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Abstract

An important effort has been put on variational techniques in research on-data assimilation, since the mid 80s. The
motivations of this effort are described, one important motivation being the use of satellite data (and especiéily TOVS data).
The principles and the tools relevant to the use of satellite data in a variational analysis are described, and some simple
examples are given. Then the state of the art regarding use of TOVS data is summarized, and the main evolutions of

satellite data and of their assimilation in Numerical Weather Prediction (NWP) ‘are discussed.

1. GENERAL FORMUILATION OF VARIATIONAL ASSIMIL.ATION

1.1. Principle of 4D variational assimilation (4D-VAR)

4D-VAR is an algorithm which computes directly a model trajectory entirely consistent with all the
observations on a time period (tj,t3), and entirely consistent with the model equations; see Courtier et al
(1992), Pailleux (1992) and Thépaut et al (1992). This algorithm integrates in one single consistent
process the usual steps of an operational data assimilation suite: analysis step, initialization step and
forecast step. It allows a more optimal use of observations (and of any kind of information on the

atmosphere) than intermittent schemes.

To perform a 4D assimilation on a time period (ti,tp), one needs to find the model trajectory which
minimizes the fit to all the observations on the time period, as well as the fit to a background (first
guess) at time ty. This background Xj, is the best estimate of the model state X at time ty, prior to any
collection of observations at and after time t;. As in all the operational assimilation schemes, the
background Xy, represents a summary of all the information on X accumulated before t1. It is generally
provided by the most recent numerical forecast available for time t;. As documented in several papers,
see for example Thépaut and Courtier (1991) or Courtier (this volume), the 4D-VAR technique consists

in minimizing the following cost function:

JXy=Jo+Jp+Jc (@) where:

- Jo is the distance to the observations; the natural distance is the quadratic form built on the inverse of

matrix O (covariance matrix of observation errors) and on the vector of observation departures; HX-y
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(y: vector containing all the observed data; H isthe observation operator which produces the

equivalent of vector y from mode] state X);

- Jy, is the distance to the background Xb; the natural distance is the quadratic form built on the inverse
of matrix B (covariance matrix of forecast errors) and on the vector X-Xy, (departures of model state to

the background);
- Jc.is an optional penalty term which contains physical constraints to apply on the model state X.

1.2. Some historical aspects: use of satellite data and 3D-VAR
The previous 4D-VAR algorithm "degenerates” into a 3D variational algorithm (3D-VAR) if t; =t (i.e.

if the assimilation period has a zero length). In 3D-VAR the minimization of cost function (1) is still
performed with respect to X = X(t1), the background Jy, is the same as in 4D-VAR, but the observation
cost function J, is using only the observations y which are at time t; (or close to time t;). Consequently
the comparison of the model to the observations can be done without any integration of the forecast

model’

A 3D-VAR scheme can be used like any instantaneous analysis such as Optimal Interpolation (OI) in an
intermittent assimilation scheme. Then one loses the above mentioned advantage of 4D-VAR: to
combine optimally the observations and the information contained in the model dynamics. However,
with respect to a standard operational OI analysis, a 3D-VAR scheme has two other advantages:

- It does not require any data selection as it solves a global minimization problem which uses all the
observations;

- It allows the use of a larger variety of observed parameters, as the observation operator H does not

need to be linear, does not need to be inverted and does not need to be simple.

As explained in Pailleux (1988), the possibility of using cloud-cleared TOVS radiances directly by
including the direct radiative transfer computation in the observation operator H was a major motivation
for developing 3D-VAR schemes. This was seen as a major step toward more optimal use of TOVS
information which is represented in a very crude way in retrieved profiles. Problems in using TOVS
retrievals in an analysis scheme have been extensively studied in Gallimore and Johnsen (1986),
Andersson et al (1991) and Kelly et al (1991). Experiments on the use of TOVS radiances in 3D-VAR
have already been documented in Andersson et al (1992): they show the power of a 3D-VAR scheme to
assimilate radiances directly. More results on direct assimilation of TOVS radiances in a variational

analysis are given in this volume: see McNally et al, Andersson et al, Thépaut et al.
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1.3._Computation and minimization of the cost function

Each term of the cost function (1) can be computed by applying a chain of operators to the control
variable X (ensemble of model variables). The minimization of the cost function requires also the
computation of its gradient. The gradient of each term of the cost function can be computed by using
the adjoint of each operator involved in the cost function computation, and by applying them in the
reverse order. This "adjoint technique" is illustrated in the following simple example of observation cost

function.

