INTRODUCTION TO NUMERICAL WEATHER PREDICTION DATA ASSIMILATION METHODS

P Courtier

1. THE PROBLEM

In numerical weather prediction data assimilation consists of the process which estimates the initial
conditions of the forecast using all the available information. A description of the current observing system
can be found in McGrath (1993); around 10° elementary pieces of information are currently used over

24 hours by the operational data assimilation system.

The current operational ECMWF model (Simmons, 1991) has a horizontal resolution of 90 km and covers
the whole globe. On the vertical the atmosphere is sampled with 31 levels from the surface up to 10 hPa.
The number of degrees of freedom of the model is then of the order of 10",

Over 24 hours, the estimation problem is clearly underdetermined. The time dimension is thus a critical
element of any data assimilation system: it is essential to carry forward in time information from past

observations using the forecast model since it is the best information propagator available.

We have identified the main difficulties of data assimilation:
- large dimension problem
- time dimension critical but non linear dynamic

- observations of variable nature and quality

The purpose of this paper is to provide the theoretical basis of the algorithms used in operational
meteorology together with some recent developments. Most of the material presented here is well
documented in the meteorological literature (Lorenc, 1986; Ghil and Manalotte-Rizzoli, 1991; Daley, 1991)

or in other fields under the generic name of inverse problems (Tarantola, 1987).

In the next section we shall introduce linear estimation theory. Section 3 briefly describes the Optimal
Interpolation algorithm and then concentrates on ﬂle variational approach. Section 4 deals with the tilhe
dimension; it theoretically introduces the Kalman filter then the four-dimensional variational assimilation
algorithm is described, together with some simplifications, which allow an operational implementation in
the foreseeable future. Finaily, an algorithm is presented as an attempt to provide error bars from the

variational algorithms and to improve the treatment of the time dimension.

2. INTRODUCTION TO LINEAR ESTIMATION

In the following the random variables are underlined whereas realizations of these random variables are not.
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2.1 A simple illustration

Let us assume that we are interested in an estimation of the temperature of the ECMWF Lecture Theatre.
We consider the room temperature as a random variable T of expectation <7> and variance <(T-<7>)*>

which are not supposed to be known.

We have a thermometer of known precision g, and we read T,. The measurement T, is considered as one

realization of a random variable 1'0 of expectation <T> (the observation is assumed unbiased) and variance

<(I, -<P>)*> = o2

In the absence of any other information, the Best Linear Unbiased Estimator (BLUE) of the room

temperature is Ia = 1'0 and for the particular realization T, of the measurement we have T, = T,. k

In other words, we have been able to produce a rather pedantic presentation of what you should do when
you want to have an idea of the room temperature - simply to read the thermometer; at least it is not against

common sense!

However, if you look carefully at the ECMWEF attendees of a presentation in the Lecture Theatre, most of

them are wearing a jumper: they have a priori (background) information T, on the room temperature (it’s

gonna be cold!). T, is considered as one realization of a random variable T, of expectation <I> and

variance <(1'b—<1‘>)2> - 0}.

Intuitively, one realizes that the background information, combined with the observation, should lead to a

better estimate than the observation alone. We then look for the BLUE, a linear estimate
1'4 = “Ib + Bl‘a (¢))]

which is unbiased and best (of minimum error variance). As the background information and the

observations are assumed unbiased, we get
<I> = a<I> + B<I>

andthen ¢ + B = 1.

In meterological practice (1) is usually rewritten as

Ia = Ib * B('I‘o—zjb)'
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We look for a correction to the background 1‘b which is a linear function of the difference observation

minus background.

B is evaluated so as to fulfil the minimum variance criterion for the estimate

<(L,-<DP> = (A-BY<(T,~<I>F> + P<(I,<I>)>

=(1-B)? 03 + P? o @
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both pieces of information are weighted according to their statistical quality. If we consider the limit case

of a very low quality measurement (0,>0,), then the analysis remains equal to the background. On the

other hand, if the observation is of very high quality (o,<0,), the analysis is equal to the observation.

