broader class of stable and accurate advection
schemes.

(d) Semi-Lagrangian discretization

Here we describe in detail only the fully interpolating version of the semi-Lagrangian
discretization; the modifications necessary for the "non-interpolating in the vertical" version
become evident by comparing the right-hand side of (3.12) with that of (3.2).

Following Ritchie (1988,1991), the momentum equations are integrated in vector form
to avoid an instability of the metric term near the poles. Using the notation of (3.2) and

defining the horizontal wind vector v,= (u, v), the semi-Lagrangian equivalent of (2.28)-

(2.29) is
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AL

+ [f]gxyH + V¢ + RGT Vin p}o

=P, + K, - %Attv {yr + RyTAn .} (3.14)

where k is the vertically directed unit vector and V is the horizontal gradient operator in
spherical coordinates. On the right-hand side of (3.14), P, and K, respectively denote the
contributions of the physical parameterization schemes and horizontal diffusion, to be

discussed in Section 3(f), while the semi-implicit correction terms are evaluated as in (3.4).
For the momentum equations, it was found advantageous to evaluate the time-level ¢ terms [ ]°

as an average between the values at the departure and arrival points of the trajectory, as in
(3.3). The pressure gradient terms are discretized in exactly the same way as for the Eulerian
model [see Section 2(b)].

Since (3.14) is in vector form, it is important to account for the change in the
orientation of the coordinate system as the particle follows the trajectory; the manipulations
required are as set out by Ritchie (1988) and simplified by Ritchie and Beaudoin (1994).

The thermodynamic and moisture equations (2.30)-(2.31) become

T T KT, 0 o B
2At [ (1+(5—1>q)p] = Pp+ Ky - SA (1D, (3.15)
AT =Pt kg (3.16)

2At a g

In (3.15), the [ 1° term is discretized as in (2.25), and evaluated at the midpoint of the
trajectory, while the semi-implicit correction terms are evaluated as in (3.4).

The m-coordinate continuity equation (2.5) can be rewritten as
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221 203 -0

(3.17)

Setting
Db =A(n)+B(n)p,

and noting that

2(2) - v(2) - B

we also have

Combining (3.17) and (3.18),

-Qédps + 6pD+ 8(.@_)=0_

3 dt  an- e\ on

Now introducing the vertical discretization, (3.19) becomes

05, % < s, 2] - ()

=0,
dt on /r,v, on

k-%

the vertical discretization of f0p/dn having been defined in (2.18).
Changing the prognostic variable to 1n p_,

d

ABigr

o+ oo 1) 6] ) -0

Combining (3.21) with the discrete definition of 1dp/dn given by (2.18),
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AB.-% (1np) - ABk{i(%gil

= + v,.Vin ps} =0 (3.22)

where 9 (1n p.) /0t is given by (2.14).
Noting that

NLEV
Y AB =1,
k=1

and including the semi-implicit correction terms, the semi-Lagrangian discretization of the
continuity equation finally becomes

NLEV

(Inp)* = Y ABk{(ln Dy~ + 2At(w + v,..Vin ps)o
k=1 £
NLEV
LELALY (ap)} 6.2
Dg Jj=1

(Since there is no vertical advection term in (3.23), no modification is required for the
vertically non-interpolating scheme). It is important to bear in mind that each contribution to

the sum on the right-hand side of (3.23) involves a different trajectory. The interpolations for

(1In p.)~ and the semi-implicit correction terms are however two-dimensional, since these

quantities are independent of vertical level. The ( )° term is evaluated at the midpoint of
the trajectory, and requires a three-dimensional interpolation.

In summary, the semi-Lagrangian discretization is given by Equations (3.14)-(3.16)
together with (3.23).
(e) Comparison with other schemes

The semi-Lagrangian formulation presented above differs in some respects from those

proposed by other authors. Perhaps the most notable difference lies in the treatment of the
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conversion (w ) term in the thermodynamic equation (3.15), and of the right-hand side of the

continuity equation (3.23). Both involve terms of the form v.Vlnp,_, which in our scheme

are computed in a purely Eulerian fashion. This may appear somewhat inconsistent; indeed
McDonald and Haugen (1993) state as a specific design objective of their scheme that the
operator v.V should not appear explicitly. The alternative approach, also taken by
Williamson and Olson (1994), is to use the continuity equation in its semi-implicit semi-
Lagrangian form to derive a consistent equation for predicting 1dp/0n, which can then be

used to eliminate the v.Vlnp, terms. In the o-coordinate system, Bates et al. (1993) and

McDonald and Haugen (1992) used a similar approach to derive a prognostic equation for &.
A possible disadvantage of such an approach is that ©dp/dn (or &) then follows an
independent evolution, no longer satisfying a diagnostic relationship of the form (2.18). Our
"Eulerian" treatment of the v. Vlnp, terms avoids this disadvantage and seems to work well,
but further study is required to determine whether this difference in formulation is important
OT not.

