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1. INTRODUCTION

Satellite scatterometers are space borne active radars which measure backscatter from the earth’s surface.
Over the ocean, surface winds may be deduced from multiple backscatter measurements made from several
directions. Ocean surface winds have a wealth of scientific and operational applications—nowcasting of
hurricane and typhoon surface winds, enhanced numerical weather prediction (NWP), wave forecasting and
optimal ship routing, boundary forcing for ocean circulation models and for studies involving the exchanges
of momentum, heat and moisture at the ocean surface. A satellite scatterometer is currently operating on the
ESA ERS 1 satellite and current plans of ESA and NASA will maintain a steady stream of scatterometer
data for the rest of this decade. If current research on utilization of scatterometer data is successful, similar
instruments will be included in many future operational remote sensing satellites. In this report we will be
concerned with the various factors affecting the utilization of scatterometer data for NWP and the impact

of scatterometer data on NWP.

1.1. - Background
The first satellite scatterometer was the Seasat-A Satellite Scatterometer or SASS (Grantham et al., 1977).

Only 96 days of data beginning 7 July 1978 were collected because the Seasat mission aborted prematurely.
Still SASS demonstrated the potential for satellite scatterometry. A large number of scientific studies
have been made with the available data demonstrating the usefulness of satellite scatterometry (Stewart,
1988; Katsaros and Brown, 1991). However certain problems are seen in these studies. Further for most
oceanographic applications much longer data sets are required. The short mission lifetime also worked

against demonstrations of operational applications.

During the 1980s plans for new and more capable scatterometers were made by NASA and ESA. The
NASA instrument, called NSCAT, was to fly on a U.S. Navy satellite. The Navy satellite program went
through several reincarnations before being cancelled. During this time the NSCAT project slowly made
progress. The instrument and data systems are now complete. NSCAT will fly on the Japanese ADEOS
spacecraft, with an expected launch during 1996 (Naderi et al., 1991). SASS and NSCAT are Ku band
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instruments. The ESA instrument launched in' August 1991 onboard the ERS 1 satellite utilizes the longer
wavelength C band (Francis et al., 1991). The three scatterometers have similar orbit characteristics—sun
synchonous, near polar orbits, at roughly 800 km altitude, with a period of approximately 100 minutes. Both
NASA instruments have antennas on both side of the space craft, affording two simultaneous swaths (500
km wide for SASS and 600 km wide for NSCAT) Separated by a nadir gap (450 km wide for SASS and 350
km wide for NSCAT). The ERS 1 scatterometer has antennas only on the right side of the spacecraft. The
single 500 km ERS 1 swath covers most of the global ocean in a 24 h period. Due to the geometry of the
observations, the backscatter values at a single location are observed within a time span of approximately

70 to 200 seconds, increasing with incidence angle.

Future planned scatterometers include the ESA ERS 2, the ADEOS NSCAT already mentioned, the ESA
POEM _and the U.S. EOS STIKSCAT. ERS 2 scheduled for launch in 1994 is a copy of ERS 1. The POEM
mission is planned to carry an advanced C band scatterometer in 1997. The STIKSCAT instrument will be

similar to NSCAT and may fly on ADEOS II or another early EOS mission.

1.2. Measurement methodology

Scatterometers are active radars measuring the backscatter (normalized radar cross section or NRCS or o)
from the earth’s surface. At moderate incidence angle (20° to 70°) the major mechanism for this scattering
is Bragg scattering from centimeter scale waves, which are, in most conditions, in equilibrium with the
local wind. Theory is presently inadequate to describe this scattering quantitatively. Consequently empirical
relationships, called model functions, which relate the backscatter to the geophysical parameters, are derived
from colocated observations (Jones et al., 1977). In current model functions, the backscatter depends very
nonlinearly on wind speed and direction. Although the scatterometer winds are usually provided as neutral
winds at some reference height, the measurement is physically most closely connected with surface stress
(Brown, 1986). Several scatterometer measurements are made of the same earth location and winds are

obtained by optimally fitting these data.

Because of the nonlinearity of the model function, several wind vectors consistent with the backscatter
observations are usually found (Price, 1976). These multiple wind vectors are called aliases in the early
literature and are now generally referred to as ambiguities. With two measurements SASS typically retrieved
4 ambiguities. With three measurements, NSCAT and ERS 1 will usually retrieve just 2 ambiguities
approximately 180° out of phase. The ambiguities are the minima of a cost function, which is a function

of wind speed and direction. The cost function measures the difference between the observed o and those
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Fig. 1 The cost function, as a function of wind components for triplets of noiseless ¢° measurements evaluated using either (a,b)
CMOD4 or (c) CMOD2. The true wind speed is 10 m/s from 30°. The forebeam incidence angle is 42°. In panel (b) the
midbeam o® measurement is assumed to be missing. Note that the contour interval is smaller near the minima.

calculated for the given wind speed and direction (e.g. Fig. 1). Relative minima not sufficiently small are
ignored. Thus if the 0¥ data are very inconsistent there may be no ambiguities. Also, no ambiguities are

produced at low wind speed since the returned radar signal is too weak to determine wind direction accurately.