The variance of analysis error is found by replacing p with its expression in (2)

-1
<(T -<I>)*> = 1.1
a 02 0'2,
o

2.2 General formulation of linear estimation

The state of the model considered as a random variable is denoted by x. As already said, for real size
problems, it is a vector of length 10°. Observations y are available under the form

y = Hx + €. (3)
H is the so-called observation operator and e the observation errors (representativeness and instrumental
as explained by Lorenc, 1986). The observations are assumed unbiaséd (<e>=0) and of known error

covariances <¢ ¢> = 0.
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A background x 5 is available unbiased <x J <> and of known error covariance

<(x,-<2>) (x,-<2>)> = B.
The Best Linear Unbiased Estimator is then given by

x =%, + KQ-Hx) 4)
with K = B H'(H B H'+0)™! = (B'+H'O'H)"'H'O™". : 5
The covariances of analysis error

<(x,-<x*)(x,-<x>)> = (I-KH)B = (B'+H'O"'H)"". (6)

This classical result of linear estimation is clearly established in several ways in Jaszwinski (1970) or in
Lorenc (1986) and by various other authors. A more general formulation where a background is not
necessarily included is presented (in a very accessible way) in Tarantola (1987). The analysis value is
obtained for a given realization of the background and the observations replacing the random variables in
(4) by their values.

In Meteorology the practical difficulty is that it is impossible to use (4) and (5) directly. B, for example,
is a matrix of size 107 x 107 which is about 1000 times the total archiving capabilities of ECMWF and one

million times the memory size of the current computers.

The scientific difficulty of data assimilation is then to find algorithms which simplify (4) and (5) to an

affordable amount of computer resources, while preserving some of the essential characters.

2.3 Quasi linear case

The previous results can easily be generalised when the observation operators are weakly non linear: the

tangent linear approximation H' is assumed to be valid for the order of magnitude of the background errors:
y=HQR +e
- H(x,) + H@x) - H(x) + &
« H(x) + H* (x-x,) + €.

Equations (4), (5) and (6) then become

x, = x, + K(y-H(xy) @)
with K = B HHBH*+O)!' )
and  <(x_-<x>)(x -<x>)> - (I-KH)B. ©)
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3. TWO PRACTICAL IMPLEMENTATIONS OF LINEAR ESTIMATION

3.1 Optimal Interpolation (OI)

- OI was introduced in Meteorology by Gandin (1963) and significantly contributed to the progress of
numerical weather forecast quality during the late 70’s and the 80’s. The first ECMWF implementation is
described in Lorenc (1981) and a revised implementation in Shaw et al (1987).

The basic idea to simplify (4) and (5) is that, for a given geographical location, only the neighbouring
observations are useful. This argument relies on the relatively small horizontal length scale (500 km) of
the height forecast error correlation (see Hollingsworth and Lonnberg, 1986 and Lonnberg and
Hollingsworth, 1986).

For each location a small set of predictors is kept and the same equation as (4) and (5) is solved but with
matrices of tractable size. In some operational implementations wind and mass are analysed at a given
horizontal location and at a given level with as few as 15 predictors. At ECMWF, a box of a typical size
500 km is considered and an order of magnitude of 700 predictors is kept.

The second approximation comes from the necessity of an analytical model for the forecast error covariances
which have to be computed at the observation locations. This model in most (all?) implementations relies
on isotropy and geostrophy on the f-plane (f is assumed instant locally) with a separability vertical/horizontal
(the spatial correlations can be expressed as a product of two functions, one which depends on the horizontal
distance only and one on the vertical distance only).

Generally speaking, the more local, the more noisy the analyses are (there are jumps in the data used from
one location to another). A second weakness of OI is that if, m pﬁnciple, any linear (or linearised)
observation operator may be used, it is difficult to practically make use of observations indirectly related
to the model parameters since in (5) all the forecast error covariances in observation space have to be
computed. Durand (1985) implemented a direct use of satellite radiances but it 31gmﬁcant1y mcreased the
PERIDOT OI code complexity.

The analysis error variances are easily computed using (6) for each simplified problem.

3.2 Variational formulation of linear estimation - 3D-Var
Coming back to the simple example of the room temperature estimation, if one introduces the function

P s

2 ‘ 2
Oy O,

JT) =%

this function is minimal for
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which is'the same as the BLUE. ‘Furthermore the second derivative of J is =~

J” -

i ognl"‘

and is equal to the inverse of the covariance matrix of estimation error. -

It is thus possible to find the estimate of the statistical problems minimizing a deterministic function which
measures the misfit between the estimate and the information weighted by its statistical quality.

In other words, a linear regression and a least square fit provide the same answer, In the general case, let
us consider the cost function .