Another aspect of our semi-Lagrangian discretization of the continuity equation, which
differs from that in other models, concerns the definition of the trajectory; in our scheme this
is the same (three-dimensional) trajectory as used for the other variables. In the continuous
form (3.19) of the equation, the advective part of the total derivative dp./dt may be
regarded either as two-dimensional or as three-dimensional (since dp./9n is zero). However
the vertically discretized form (3.20) is well-defined only at discrete model levels, implying
that for consistency the semi-Lagrangian discretization (3.23) should be based on horizontal
trajectories. Correcting this inconsistency in our scheme by computing horizontal trajetories
for the continuity equation, based on the horizontal wind at each model level, made very little

difference to the results, and for the time being we have allowed the inconsistency to remain.
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(As discussed later, in the case of the "vertically non-interpolating” scheme the modified

trajectories are nearly always horizontal anyway.) In the case of the fully-interpolating
scheme, recomputing the trajectories represents a significant expense; Bates et al. (1993) and
McDonald and Haugen (1992) used a simple projection of the three-dimensional trajectory
onto the model level of the arrival point. In our model this approach resulted in poor mass
conservation, though Bates et al. (1993) came to the opposite conclusion. Again, the
importance or otherwise of these differences in formulation is not yet firmly established.
(f) Time-stepping procedure

The general outline of the time-stepping procedure for the semi-Lagrangian version
is similar to that described for the Eulerian model in Section 2(e). Thus at the start of a
timestep, the model state at time (t-At) is defined by the values of U, V, T, g and1n D,
on the Gaussian grid. To complete the semi-implicit corrections, the (t-At) values of
D, 0P/0A and OP/0p are also held on the grid. The model state at time t is defined by the
spectral coefficients of ¢,D, T, g and 1n p.. Legendre transforms followed by Fourier
transforms are then used to compute D,U,V,T, 90T/, g, 0g/du, ln p, and
d(ln p.) /0 at time t on the model grid; additional Fourier transforms are used to
compute the corresponding values of 0T/8A, dg/0A and d(1n p_) /0A. Since { and the
horizontal gradients of U and V are no longer required on the model grid, one multi-level
Legendre transform and three multi-level Fourier transforms are saved in comparison with the
Eulerian version.

Since the advection of moisture is handled by the semi-Lagrangian discretization
(3.16), the horizontal gradients of g are only needed in order to compute the horizontal
gradients of the virtual temperature T, [which in turn are required to compute the Vi term

in (3.14)]. If T, is chosen as the spectral variable as in section 2(h), these gradients are
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available directly, and there is then no need to transform dg/dp (or dg/dA) to the model

grid. The number of multi-level Legendre transforms per timestep is further reduced to 10.
In passing, all the ingredients are then in place for a semi-Lagrangian treatment in which the
moisture field is never transformed to spectral space (Williamson and Rasch, 1994), and only
8 multi-level Legendre transforms are required per timestep (compared with 17 in the original{ -D
Eulerian model).

After the transforms to the model grid, all the information is then available to compute
the trajectories for each gridpoint, and to evaluate the "dynamical" contributions to the semi-
Lagrangian discretization. Ignoring for a moment the contributions of the physical

parameterization schemes and of the horizontal diffusion, each equation is either of the form
X' (%) =X (x-2¢) + AtlRO(x-2a) +R% (%)} +57 (x-2a) + S*(x) (3.24)

or
X" (x) =X (x-2¢) + 2AtR%(x-q) +5 (x-2¢) + S*(x) , (3.25)

depending on whether the R°® terms are averaged between the endpoints of the trajectory or
evaluated at the midpoints. In (3.24) and (3.25), the S terms represent the semi-implicit
corrections; S~ includes contributions from time-levels (£-At) and ¢, while S* includes
contributions from time-levels ¢ and (t+A¢t).

In the first part of the calculation for equations of the form (3.24), the combined field

X~ + AtR® + 5~ is computed, and the value of this combined field at each departure point
(x-2q) is then found by interpolation. Adding the (uninterpolated) value of A tR® results
in a provisional value of X* at each gridpoint, incorporating all the terms in (3.24) except for
S*. The calculation for equations of the form (3.25) proceeds similarly, except that two

interpolations are required, one for X~ + S~ at (x-2a), and one for 2AtR® at (x-a) .

A provisional value X* is now available at each gridpoint for each variable, and is
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used together with X~ at the same gridpoint to compute an "Eulerian" tendency. These fields

and their tendencies are then supplied to the physical parameterization routines, which

increment the tendencies with their respective contributions, just as in the Eulerian version
(except that, to avoid extra interpolations, the S~ terms have been included in the supplied
dynamical tendencies). If 7', is chosen as the spectral variable, a provisional value of T is
computed at this point.

The contributions from the S* terms at time ¢ are now added in, resulting in a set

of equations of the form

U+ +

=0 (3.26)

. BAL oP* _ n
vt o+ 3 cosO E oR (3.27)
T + BAtiD* = O, (3.28)

g =0, (3.29)
(In p,)* + BAtvD* = Q. (3.30)

where the right-hand sides Q,-Q. include all the terms which have been computed on the
grid, and T replaces T* if T, is the spectral variable. Equations (3.26)-(3.30) have exactly

the same form as Equations (2.37)-(2.41) of the Eulerian model and are solved in exactly the
same way, by first transforming to spectral space. After finding the new spectral coefficients
at time (¢t+A t), horizontal diffusion is also applied in the same way as for the Eulerian

version.
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The implementation of the time-filtering for the semi-Lagrangian model is identical
to that for the Eulerian version, as described in Section 2(f).