Let us assume that the vector X of model variables is to be analysed at time t; (3D-VAR) from one
observation y (only!) of a linear combination of the first two components of X: x; and xp. The single

observed quantity y is also made at time t;.

X1
X2
X = . is the control variable.

XN
One observes the model quantity z = HX = hxy +(1-h)xg, h being a constant interpolation coefficient.
The cost function to minimize is: J(X) = (z-y)2 which is the quadratic distance between the model and
the observation (it is not necessary to weigh the term by the observation error variance as the term 1is
unique).

The gradient of J is easy to compute analytically with respect to z: dJ/ 9z = 2(z-y).

However the minimization algorithm requires the gradient of J with respect to the control variable X, not

with respect to z. In this simple case the gradient with respect to X can be computed analytically:

01/ 0z. 0z/ 9x; h dl/dz
Grady]J = 01/ 0z. 0z/dxy | = | (1-h) 90z
' -~ 0. 0. '
0. 0
Grady]J = h [owoz = vt 3y az
1-h
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The observation operator can be expressed in a matrix form: H is a matrix with only one row and two
columns (two coefficients), its transpose is a 1 column vector containing the same two coefficients.

The gradient with respect to X can also be computed using the "adjoint rule": if H is an operator
computing z from X, H' the corresponding tangent linear operator, H* the adjoint operator, then H*

computes the gradient with respect to X of any function J from its gradient with respect to z:

X H >z

X H' >z
*
Gradx]J < H Grad,J

So by definition of the adjoint, one can write:

Gradx] = H 0J/dz 3)

Comparing (2) and (3), one can verify on this trivial example that the adjoint of a linear operator H

expressed in a matrix form is the transpose matrix:
H* = H! (In addition H = H' as H is linear).

Let us now assume that the same observation y is made at an observation time t>t, and that one still
wants to use it to analyse X at time t; (4D-VAR). In order to compare X with the observation, one needs
first to integrate a forecast model from t; to t (operator M), then one needs to apply the same

observation operator H as before to X(t).
z = H(X(t)) = HIM(X)]

Then the cost function J can be computed in the same way as before (3D case), as well as its gradient
with respect to z (trivial) and the gradient with respect to X(t) (application of the trivial adjoint of H).
Applying also the adjoint rule to the forecast model M, one can compute the gradient with respect to
X = X(t): '

GradxJ = M*[GradyyJ]

One can verify the chain rule for the adjoint computation: to compute -z from X, one applies first
operator M, then operator H; the adjoint of the compound operator is obtained by applying the adjoint
of the individual operators in the reverse order: H* first, then M*,

The chain rule illustrated on this simplified example is used systematically to compute the observation
cost function of (1) and its gradient. This adjoint technique is especially powerful when one wants to
include complex satellite data in the variational analysis: any observed quantity can be used provided it
is linked to the model variables through a differentiable observation operator (to allow gradient
computations), even if this link is very indirect. One important point is that the observation operators
do not need to be inverted: only their adjoint is required, not their inverse. Examples of observation

operators are given in the next section.
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2. COMPUTATION OF THE Jo COST FUNCTION AND ITS GRADIENT

In the following examples, only the vertical part of the observation operators is envxsaged it depends on

the type of the observation variable whereas the horizontal part is common to all observanons (inverse

spectral transforms if the forecast model is spectral and horlzontal mterpolauon to the observatlon
point). B ‘

2.1.Example of a simple convennonal observatlon operator: wmd comnonents from radxosondes ( lmear

operator)

In order to compute the model equwalent of the observation, one has to mterpolate each wind

component in‘the vertical to go from the ‘model levels to the observatxon levels One can use for

example a linear interpolation in p between model levels py and Pk~1 to observanon level p, as illustrated
in fig. 1.