J&) = Ve(x-x)B'(x-x,) + Ye(Hx-yYOHx-y) =Jy +J,. - ~ - (10)
Using the adjoint technique one can compute the gradient of the cost function and thus use an iterative
‘minimization scheme suitable for large scale problems (quasi-Newton like M1QN3 from INRIA, Gilbert and
LeMarechal, 1989). Here is the first approximation: for computational reasons, we shall aliow 30 to
100 iterations (but not 1000!) and the convergence will not be achieved to machine accuracy. The OI
schieme exactly solved a multitude of approximate problems. 3D-Var approximately solves the global

problem.

However one drfﬁculty remams, namely the spec1ﬁcat10n of the covanances of the forecast errors B the
spatlal correlatlons are genera]ly called "structure funcnons" As a]ready said, dealmg with the full matrix
Ars mtractable and one has to mn'oduce s1mp11ﬁcat10ns In both the ECMWF (Courtzer et al, 1993) and the
NMC (Parrtsh and Derber, 1992) mplementanons of J,, the basic 1deas are similar and already expressed
in Phillips (1986). 3D isotropy and geostrophic coupling over the sphere usmg Hough mode -separation
(ECMWEF) or a balance equation (NMC) are practically feasible while providing a theoretical improvement
on top of the OI implementation. We now describe the key points of the ECMWF implementation while
referring to Courtier et al (1993) for a detailed presentation.

3.3 Structure functions specification in 3D-Var

2D univariate homogeneous covariances

The basic property we are using is that, as homogeneous covariances over the sphere are by definition
invariant with rotations, it becomes diagonal while expressed in the spherical harmonics basis (Boer, 1983).

More precisely, the covariance between two points P and Q of the sphere is a function of only p- = cos0

194



where @ is the angle between P and Q. f may be expressed as a Legendre polynomial series

fB) = Y f, P,(p) 2n+1.

(The square root is here only for normalisation).

. . ‘N n
We then have the cost function expression J for a field x(A,p) = 3= ¥ x” ¥,*(A,u) and a background

n=0 m=-n

field

N n
XAal) = 3 3 XY, (M)

n=0 m=-n
N

L0 =Y 51 Y a -zl

n=-0 m=-n

2D univariate, homogeneous correlations

Knowing the field 0,(A,p), of the standard deviations of error, assuming the correlations homogeneous

means that the covariances of —f(#—); are homogeneous, we are back to the previous case f being a
o, (4,p

N
correlation verifies f0) = 1 and then Y f,(2n+1) = 1.
n=0

The algorithm to compute J, then becomes

i) from the spectral component x," and X of the control variable and the background fespectively,

computes the difference 8x," = x," - Xp

ii) transforms 8x," to grid point space and obtains the field 8x(A,p)

fii) divide 8x(A,p) by the standard deviations g,(A,p)

m
iv) transforms back to speciral space and obtains the spectral coefficients [—Bﬁ)
. %)

N m?
V) computes the cost function as J,(x) = ¥ f;' ¥ (-95)
9

n=0 m=-n
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3D univariate separable structure functions

As already said, assuming separable structure functions separable means that the. correlation between two
points can be expressed as a product of a function of the horizontal distance only and a function of the
vertical distance only. ' :

In 3D-Var, one may consider the vertical dlstance as a functlon of the hybnd vertlcal coordmate After
’ prOJectlon on the elgenvectors of the vertical correlation matrix, we are back to the 2D case. In optlmal
interpolation, the separability is assumed with pressure as vertical coordinate; this is different from 3D-Var
where the vertical coordinate is terrain-following close to the surface. This leads to differences in the

analysis increments near orography.

3D univariate, non separable
The idea is to have the vertical correlation matrix dependent on the total wavenumber n. More precisely,

8x

having obtained (
%)

) as in step iv of the 2D univariate case for all levels &k (it is a vector of length k),
. ‘

one may consider a vertical covariance matrix A(n) as a function of the total wavenumber n. The cost
function then becomes.

g 5 (o] o (2]

n=0 m=-n

The implication of this formulation on the structure function in grid point space is discussed in Phillips
(1986) and in the 3D-Var framework in Courtier et al (1993). This implementation of non separability can
be seen as a kind of 3D isotropy with sharper vertical structures associated to small horizontal scales. The
specification of thg matrices A(n) is achieved using statistics of thg departur;: between a 24 h forecast and
a 48 h forecast valid for the same time. The approach proposed by Parﬁ'sh and‘Derber (1992) is described
and validated by Rabier and McNally (1993). R | -

Multivariate

(x-x,) is separated into a Rossby and a Gravity contribution. The latter is penalized ensﬁﬁng 10% of the
flow ageostrophic. For more details, we refer to Courtier et al (1993), in particular for some difficulties
introduced by the vértiéal discretization while going back from geopotential to temperature and surface

pressure. In the current implementation, it requires separability of the g, variation.