(g) Optimization of vertically non-interpolating scheme

In the "vertically non-interpolating” scheme, the departure point of each modified
trajectory lies on a model level. For the set of arrival points on each model level, it is of
interest to determine the frequency distribution of the corresponding departure points. The
results of an experiment run to collect these statistics led to a significant optimization of the
code for the vertically non-interpolating scheme.

The statistics were obtained from a 10-day forecast using the model in its operational
configuration: T213, 31 levels, with a 15-minute timestep. The results are summarized in
Table 1, which shows that the vast majority (99.67% overall) of modified trajectories are
horizontal; no departure point was ever more than three model levels away from its
corresponding arrival point.

The implication of these results is that a great deal of redundant calculation was being
performed in the vertically non-interpolating scheme. For each horizontal modified trajectory,
the interpolation of the vhorizontal winds in the trajectory calculation itself becomes two-
dimensional rather than three-dimensional, as do the interpolations of "right-hand side" terms
at the midpoint of the trajectory, while the additional interpolations to calculate terms of the
form 7W* (0x/9n)° in (3.12) are not required at all. Consequently, special routines were
written to perform interpolations which are two-dimensional everywhere except at a set of
"flagged" points where they become three-dimensional, and similarly to perform two- or
three-dimensional interpolations at the flagged points while skipping all other points. The use
of these special routines reduced the "semi-Lagrangian overhead" for the vertically non-

interpolating scheme by about 30%.
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TABLE 1

Frequency distribution (%) of departure points in the “vertically non-interpolating’ scheme
(* indicates <0.005%)

Departure levels
Arrival level k k k1 k2 k£3
1-6 100.00 - - -
7-9 100.00 * - -
10 99.99 0.01 * -
1 99.96 0.04 * -
12 99.89 0.11 * -
13 99.76 0.24 * *
14 99.60 0.40 * *
15 99.43 0.57 * *
16 99.28 0.72 * -
17 99.16 0.83 0.01 -
18 99.08 0.92 * -
19 99.05 0.94 0.01 -
20 99.05 0.94 0.01 *
21 99.09 0.91 * *
22 99.14 0.85 0.01 *
23 99.22 0.78 * -
24 99.31 0.69 * -
25 99.44 0.56 * -
26 99.60 0.40 * -
27 99.78 0.22 * -
28 99.92 0.08 * -
29 99.99 0.01 - -
30 100.00 * - -
31 100.00 - - -
TABLE 2
Analysis of CPU time (%)

Eulerian Fully interpolating ~ Vertically non-interpolating

semi-Langrangian sem-Langrangian
Dynamics 21 15 17
Physics 53 42 45
FFT 6 3 4
Legendre transforms 20 13 14
Semi-Langrangian - 27 20
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4. Computational details

Implementing a high-resolution model, which must run operationally within a given
elapsed time on a given computer system, presents a number of interesting technical
challenges. In this section we present some of the computational details which enabled the
goal of implementation to be achieved.

(a) Scanning structure

Each timestep of the model integration procedure consists of three scans.

At the beginning of the timestep, the model fields at time (-A t) are specified in
gridpoint form (as described in Section 2(f), these fields are "partially time-filtered"). The
gridpoint values of the model variables are contained in a "gridpoint workfile", held on a
secondary storage device and organized as a random-access file with one record for each
latitude row. Meanwhile, the model fields at time £ are specified in spectral form, all the
spectral coefficients being held in central memory. The first scan consists of Legendre
transforms to compute the Fourier coefficients of the model variables at time t on each
latitude row, the results being written out to a "Fourier workfile", again organized with one
record for each latitude row. During the first scan, latitude rows are processed in north/south
pairs with the members of each pair being equidistant from the equator, in order to make use
of the symmetries of the Legendre polynomials (see for example Temperton,1991). Once this
first scan has been completed, the spectral coefficients are no longer required and the central
memory arrays can be released for use during the next scan.

The second scan steps through the latitude rows, starting at the row nearest the North
Pole and proceeding southwards. At each row, the corresponding records of the gridpoint
values at time (t-At) and the Fourier coefficients at time ¢ are read in. Fourier transforms

then provide gridpoint values of the fields (together with any required horizontal derivatives)
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at time t. At this juncture, the time-filtering of the fields at time (£-At) is completed,
while "partially time-filtered" fields at time ¢t are also computed and written out to the
gridpoint workfile ready for the next timestep.

The gridpoint calculations for the present timestep continue using the time-filtered
values at (£-At) and the unfiltered values at time ¢. The right-hand sides of the equations,
discretized in semi-Lagrangian form as in Section 3, are computed with terms being grouped
separately depending on whether they will be evaluated at the departure point, the midpoint
or the arrival point of the trajectory. The results of these calculations, together with the
horizontal wind components and the vertical velocity 1, are then stored in a "rotating buffer"
which contains values for a number of consecutive latitude rows. The gridpoint calculations
described so far correspond to the southernmost row contained in this buffer. Next, the focus
of the computation returns to the central row of the buffer. Values of the wind fields and the
right-hand sides of the equations are now available at a sufficient distance to the north and
south of the central tow for the trajectory calculations to be performed and for the semi-
Lagrangian timestep to be implemented, thus furnishing provisional values at (t+At) . As
described in Section 3(d), the contributions from the physical parameterization schemes can
then be incorporated to complete the calculation of the right-hand sides O, - Qs of Egs. (3.26)-
(3.30).