—

\

’ 7 T X one
- wode
> vartable

VLN

Fig.1: An example of vertical observation operator. Use of linear interpolation in p from model hybrid levels (dependent on
ps) to observation level p.
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The two following points are worth noting in relation with the gradient computations:

- Xk being any wind component (u or v) at level k, the interpolated value at observation pressure p
depends on the model level wind values xg.i, Xk, but also on surface pressure pg if the model has a
sigma or hybrid coordinate system; consequently the surface pressure which drives the model geometry
in the vertical will be affected by any upper air observation, regardless of its type;

- in the case of the simple vertical interpolation presented in fig.1, let us note that the observation
operator is not a differentiable function of surface pressure: in the case when the observation pressure
level is very close to say model level k, a small perturbzition ps on the surface pressure is sufficient to
move model level k from one side of the observation level to the other. The interpolation is then
suddenly performed from Xy and Xy4; rather than from xi.; and xi (non differentiable operator. as

illustrated by the angular points on fig.1).

2.2. Two examples of simple satellite observation operators: wind component observed from a satellite
lidar - total water vapour content from a microwave instrument (linear operators)

A satellite lidar can observe the wind component at an observation point O in the atmosphere, along the
line going from the satellite S to the observation point O. In addition to the vertical interpolation I, of
the wind from model levels to observation level, the observation operator includes the projection P of

the wind onto the direction SO (fig.2).

o +1

Fig.2: Example of the satellite wind lidar observation operator. The observed quantity is the wind component up along the

line SO going from the satellite to the observation point.
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Let us call Vioq the model wind vector interpolated in the vertical to the observation pressure level p,

Umod its projection onto the line SO, u the wind component observed by the lidar along SO.

To compute up4, one applies first the vertical interpolation I, to the. model variables, then the
projection operator P. At this point one can compute the contribution of lidar observation u to the

observation cost function:

2
Jo = ((Umod-u)/so) ‘
(so is the standard deviation of the lidar observation error, necessary to weigh properly the lidar

observations with respect to other sources of information entering the variational analysis). -

The gradient of J, with respect to uyq is trivial to compute:
3o/ Dmod = 2(limod-)/so>
To compute the gradient with respect to model variables ,one follows the adjoint rule by applying first

P , then I, . The operator P is a projection involving angle - ,it is linear;its adjoint involves trivial
multiplications by cos(0) and sin(6).

Another simple linear satellite observation operator is the one.involved in the use of an observed total
water content of the air column (say for example the water content as observed by the current SSM/I
instrument). The specific humidity q is a model variable, the vertical observation operator is its vertical

integral, discretized in an appropriate way:
.
PWCmod‘ - J.O qdp

PWCmo ‘has to be compared to the observation PWC in order to compute its contribution to the

observation cost function. The gradient computations requires ‘the adjomt of the dlscretlzed 1ntegra1 :

simple multiplication by the welghts involved in the discretized mtegral

2.3.Example of a nonlinear satellite observation operator: wind speed as observed by an altimeter

Some meteorological satellites like ERS1 are equipped with altimeter instruments which allows the
indirect observation of the surface wind over the oceans. The comparison of the forecast model to such
an observation requires: :

. The apphcatlon of a boundary layer model B; der1v1ng the surface wind from the model varlables

. The computation of the model wind speed (square root operator)

Let us note that both the By and square root operators are nonlinear: this means that the gradient
computations ‘require the basic model state, the weights giVen to the different observations are then
situation dependent (as these weights are driven by the gradient).’ This would not be possible in a

classical linear algorithm used in most of the operational analysis schemes. Using the wind speed only
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(without any information on the wind direction) is also very easy to achieve in the context of a
variational analysis, but it is not possible in an OI analysis because of the nonlinearity of the square root
operator: OI has to go around this difficulty by creating pseudo observations from (e.g.) the observed
wind speed and the first guess direction. Along the same lines, the variational analysis methodology
allows the direct use of a wind direction observation only: this may be useful for using some cloud

winds which are sometimes reliable in direction but not in speed.

The use of wind speed observations requires the adjoint of the two above operators. The adjoint of the
square root operator is trivial, but the adjoint of the boundary layer operator may be very complex,
depending on the physical parameterizations which have been included in the forecast model. B;™ is
needed not only for optimum use of altimeter data, but of all near surface observations: SYNOPs, SHIPs,

buoys, scatterometer data.