4. DEALING WITH THE TIME DIMENSION
We said in the introduction that the time dimension is a critical aspect for the specification of the initial

condition of a numerical weather prediction. In this section we introduce an algorithm, the Kalman filter
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(Kalman, 1960; Gkhil et al, 1981) which provides a comprehensive and rigorous framework in the linear
case. It may easily be extended to the quasilinear case and is then called extended Kalman filter
(Jaszwinski, 1970).

4.1 The extended Kalman filter

Here we only present the algorithm; the theoretical results can be found in the above references and, in
particular, in Jazwinski (1970). Denoting by x(#) the state of the atmosphere at time ¢, we are able to
propagate forward in time the information using the forecasting modei M

x(t+T) = M1+Tp) x(t)
M is non-linear but the tangent linear model R remains, to a large extent, valid for the propagation of the
forecast errors (Lacarra and Talagrand, 1988; Vukicevic, 1991; Rabier and Courtier, 1992)

8x(t+T) = R(t+T,r) 8x() + random noise (model errors)
The random noise depicts the fact that the model is not perfect. Here we assume no bias and no time

correlation and that we know the covariance matrix Q of the model errors. Relaxation of these assumptions
is discussed by Jazwinski (1970). At a given time, observations are available

¥; = Hx(t) + random noise (observation errors)

We assume known the covariance matrix of observation errors O;. Then we are in a position to apply an

extended Kalman filter.
The forecast step
x@e,) = M@, 1) x°¢) : (11)

B/(t,) = R, t)BR,,4) + Q _ | - (12)

The analysis step

x%@) = xt) + Ko-Hx't)) B o (13)

B%G) - U-K,H')B%e) A 4
with L ‘ : : o . o

K, = B¢)H'\(H' B7t)H'{+0)™ - , 15)

In the analysis step one recognizes the linear estimation equations (2), (8) and (9). What the Kalman filter
brings is a way of making use of the dynamics to transport the information in time through equation (11)
and its quality with equation (12).

In the current operational implementation of four-dimensional assimilation relying on O], (11) is solved

using the forecast model. However, solving (12) is an untractable task, as the dimension of the model phase
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space is 107, (12) would require 10" model integrations. (12) is then replaced by a simple evolution law.
The correlations are kept constant in time while the variances are assumed to follow a growth according to
the typical doubling time of the forecast errors of a couple of days with a saturation toward a climatological
value. As a consequence, neither the variances of the forecast errors nor the correlations depend on the

meteorological situation. This has been recognized as an OI weakness for years.

. 42 The 4D variational algorithm

4D-Var then consists of the minimization problem

N
®p: minimize J(x(z)) = (x(t)-%) Bx)-x) + % Y (Hx)-y) O\ Hx(t)-y) (16)
i=0 o

with x(z) = M(t,t)x(t)
x,, is the background information valid for time z, which summarises all the information used before time

t,, and B is the error covariance matrix of x,,.

A classical result, assuming a perfect model and linearity of H and M, is that if Jé*(to) is the result of "0 )

then x*(ty) = M(t\t,) x*(t) can also be obtained applying the Kalman filter to the same statistical
estimation problem (Jazwinski, 1970; Ghil et al, 1981; Lorenc, 1986; see Thépaut and Courtier, 1991 or
Rabier and Courtier, 1992 for a detailed presentation using the same notations as here). In meteorologicé.l
applications, however, H and M are weakly nonlinear: assuming that the tangent-linear operators & and
H' of respectively M and H satisfy, to acceptable accuracy for meteorological order of magnitude of the
estimation error, the relations
M(t,t) (x(2)+0x(t)) = M(t,t) x(t) + R(e,t)0x(,)

H(x(t) + 8x(t)) = Ha(t) + H'8x(t) an
for perturbation 8x(z,), then the 4D-Var problem 8, is equivalent to the so-called extended Kalman filter
under the above-mentioned hypothesis, namely the quasi-linearity, the perfect model and the fixed lag (see

previous references). This consists of two steps ( / and @ denote respectively forecast and analysis)