These right-hand sides are now Fourier transformed and the coefficients are written
out to another Fourier workfile, again organized with one record for each latitude row but this
time with a special structure which will be exploited in the third scan. The computation then
proceeds southwards to the next pair of "southernmost" and "central" rows, the values
computed for the new southern row overwriting those in the buffer for the previous

northernmost row, which are no longer required.
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At the start of the second scan, there is clearly an initialization phase during the first
few rows when only the first part of the above calculations can be done. Similarly, at the end
of the scan there is a "winding-down" phase during which the first part of the calculations has
already been done, and only the second part is required. The same logical structure is also
used to run the Eulerian version of the model, but in this case the width of the "rotating
buffer" can be reduced to that for a single latitude row.

The third scan performs direct Legendre transforms to obtain the provisional spectral
coefficients at time (t+A£) from the Fourier coefficients computed in the second scan,
using Gaussian quadrature. The calculation proceeds one zonal wavenumber at a time. Here
we make use of the special structure of the Fourier workfile; although the file was written
row by row, it can be read in "transposed" fashion, wavenumber by wavenumber. The direct
Legendre transforms first exploit the symmetries of the Legendre polynomials, and then
complete the calculations using highly efficient matrix muliiplication routines. To see how
this is achieved, notice that since a single Legendre transform can be written as a
matrix/vector multiplication of the form Y=Px, a set of simultaneous transforms for the same

zonal wavenumber but for different variables and model levels can be written as

iy - yu =Plx %, ... Xyl
which is indeed in the form of a matrix multiplication Y=PX. A similar technique could have
been used in the first scan, and this has been incorporated in the latest version of the model.
After the transformation to spectral space, the semi-implicit equations are solved and
the horizontal diffusion is implemented as described in Section 2(e), thus completing the

calculation of the spectral coefficients at time (t+A£). At the end of the third scan, the

whole model has been advanced by one timestep.
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(b) Multitasking

Currently the model is tun on a "modestly parallel" supercomputer (specifically, a
Cray Y-MP C90 with 16 processors), and multitasking is an important aspect of the strategy
to make the best use of the available computer power. We have chosen to rely mainly on
high-level "macrotasking", i.e., dividing the computation into large independent units of work,
each of which is assigned to one of the processors. Here only a brief outline will be given;
additional details and discussion are provided by Dent (1992).

In the first scan, the unit of work is a pair of latitude rows. Each pair is independent
of all the others, and a simple dynamic scheduling technique can be used: as each processor
becomes free, a new pair of rows is assigned to it.

In the second scan, the unit of work is a single latitude row. For the semi-Lagrangian
version, the calculations for each row are no longer independent of those for all the other
rows. The trajectory calculations and semi-Lagrangian advection algorithm for the central row
of the rotating buffer can only be carried out once the required calculations have been
completed for all the neighbouring rows, and somewhat complex logic is required to control
the multitasking during this scan.

In the third scan, the unit of work is a single zonal wavenumber. Each wavenumber
is independent of all the others, and the scheduling technique used in the first scan can again
be used. The work content of each wavenumber varies from a maximum at m=0 to a
minimum at the largest value of m (the "tip" of the triangular truncation), and the dynamic
scheduling technique is effective in spreading the work over available processors.

(c) Performance

The following performance figures relate specifically to the operational version of the

model run at horizontal resolution T213 with 31 levels on the 16-processor Cray Y-MP C90.

With the model timestep set at 15 minutes the total CPU time per forecast day would be
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about 1.5 hours on a single processor, the corresponding elapsed time (excluding the post-
processing) being 7 minutes when the work is shared amongst 16 processors. This represents
a sustained computation speed of about 3.5 gigaflops (3.5x10° floating-point operations per
second). The memory requirements are 49 Mwords of central memory plus 70 Mwords of
secondary storage. Multitasking using 16 processors provides a speedup factor of 13 compared
with using a single processor. A typical operational 10-day forecast, including all the post-
processing, takes 2 hours of elapsed time.

(d) Analysis of CPU time

In developing a high-resolution spectral model, the cost of the transforms (particularly
the Legendre transforms) may be a cause for concern (e.g., Coté and Staniforth, 1990). In the
case of a semi-Lagrangian model, it is clearly important that the gain obtained through the
use of longer timesteps is not outweighed by the extra cost of the semi-Lagrangian scheme.
In view of these concerns, it is of interest to analyse the CPU time required for our model.
Table 2 shows the percentage breakdown for the Eulerian version, for the fully interpolating
semi-Lagrangian scheme and for the vertically non-interpolating scheme, at T213/L31
resolution.