2.4. Use of direct/adjoint radiative transfer code to assimilate TOVS radiances

The methodology illustrated on the previous examples can be applied to the TOVS radiances in a
straightforward way. The standard radiance computation packages are radiative transfer observation
operators which use as input vertical profiles of temperature and humidity (plus some surface
parameters). In order to evaluate the distance I, (say in a 3D-VAR problem) between the forecast model
and TOVS radiance observations, one needs to include this radiance computation into the chain of
operators H at each satellite observation point. One also needs to include the adjoint of the radiance
package into the chain of adjoint operators H*' Let us note that the inverse of the radiance computation
is not needed (the minimization package will take care implicitly of the temperature/humidity retrievals
using all the information available in 3D-VAR: model background, radiosondes...). Let us note also that
the radiance observation operator is dependent on the profile of meteorological variables (i.e.
nonlinear): this means that the appropriate amount of information present in the TOVS radiances is
extracted from each profile in 3D-VAR. This is not possible in a linear analysis such as OL. More details

about the TOVS observation operators can be found in Andersson et al (1992).

Such a variational analysis scheme is also attractive for using TOVS, beéause it allows the integration of
retrieval (1ID-VAR), 3D variational analysis (3D-VAR) and 4D variational assimilation (4D-VAR) in a
single concept: ‘

- If the vector X in expression (1) is a temperature and humidity profile (rather than all the 3D fields),
the 3D variational scheme is degenerated into a 1D variational analysis, i.e. a retrieval scheme using a
background information Xj, in addition to the TOVS radiances.

- One can try to compare the vector X of model variables at time t; with data which are observed at any
time t>t;, by including the forecast model in the chain of operators (see 1.3 above). The 3D scheme is

then generalised into a 4D variational scheme.
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2.5._Computation of Jo for radiances: an algorithmic aSpect

The computation of the cost function Jo for satellite radiances is less straightforward as for most of the
other observation types, because the radiance errors are expected to be correlated in the horizontal.
Consequently the matrix O is far from being dlagonal and a special numencal techn1que is needed. One
practical way of solving the problem consists in using the following two remarks '

- The radiance cost function can still be split into contributions coming from diffetent satellites
(NOAAT11, NOAA12,..) and from different TOVS types (clear, partly cloudy, cloudy).

-Assuming the observation error correlation can be split into the product of a.vertical correlation
(interchannel correlation) by a horizontal one (using sepatability assyumption) the radiance cost
function can be split into contributions cormng from the dlfferent eigen-vectors of the interchannel

correlation matnx of TOVS errors.
3. STATUS AND PERSPECTIVES

3.1. Current status of 1D/3D/4D - VAR

As mentioned before, 1D-VAR retrieval, 3D var1at10nal analysis and 4D variational ass1m1lat1on can be
presented as different versions of a single concept rmn1rmzmg a cost functlon representmg the dlstance
of the model to various observations and representing also other penalty terms. 1D, 3D and 4D can also
be applications of a same code. For example the same direct/adjoint radiance computation package can

be used for these three applications.

1D-VAR TOVS retrieval has computer memory requirements which are much lower than 3D and 4D-
VAR because of the small size of the control variable which is reduced to one vertical profile. A 1D-
VAR scheme has been used operationally at ECMWF since 1992 (see McNally et al (this volume)). The
"interactive retrieval" scheme which became operational at NMC (Washington) is based on the same
variational principle (see Derber in this volume). Although the use of a model background in the
retrieval procedure provides retrieved profiles which are very accurate, one has to be careful when using
these profiles in the full 3D analysis: the difficulty is to weigh them properly as they contain

information from the model background in addition to information from the satellite radiances.