4D—Var implicitly uses flow-dependent structure functions as can be seen from equation (12) (Thépaut et
al 1993a), so that 4D-Var is a scientific improvement on the current operational implementation. Moreover,
4D-Var is also an algorithmic improvement on the Kalman filter (11-15) where the equation (12) has to be
solved explicitly, instead of implicitly in 4D-Var. ' ' ‘

There are two main weaknesses in the 4D-Var implementation. First the model is assumed to be perfect:

in Eq. (12) no source terms @ are present (Talagrand, 1988; Cohn and Parrish, 1991; Daley, 1991;
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Wergen, 1992), nevertheless Derber (1989) and Zupanski (1993) demonstrated how to address a model bias
in4D-Var. Secondly, we do not have access to the analysis error covariance B °(t\). Here we suggest that

if (12) is approximate anyway, it is not scientifically worthwhile solving it exactly. This idea has been
followed by most of the NWP centres which implemented optimal interpolation; the dynamics & was
replaced by the identity or a simple law for the temporal evolution of the variances. In the Kalman filter
context, this is discussed e.g. by Dee (1991) and Cohn (1992). In other words, it may be smentlﬁcally

acceptable to replace 8t by an approx1mate tangent-linear model in (2) provided this approximation is

smaller than the approximation of neglecting the model error source term Q.

43 The incremental formulation of variational assimilation
Let us assume from now on that ® is any hnear operator for which we will later suPulate the link with
the model M. We define the 4D-Var problem:

N
Oyp: minimise J(8x(t,) = %dx(t,)’ B 8xt) + % Y (Hp(t)-y) O Hxiz)-y) (18)
i=0 ‘

with  x(e) = M(t,t) x, + R(.t) dx(t,)
(we then have 8x(z) = x(t,)-x,)

remark 1 If & is the tangent-linear model, 6’;,, and ©,, are equivalent to within the accuracy of the

tangent-linear approximation.

remark 2 If & is any linear operator which we assume would describe exactly the forecast error evolution,
OZ,D leads to the same result as the Kalman filter described by equations (11-15). However, in a nonlinear

problem there is no linear operator which describes the error evolution exactly; introducing & will then

remain an approximation. ' v

remark 3 0;,_, is better than @, as far as an operational implementation is concerned since we keep the

original model M for propagating in time the state of the aImospheré, but use an approximate propagation
in time of the errors, thus introducing some flexibility on the cost of 4D-Var.

remark 4 A variant of @, is the quadratic problem

N
@4p: minimize J(Bx(t)) = Vedx(t,) B '8x(t) + % Y O, +Hdx(t)-y) O] Oy tHBx@)-y)  (19)

i=0
with  8x(r) = R(z,2,)8x(t,)
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and  y,, = HIM(t,2)x,]

The cost of O;D and P;b are similar but the storage requirement for the background trajectory is different:
m 0;,, it is thp background vertical cohiﬁm at the observation point and in P;D it is the obsewaﬁon
equivalent of the background which have to be stored. In 9:;3. R is an approximate linearisation of M,

similarly in 9:,,, H; is an approximate linearisation of H;. Approximating the full problem by a quadratic

one has theoretical advantages since the solution involves solving only linear equations in principle, as is
guaranteed unique. |

The structure functions used in the current operational at ECMWEF T213 optimal interpolation have a cut-off
at wave number 63 (Lonnberg, 1988). If we were to use a T106 truncation for &, this would already be

an enhancement in terms of resolution. An adiabatic version for # with some basic simplified diabatic
processes like horizontal ‘and vertical diffusion and surface friction would produce the same benefits in terms

of implicit flow dependent structure functions as obtained by Thépaut et al (1993).

The CPU cost of an adiabatic semi-Lagrangian T106 L31 model is typically 1/16 of the CPU cost of the

T213 L31 version. The gain of the incremental approach is then of one order of magnitude.

remark 5 Another variant of GJ:,D can be obtained by replacing H'6x(¢z) in Eq. 19 by a finite difference:

®p minimise J(3x(t)) = ¥ dx(t,) B 3x(t)
- -1 , .
+ Ve 3 Oy Tt ) OF Oy Ty ¥y | s (20)
i=0

with ¥, i ,(b?(fb(to)) being the model equivalent of the observation obtained from a simplified-(low
resolution, adiabatic) background trajectory and ¥, being the model equivalent of the observation obtained
from the simplified trajectory issued from %,(t) + 8x(t,). %, (¢, is the background but at lower resolution.