This analysis suggests that the spectral method is still perfectly viable at this
resolution, and that considerably higher resolutions can be achieved before the cost of the
transforms becomes a matter for serious concern. The overhead of the semi-Lagrangian
scheme, particularly the non-interpolating version, is also quite modest; for the present
resolution it permits a timestep of 15 minutes compared with 3 minutes for the Eulerian
version, and the resulting reduction in the CPU time for the forecast is about a factor of four.
The semi-Lagrangian overhead is in fact slightly less than suggested by the figures in Table
2, since there is a simultaneous reduction in the number of transforms compared with the

Eulerian scheme. Comparing the two variants of the semi-Lagrangian scheme, the overall
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CPU time for the non-interpolating version is 8.5% less than that for the fully interpolating
version.
(e) The IFS model

On‘ 2nd March 1994, the model code described above was replaced in operations by
the IFS ("Integrated Forecasting System") model, developed in collaboration with Météo-
France (where it is known as ARPEGE; see Courtier et al. (1991) for an account of this
project). The new code includes all the features required for three- and four-dimensional
variational data assimilation (Thépaut and Courtier, 1991; Rabier and Courtier, 1992), and for
determining optimal unstable perturbations for ensemble prediction (Buizza et al., 1993). The
computational structure of the forecast model component of the system is similar to that
described above but includes further improvements in efficiency, notably the matrix-
multiplication treatment of the Legendre transforms in the first scan as well as the third scan
(see section 4(a) above), and the option to combine several latitude rows together (for

example near the poles of the reduced grid) resulting in longer vectors.
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S. Experimental Results
(a) Basic model configuration

Unless otherwise stated, the experiments reported on here were performed with a high
resolution version of the ECMWF forecast model having a spectral representation in the
horizontal with a triangular 213-wave truncation (T213), and 31 levels in the vertical (L31)
as indicated in Fig.1. The baseline semi-Lagrangian version is the "vertically non-
interpolating” scheme (see section 5(e)) which has been used operationally at ECMWF since
August 1992.

The orography for the T213 model is derived from the U.S. Navy data set. The mean
and variance of the height are first computed over the area represented by each point of the
Gaussian grid, and an "envelope" orography is constructed by adding one standard deviation
to the mean at each point (Jarraud et al.,1988). A Gaussian filter of radius 25km is then
applied, and finally the resulting orography is spectrally fitted. The orography for the T106
model was derived in exactly the same way, except that the radius of the Gaussian filter was
50km.

The noise characteristics of the semi-Lagrangian versions were found to be sensitive
to the evaluation of the right-hand-side terms of the governing dynamical equations (see also
Tanguay et al., 1992). It was found to be important to calculate the momentum-equation
terms as averages of values at the beginning and end points of the trajectories. However,
applying this spatial averaging to the temperature and continuity equations turned out to
degrade the results slightly. Here the right-hand-side terms for the temperature and continuity
equations are calculated at the mid-points of the trajectories. The classical semi-implicit
scheme is used (see the discussion following (2.31)), except as noted in section 5(c).

The model includes a sophisticated set of parameterization schemes, including
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radiation (Morcrette, 1990), a diagnostic cloud scheme (Slingo, 1987), a mass-flux convection
scheme (Tiedtke, 1989), vertical diffusion based on the formulation of Louis (1979), gravity-
wave dreig (Miller et al., 1989), large-scale precipitation, and surface processes (Blondin and
Bottger, 1987).

Three parameterization changes were found to be necessary during the course of the
development of the semi-Lagrangian model versions. The need for the first, reported by
Janssen et al. (1992), had in fact been identified in Eulerian T106/L.19 forecasts in which a
time-truncation error in the parameterization of boundary-layer diffusion caused low-level
winds to be generally stronger in forecasts with a 15-minute timestep than in forecasts with
much shorter timesteps. The error arose because the time-split implicit solution used for the
boundary-layer parameterization did not successfully preserve the balance between the
resolved dynamical forcing and the turbulent diffusion. The semi-Lagrangian versions of the
model, and the U~V Eulerian version, produce full dynamical tendencies in grid-point space
which were not directly available to the parameterization in the original {-D Eulerian
version. The time-truncation error has been reduced by incorporating these dynamical
tendencies in the solution of the implicit equations for the diffusive boundary-layer tendencies.
This was necessary to get good agreement between the 10m wind forecasts produced by
Eulerian and (longer-timestep) semi-Lagrangian versions.

The other two parameterization changes relate to the computational stability of the
model when long timesteps are used. It was found necessary to replace explicit time-stepping
in the parametrization of gravity-wave drag by an implicit treatment similar to that applied
to boundary-layer diffusion. Stabilization of the convective mass-flux parameterization was
achieved by artificially limiting the mass fluxes when a CFL-type stability criterion was

breached. These changes also had a beneficial effect on the computational stability of the
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Eulerian versions of the model. Without them, a timestep no longer than three minutes had
to be used for stable integrations at T213/L31 resolution, whereas we shall see later that
longer timesteps can now be used provided the basic dynamical advection scheme does not
cause instability.

The experiments reported below use horizontal diffusion and time filtering similar to
those employed operationally since August 1992. The coefficient of the fourth-order
horizontal diffusion operator (0.2937x10"m’s™, see equation (2.46)) applied at T213 resolution
corresponds to an e-folding time of 0.75h on the shortest-resolved scale. The Eulerian
integrations reported here all make use of artificially enhanced horizontal diffusion at upper
levels and for strong wind-speeds. This was originally adopted operationally for T106
resolution to ensure computational stability using a 15-minute timestep (Simmons et al.,
1989). The artificial enhancement has been almost completely removed both for the semi-
Lagrangian integrations described here and for operational use of the semi-Lagrangian
versions. Enhanced dﬁmping was kept only for divergence close to the top of the model. This
was because tests with no enhancement gave noise in the divergence and temperature fields
along a 130ms™ jet at 10hPa over the Antarctic in a forecast from 28 July 1991.