3D-VAR schemes are much more eXpensiVe than 1D-VAR in computer memory because of the
minimization 'procedu‘re performed directly in the 3D space. However their costs in computer time has
the same order of magnitude as the current operational 'analysis scheme. A 3D-VAR scheme (called
"Statistical Spectral Interpolation”, see Derber (this volume)) has been ’operational at NMC (W ashington)
since 1991. A similar scheme should become operational at ECMWF in ('1994. 4D-VAR schemes are at
least as expensive in memory as 3D-VAR schemes, and they are much more expensive in computer time
because of the integration of direct/adjoint models which has to be ’repeated several times. However
realistic sirnplification’s of 4D-VAR can be found, such as the "incremental apptoach" (see Thépaut et al
(this volume)), and it is reasonable to assume that 4D-VAR can reach the operational stage near the mid-
90s.
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3.2. Some difficulties in using satellite data in NWP models

Satellite instruments can provide a lot of information on the atmosphere which is badly represented (or
not represented) in NWP models: cloud information, cloud liquid water, parameters defining the
physical properties of the ground... On the other end the assimilation procedure works well only if the
model variables can be compared with a reasonable accuracy to the observations. The assimilation of the
above mentioned parameters will not be completely achieved until these parameters are well represented
in NWP models. The direct use of raw radiances is also a problem as most of the channels are
contaminated by clouds. Consequently the variational approach previously described works well only
when using cloud-cleared radiances. The direct use of TOVS raw radiances implies:

- either a good representation of clouds in the assimilating model; ;

- or the availability of cloud information from another source (for example another satellite instrument
such as AVHRR).

In spite of these limitations, the main trend of these last few years has been to assimilate data which are
closer and closer to the genuine observed quantity as it is measured by the instrument. This is especially
trué for satellite instruments which have been developed recently and provide information on the
atmosphere which is‘léss and less directly linked to NWP variables: one example is the scatterometer
data. This implies that a large variety of observation operators H has to be developed (together with their
adjoints to fit the variational approach). Some of these operators can be very complex, and with the
development of future satellite instruments these operators are expected to become more and more

complex.

Another specific aspect of satellite data is its big volume compared to conventional observations. In the
ECMWTF system, the TOVS clear radiances have to go through a prescreening before entering 3D-VAR:
in addition to quality control tests, this prescreening (currently called "PRESAT") reduces the number of
TOVS observation points by a ratio which is about 3. When ‘one tries to use the TOVS raw radiances
directly the data volume will be increased by roughly one order of magnitude. It- will become even
bigger when ATOVS replaces TOVS in the mid 90s. A preliminary processing of these data sets will be
necessary to avoid having the satellite information swamping all the other observations analysis: the
problem is to weigh the satellite information correctly with respect to the other sources of information,
and to describe correctly (through appropriate covariance error matrices) the redundancy which is
present in the satellite radiances: redundancy between different channels in the vertical, redundancy

between dlfferent observatlon pomts in the horizontal.

In the ldnger term future, there are plans for developing satellite instruments (e.g.: interferometers) with
a very high number of observed quantities. The total amount of satellite data could be further increased
by two orders of magnitude, with the equ1valent of several thousands of highly redundant channels in

the vertlcal This rapid increase of data volume may slow down or even stop the current tendency toward
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assimilating parameters which are closer and closer to the genuine observed quantity. Some techniques
have to be found to compress the future satellite information into a form which:

- is still representative of what the instrument can observe in the atmosphere;

- is suijtable to be presented to the variational analysis, i.e. leads to observation operators H which are

tractable and to observation error covariance matrices which are easy enough to model.
4. CONCLUSION

Data assimilation work carried out since the mid 80s has demonstrated that the variational algorithm is a
flexible and powerful methodology for using current and future satellite data. The approach consists in
developing all the required observation operators to go from the model variable space to the space of
observed quantities, in order to compare the forecast model with the observations. The idea is also, as far
as possible, to avoid inverting these observation operators, as very often the satellite information on its
own is insufficient to represent the forecast model variables correctly. Ultimately 4D variational
assimilation should-provide the optimal mix of the whole information available in a NWP- model:

satellite and conventional observations, information contained in the dynamics of the model...

The main current applications of the variational methodology in the area of satellite data (illustrated in
this volume) are the use of TOVS radiances and the use of scatterometer data. In the future one will
notice rapid developments of use of satellite data along the same methodology. However it is likely that
significant extra work will be needed to assimilate the huge satellite data volumes which are announced

for the year 2000 and beyond.
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