Using the Taylor formula, one has to first order y, - ¥, = HJx(t). The practical advantage of this

formulation over 9;1, or 9;,, is that there is less technical development required once the full 4D-Var
problem has already been implemented. It is with this formulation that the numerical experimentations are
performed at ECMWF. These three implementations G';D, 0;,, and @ZD are equivalent in the quasi-linear

context. They are expected to behave differently in the presence of strong nonlinearities, however we have

not seen any arguments as to why one should be superior to the others.
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4.4 Further developments

There are two ways of improving the model . Firstly one could increase the horizontal resolution: the
main drawback here is the cost involved since the CPU follows a power law close to 3. In addition the
trajectory storage and thus the IO also follow a cubic law (quadratic at a given time step but the number
of time steps increases linearly).

Secondly, it is necessary to take into account the physics. The experiments performed so far (Thépaut et
al, 1993a and Rabier and Courtier, 1992) have used only horizontal and/or vertical diffusion with a simple
surface friction. Rabier et al, 1993 showed that large-scale condensation is essential in order to get
reasonable humidity fields in the upper troposphere. More generally, it is expected that the important
feedback loops present in the model M will have to be described to a reasonable accuracy with &; this is
expected to be of particular importance in the tropics. Zou et al (1993) and D Zupanski (1993) have
performed feasibility studies using the adjoint of physical parametrizations. The automatic methods
developed at INRIA will assist us in formulating a series of tangent-linear models including progressively
more effects of the physics (Rostaing et al, 1993).

In terms of cost this will eventually double the CPU cost of 4D-Var (as the cost of the physical
parametrizations is about 50% of the cost of the model) but it will immediately double the storage required

for the trajectory (and the related I0). Currently, only ¢ values are stored since the dynamics are nonlinear
only with respect to these ¢ values and not the ¢ — Az. Since, the physics are nonlinear with respect to

t — At values, they too will have to be stored. It should be pointed out, however, that a 2 time-level semi-
Lagrangian scheme would not require this extra storage.

The physics is far more nonlinear than the dynamics. As a consequence, the tangent-linear approximation
is likely to be less valid for the full model than for the adiabatic version. This means that P;D or O:D are

not necessarily a very good approximation of @,,. A simple way for accounting some of the nonlinearities

in the final analysis is to define a sequence G’:D(n) of assimilation:

©4p(n): minimise J(3x"(t) =

N
% (8x7() + x™1-x) B! (3x"(t) + x* -x)+ % Y OF +H, 8x7)-y) O] &) +H, 8x7(¢t)-y)  (21)

i=0
with  8x(r) = R(,2,)8x(r,) (22)

and  yt = HIM(,t) (x"'+8*" k(2 )] (23)
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8**x(z,) is the result of the (approximate) minimization of PZD(n-—l) and 8"x(t) = 0

a-
x° =x,

and ‘xn—l = x"2 4 bm—lx(to) x—l

This algorithm can be seen as a pair of nested loops. The outer loop uses the complete model in Eq. (23)
to re-define the model trajectory at each iteration of the outer loop. The inner loop uses the tangent-linear
and adjoint of a simpler (e.g. adiabatic) model (Eq. 22) to minimize the cost function (Eq. 21) for the
increments calculated with respect to the re-defined trajectory.

This approach allows a progressive inclusion of physical processes without dealing with large-scale non-

differentiable minimization problems, of which little is known in practice. The drawback is that we have
no guarantee that the sequence 8*"x(¢,) will converge. Experimental work is necessary to address this issue

but we have to be pragmatic. Highly non regular problems will remain intractable for a long time but we

have here a reasonable approach that is probably robust.

Remark & does not have to be kept constant in this iterative process and one can imagine a sequence ®"

where the resolution and the number of physical processes dealt with increase with n.