A time-filtering parameter (see section 2(f)) of 0.1 was used for all experiments
reported here. This is the value used operationally at present, and previously used
operationally for T106 Eulerian forecasts.

Mass conservation is not guaranteed even by the Eulerian version of the model, since 1n Ds
is used as the spectral variable. In practice this is not a problem; during the course of an
operational 10-day semi-Lagrangian T213 forecast the mean surface pressure normally varies
by less than 0.5hPa, and in fact the mass conservation is rather better than it was for the

previously operational Eulerian T106 model.
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The physical parameterizations employed in these experiments form the set that was
in use operationally from August 1992 to February 1993, when a significant improvement was
made to the radiation code. The latter change in particular addressed some problems seen in
the meteorological performance of the 31-level version of the model. For this reason, and
since the 31-level resolution shows particular benefit in data assimilation experiments which
are beyond the scope of this paper, we do not show any comparison of 19- and 31-level
results in the following sections.

In order to assess the impact of various numerical parameters and formulations, sets
of integrations were performed for 12 independent cases starting from operational analyses
on the 15th of each month during the first year following the implementation of the T213/L.31
model on September 17, 1991. The following figures compare the skill (averaged over the
12 cases) obtained with a control version and an experimental version of the model.

(b) Eulerian versus semi-Lagrangian formulation

The main motivation for using a semi-Lagrangian fofmulation is to pemﬁt the use of
time steps that far exceed the Courant-Friedrichs-Lewy (CFL) stability criterion for the
corresponding Eulerian model, thus enhancing the model efficiency, provided that the
additional time truncation error does not significantly decrease the accuracy. Figure 3 shows
the mean objective scores for the northern hemisphere comparing the Eulerian version with
a 3 minute timestep (solid) and the semi-Lagrangian version with a 15 minute timestep
(dashed). Figure 4 shows the corresponding result for the southern hemisphere. It is seen
that the accuracies are almost equivalent, particularly for forecasts whose skill exceeds the
60% threshhold. Thus, even at this high resolution, the semi-Lagrangian scheme permits a
fivefold increase in timestep with no significant degradation in the quality of the forecasts.

In section 4(d) it was seen that the overhead of the semi-Lagrangian scheme is approximately
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20%, so the semi-Lagrangian version gives an efficiency improvement of about a factor of
four relative to the Eulerian in this particular comparison.
(c¢) Impact of increasing timestep

In section 5(b) the Eulerian model used a timestep of 3 minutes and the semi-
Lagrangian model was integrated with a 15 minute step under the basic configuration
described in section 5(a). Given the parameterization changes discussed earlier, both versions
can actually run stably with longer timesteps. For example, the flow and timestep dependent
horizontal diffusion used in the Fulerian model has enabled the set of 12 cases to be
integrated stably with a timestep of 7.5 minutes. Figures 5(a) and (b) show the impact of the
change in timestep on the mean anomaly correlations of the northern hemisphere geopotential
heights at 1000 hPa and 500 hPa respectively. Figures 5(c) and (d) present the corresponding
impact on the root-mean-square errors. These results show that the accuracies are equivalent,
especially when the anomaly correlation exceeds the 60% threshold. However, it should be
noted that, although the enhanced diffusion has successfully inhibited the CFL instability in
these 12 cases with the 7.5 minute timestep, instability has been found to occur with larger
timesteps.

Similarly, the 15 minute timestep used with the semi-Lagrangian version is somewhat
conservative. Figure 6 shows that there is negligible impact on the scores if the timestep is
increased to 20 minutes. The 12 cases have also recently been run successfully with a 22.5
minute timestep in a semi-Lagrangian version. For these forecasts the semi-implicit parameter
(see the discussion following 2.31) was increased from 1 to 1.5. This version is now being
used operationally at ECMWE to produce 3-day forecasts from 00Z data in order to produce
boundary conditions requested by member states for limited area models. The increased value

of B enhances the semi-implicit stability with the larger timestep, as analysed by Simmons
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et al. (1978). It is largely for concerns about the accuracy of the physical parameterization
and the amount of noise near orography that the 15 minute timestep is currently still retained
for the operational 10-day forecasts.
(d) Hybrid versus sigma vertical coordinate

An important aspect of sections 2 and 3 is the formulation of a hybrid coordinate
discretization which is suitable for a semi-Lagrangian treatment. A sigma-coordinate version
of the model is available as a simplification of the hybrid coordinate code. The semi-
Lagrangian algorithms used here were prepared as an extension of those used by Ritchie
(1991) in a finite element discretization in a sigma coordinate. As a test of this extension,
the hybrid coordinate code was run in sigma-coordinate mode. A selection of scatter plots
of northern hemisphere anomaly correlations for the 12 cases comparing sigma- and hybrid-
coordinate T213/L.31 forecasts is shown in Figure 7. Panels (a) and (b) establish that the
hybrid coordinate version performs as well as the sigma-coordinate configuration in the
troposphere, where the two coordinates should agree fairly closely with each other. Panels
(c) and (d) show that the hybrid coordinate results are systematically better than those for the
sigma coordinate in the stratosphere. Hence the design advantage of the hybrid coordinate
is maintained even in this high resolution semi-Lagrangian application. Visual examination
of the 10 hPa height maps for individual cases (not shown) reveals that there is less noise
over mountainous regions with the hybrid coordinate version. It is worth noting that no
special filters were required in order for this application of the semi-Lagrangian method in
hybrid coordinates to work successfully in a three time-level model, contrary to the experience
reported by McDonald and Haugen (1993) for their application in a two time-level model.
(e) Impact of the "vertically non-interpolating” scheme

The T213/L31 model was implemented operationally in September 1991 using the
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Fig. 7 A selection of scatter plots of northern hemisphere anomaly correlations for 12 cases comparing sigma- and
hybrid-coordinate forecasts using T213/L31 resolution and semi-Lagrangian advection:

(a)
(b)
(c

)
(d)

500 hPa height at 120 hours
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"fully interpolating” version of the semi-Lagrangian scheme. The higher resolution version
immediately demonstrated clear improvements in the forecasts in the first few days of the 10-
day forecast range. However, despite extensive parallel testing before implementation, during
the subsequent months it was found that, relative to the former operational model, there was
increased day-to-day variability in the forecasts in the medium-range. The levels of eddy
kinetic energy were typically higher with this version, too. Lower kinetic energy levels were
also found in Eulerian versions of the T213/L31 model. Following several studies to try io
determine which aspects of the semi-Lagrangian formulation were responsible for this
behaviour, attention focussed on the option of using the "vertically non-interpolating” scheme
(Ritchie, 1991) which had been in use operationally in the 21 sigma level semi-Lagrangian
Canadian spectral model since its implementation in March 1991. This scheme was included
quite early on in the Centre’s semi-Lagrangian code, but was not fully validated during the
development of the code because it was not expected to be necessary at the higher vertical
resolution.

Tests of this option revealed a positive impact on objective measures of skill. This
is evident in the anomaly correlations at 1000 hPa and 500 hPa for the northern hemisphere
(Figures 8(a) and (b)), as well as in the corresponding root-mean-square height errors (Figures
8(c) and (d)). The improvement is even more striking in the results for the European region,
as seen in Figure 9. Moreover, levels of eddy activity are generally lower with this version
than with the fully interpolating scheme. Two synoptic examples are shown in Figure 10.
The predominant occurrence of positive forecast height differences near the bases of troughs
~and cut-off lows indicates that the vertically non-interpolating scheme reduces the tendency
of the model to produce troughs and cut-offs that are too intense and extend too far to the

south.
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Also, differences in zonal-mean temperature between semi-Lagrangian and Eulerian
forecasts are substantially reduced at upper levels when the semi-Lagrangian scheme is
changed to the vertically non-interpolating form (figure not shown). The reason for the
different behaviour of the fully interpolating scheme is not entirely understood. Ritchie
(1991) originally attributed it to an excessive smoothing in the fully interpolating version due
to vertical interpolation through the tropopause where all the dynamic fields vary abruptly in
the vertical. This was based on five-day experiments with a baroclinic model that included
only very simple parameterizations. More recently Williamson and Olson (1994) have
examined climate simulations using a semi-Lagrangian version of the NCAR CCM2 which
includes sophisticated physical parameterizations, and have concluded that the fully
interpolating version actually reduces deficiencies that the former Eulerian version had in the
vicinity of the tropopause. These are points that warrant further investigation. In any case,
the present results in terms of medium-range forecasts with a high resolution, fully
parameterized forecast model indicate a clear advantage for the vertically non-interpolating
semi-Lagrangian scheme. It was implemented operationally in August 1992 and the
anticipated improvement was realized. The performance of the operational T213/L31 model
has subsequently been further improved by the implementation of the better radiation
parameterization in February 1993, as mentioned above. This gave temperature changes
around the tropopause comparable in size to those resulting from switching from the fully
interpolating to the vertically non-interpolating semi-Lagrangian scheme.

Despite its advantage in terms of medium-range forecast scores, the vertically non-
interpolating scheme is not superior in all respects to the fully interpolating version. In
particular, it inherits from the Eulerian finite-difference vertical discretization a tendency to

produce noisy and unrealistic vertical structures from time to time in synoptically quiet
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regions. These unrealistic structures are not seen in the corresponding forecasts using the fully
interpolating scheme. This result is consistent with the observation that semi-Lagrangian
advection has better dispersive properties than finite-difference Eulerian advection (Staniforth
and Coté, 1991), since as we have already noted the vertical advection is mostly handled in
a purely Eulerian manner in the vertically non-interpolating scheme.
(f) Impact of increasing horizontal resolution

By virtue of its increased efficiency as presented in section 5(b), incorporation of the
semi-Lagrangian scheme was very important in enabling an increase in horizontal resolution
from T106 to T213 in the operational ECMWF forecast model. It is not our intention here
to present an exhaustive study of the impact of horizontal resolution over a wide range of
truncations. However, it is of interest to document the impact of this increase in horizontal
resolution for the set of 12 cases studied here. In Figure 11 we see the marked improvement
in the objective scores (mean anomaly correlations and root-mean-square height errors at 1000
and 500 hPa) for the northern hemisphere. Figure 12 presents the corresponding results for
the European region. In these tests the same 31 level configuration was used for both
horizontal resolutions. It is seen that this increase in horizontal resolution indeed had a very
significant positive impact which, in fact, is substantially greater than the impact of any of
the other changes that have been presented in the previous figures.
(g) Comments on optimizations