45  Cycling 4D-Var

As ‘we said earlier, 4D-Var is limited to a fixed lag: a time interval of e.g. 24 hours. It is then necessary
to account for past information: cycling 4D-Var. Fig. 1 presents a synopsis of the 4D-Var incremental
algorithm. First the background trajectory is compared with the observations producing the integration

vector d. Then the incremental 4D-Var minimization problem is solved. The minimization is performed

for a simplified problem. Introducing ¢, the simplification operator, we introduce the control variable of
the simplified problem '

z, = ¥dx(t)
Integrating in time the simplified dynamics produces the simplified trajcctory z;- @, is the simplified

observation operator (it is an approximation of H:y!). 4D-Var incremental becomes

Jz) - Y%z, Bz, + %Z (d+G z) 0;'d+G, z)

The covariance matrix of background error B is specified from statistics. The analysis increments (result
of the minimization) are added to the background at time z, and transported at time #, using the high

resolution model. It is then possible to start the next assimilation cycle.
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Fig. 2 Synopsis of the proposed algorithm for cycling 4D-Var.
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This is very similar to the current operational way of cycling OI. However, one would like to have the
standard deviations o, of section 3.3 unfixed, but reflecting the previous 4D-Var assimilation quality and,
in particular, the data coverage. In the current experimental implementation of 4D-Var at ECMWE, an OI
is run in order to prepare and quality-control the observations; in 4D-Var we then use the o, used in OL

However, this is not very satisfactory and we now present an algorithm which may overcome this weakness.

As described in Courtier et al (1993), B is rewritten as B = L L. A change of variable x = L;'z, is

introduced. The subscript o denotes the dependence of B on the standard deviation of background error
specified in grid point space. The control variable used for the minimization is x. This is a preconditioning

by the Hessian of the background term. Assuming the observations operators linear, J has the same Hessian
as a cost function in which the observation departures are set to 0. The advantage of the latter problem

being that we now know its minimum: y = 0.

As described in Courtier et al (1993), where it has been applied to simulated observations or in Rabier and

Courtier (1992), it is then possible to use randomization for the observation term J, in order to compute

an approximation of J” . Here we propose to use a Lanczos algorithm. As we know the minimum (0) of

the parallel problem, each computation of a gradient in a given direction in phase space provides the Hessian

applied to this direction allowing us to implement the Lanczos algorithm without introducing roundoff errors

due to finite differences. The Hessian of J, is thus approximated by a few eigenvectors
J", = Zj: v, v, = w!

and  J" « I + w' = {I-y(I+vV) W}! . 24)
(24) makes use of the Sherman-Woodbury-Morrison formulae and provides an approximation of the Hessian

and of its inverse. This has two important consequences. First, it is possible to precondition the

minimization problem accounting for the dominant J, contribution.

Secondly, the inverse of the Hessian is the covariance matrix of analysis error. The approximation
introduced consists of considering the reduction of the estimation error brought by the observations only in

the leading directions.
Remark 1 In practice, because of the way we have implemented the multivariate J,, its Hessian is not

exactly the identity. It remains, however, close. The main departure for identity would easily be estimated

with a Lanczos algorithm.
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Remark 2 Assuming that we would need 100 iterations of the Lanczos algorithm, it is necessary to
implement the algorithm for a further simplified problem, e.g. T21 resolution, in order to keep the overcost
of order one iteration of minimization of 4D-Var incremental.

The standard deviation of analysis error is obtamed in grid point space usmg randomuatton (by construchon
we know the eigenvectors of the approx1mate Hess1an) It is then p0551b1e to lmplement the current way -

of cycling OI or 3D-Var. However, it is clearly possible to do far better than this.

First the standard deviations at tlme t, may eas11y be computed by randomrzatlon We can then add the

model noise Q etther w1th a white or red spectrum, We then have the o, 1o be used in the deﬁmtton of

the L, operators of the following cycle.

Secondly we have
B,(ty) = Ly Ryt LBt )LIR (ot YL,

Using a Lanczos algorithm it is possible to approximate B (t,) with a matrix of the form 7 + E (A- l)u,u,’.

It is thus possible to account for this matrix in the background term thus introducing ﬂow dependency in

its specification. ‘The synopsis of the algorithm is depicted in Fig. 2.

CONCLUSION

Using the linear estimation theory, we have introduced the algorithm used operationally in numerical
weather prediction. The time dimension has been introduced by comparison with the Kalman filter. The
4D-Var algorithm allows a 4D analysis but on a finite time interval. Section 4.5 presents an algorithm not
yet tested to cycle 4D-Var. It is an approximation of the Kalman filter which brings flow dependenCy» of
the standard deviation of background error and also of the structure funcﬁons, but at lower resolution.
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