Several additional sets of tests were performed to study the impact of some of the
optimizations that have been incorporated in the operational semi-Lagrangian T213/L31
model. These optimizations leave the objective scores virtually unchanged, but produce
worthwhile extra efficiency gains that help reduce the semi-Lagrangian overheads to the 20%

reported in Table 2. In particular, it was confirmed that there is no significant degradation
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resulting from using linear rather than cubic interpolation, and only one iteration rather than
two, in calculating the trajectories required for the time-stepping procedure as described in
section 3(f). Optimizations based on approximations to the spherical trigonometry are also
used in the calculation of the departure points. The versions implemented correspond to those
presented in section 2(b) of Ritchie and Beaudoin (1994), except that only the terms accurate

to second order in the timestep are explicitly retained.
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6. Discussion

In this article we have examined the implementation of the semi-Lagrangian method
in a high resolution version of the ECMWF forecast model. In section two we presented the
reformulation of the Eulerian version in order to transform the vorticity-divergence
formulation into a momentum-equation version in preparation for a subsequent semi-
Lagrangian vector treatment of the equation of motion. Another important aspect treated was
the vertical discretization for the ECMWF hybrid coordinate on a staggered grid as designed
by Simmons and Burridge for conservation of angular momentum and energy for frictionless
adiabatic flow. A novel feature of the semi-Lagrangian implementation given here is its use
in a baroclinic spectral model in conjunction with the reduced Gaussian grid, as described by
Hortal and Simmons (1991), in which the "fully reduced grid" option leads to a savings of
about 25%. The momentum equation formulation is considerably more economical than its
vorticity-divergence counterpart and, by also incorporating economies in the Legendre
transforms demonstrated by Temperton (1991) for the shallow-water equations, reduced the
number of multi-level Legendre transforms in the reformulated Eulerian model from 17 to 12
per timestep.

The semi-Lagrangian treatment of the momentum equation formulation, including the
semi-implicit correction and spatial averaging of nonlinear terms along the trajectories, was
presented in section three. Linear interpolation is used for the terms evaluated at the midpoint
of the trajectory, with "quasi-cubic" interpolation for the terms evaluated at the departure
point. By interpolating first in the longitudinal direction, it is relatively simple to
accommodate the irregular mesh resulting from the use of the reduced Gaussian grid.
Adaptations required for applying the semi-Lagrangian method on the vertically staggered

hybrid coordinate grid were also discussed. The number of multi-level Legendre transforms
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per timestep is reduced to 10 (and potentially 8) in the semi-Lagrangian model.

Several important computational details related to this high resolution operational
implementation of the semi-Lagrangian scheme were described in section 4. These include
the use of memory and random access files during the three-scan structure used for advancing
the forecast by one timestep, comments on the associated multitasking strategy for executing
the model efficiently on a "modestly parallel" supercomputer, and some performance results.
Particularly noteworthy in terms of CPU usage are that, even at this high resolution, the
Legendre transforms only take about 14% of the time, and that the semi-Lagrangian
calculations (which replace some transforms that would otherwise be required to calculate
Eulerian advection) take about 20% of the time.

In order to assess the impact of formulation and numerical parameter changes, various
experimental results on sets of 12 independent cases were presented in section 5. It was
found that the semi-Lagrangian version with a 15 minute timestep gave an accuracy
equivalent to that of an Eulerian version with a 3 minute timestep, giving an efficiency
improvement of about a factor of 4 after allowing for the 20% of time spent in the semi-
Lagrangian computations. It was noted that, with adjustments to the semi-implicit parameter
(for the semi-Lagrangian version) and strength of horizontal diffusion (for the Eulerian
version), both of these timesteps could be increased. Nevertheless, it remains true that the
semi-Lagrangian scheme remains accurate and stable with timesteps several times longer than
possible with the Eulerian scheme. It was confirmed that the hybrid-coordinate configuration
of this model maintains its design advantage over the sigma-coordinate version in the
stratosphere. No special filters were required in order for the application of the semi-
Lagrangian method in hybrid coordinates to work successfully in this three time-level model.

It was found that, even in this high resolution configuration, compared to the "fully
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interpolating” version, the "vertically non-interpolating” scheme has a positive impact on the
day-to-day consistency of the forecasts, the objective measures of skill, and the levels of eddy
activity. On the other hand, the fully interpolating scheme produces smoother and more
realistic vertical structures than either the Eulerian version or the vertically non-interpolating
scheme, and it is important to understand and correct the negative aspects of its performance.
Finally, it was confirmed that increasing the horizontal resolution from T106 to T213 has a
significant positive impact which, in fact, is substantially greater than the impact of any of
the other changes that have been presented in this implementation of the semi-Lagrangian
method in the ECMWEF forecast model.

To conclude the discussion, it is worth pointing out two new advantages of the spectral
method which have emerged from this work. First, the combination of the spectral method
with the reduced Gaussian grid provides the neatest solution yet found to the problem of
defining almost-uniform resolution over the sphere. Second, the spectral method is particularly
suited to semi-Lagrangian schemes: since there is no staggering of the variables in the
horizontal, the difficulties of combining a semi-Lagrangian scheme with a staggered grid
(expensive calculation of multiple trajectories, or loss of accuracy due to averaging) are

completely avoided.
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