Each ambiguity is assigned a probability of being the closest (i.e., the closest ambiguity to the true wind

vector). Ambiguities with small relative minima are more likely. The highest probability ambiguity is
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termed the rank 1 solution. For ERS 1, usually only the first two probabilities are large and the associated
ambiguous wind vectors point in nearly opposite directions. Various filtering approaches (called dealiasing

or ambiguity removal algorithms) 'may then be used to extract a horizontally consistent pattern.

In autonomous mode (i.e. With no other data) ambiguity removal schemes achieve 98 or 99percent accuracy
in sunulation under ideal conditions—that the rank 1 solutlon is in fact the closest 60% or more of the time
and that there is no horizontal coherence to the pattern of locations where the rank 1 solution is not the
closest (Schultz, 1990). For the ERS 1 scatterometer initial evaluatlons of instrument skill (percent of most
likely which are closest) were less than 50%. With improvements to the model function instrument skill is
now approximately 70%, but the rank 1 errors occur in clumps and some sort of meteorological background

must be used for reference (Ad Stoffelen, pers. comm.).

A few words about terminology are in order at this point. So far we have 'been discussing the ‘‘classical’’ or
point-wise scatterometer wind data processing system which determines winds separately at each observation
location and is usually composed of two distinct algorithmsi a wind retrieval algorithm and an ambiguity
removal algorithm. Overall, the scatterometer wind d,ata" processing system produces winds from ¢°
measurements (Fig. 2a). Within the context of a data assimilation system, these wihdsmight be called
retrieved winds in analogy to the retrieved temperature proﬁies from a satellite. soundin_g‘ system. This
terminology is however confusing since the scatterometer ambiguities might also he called retrieved winds.
As indicated in the figure, we prefer to refer to the intermediate result as the scatterometer ambiguities
and the final result as the scatterometer winds. To be used for NWP, the scatterometer winds produced in

this way must then be assimilated in a conventional data analysis, giving due consideration to their special

error characteristics.

An alternative processing system for scatterometer data is the variational approach, based on maximum
likelihood estimation. The variational method combines the functions of the retrieval, ambiguity removal
and analysis algorithms into a single algorithm. In this approach one models the wind field in terms of a
set of parameters (the control variable) and seeks a solution in terms of these parameters which minimizes a
lack of fit to the observations (the o measurements). The general scheme for these approaches is illustrated
in Fig. 2b. The control variable is evaluated/interpolated to the observation locations, transformed to the
observed variables (the pseudo-observations or trajectory values) and compared to the observations in order
to compute the loss function. This set of steps is repeated as necessary within a minimization algorithm,

as the control variable is varied.
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Fig. 2 Flow charts describing scatterometer data processing in (a) the “classical” or point—wise approach and (b) the variational
approach. : ,

In order to assimilate scatterometer data one must bear in mind that the geophysical quantity that is measured
is backscatter. In the classical or point-wise data processing, the data assimilation system may be presented
with winds, or the wind retrieval and ambiguity removal algorithms may be incorporated in the assimilation
system. In either case, the details of how the winds are produced may have important consequences for
their best use in the data analysis. In Section 2 we review some of the classical data processing systems.
One is in fact not so classical, making use of neural nets. Then in Section 3 we review scatterometer impact
studies. In Section 4 we will present some results which use ¢® data directly in variational analyses, both
3d and 4d. In both Sections 2 and 4, the methods require a model function. In our discussion we will take
the model function as given. (However as a starting point the interested reader might refer to Schroeder

et al. (1982) and Wooding (1992).)

2. POINT-WISE SCATTEROMETER DATA PROCESSING

As described in the introduction, point-wise scatterometer data processing is composed of two steps—wind
retrieval and ambiguity removal. The winds thus obtained are then suitable for use in standard analysis
systems. However these winds have peculiar wind direction error statistics and suitable quality control is

a necessity.
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2.1. Wind retrieval

To determine the wind ambiguities, given the ¢ measurements and the model function, one can choose
wind vectors to minimize a measure of the misfit to the measurements. This misfit or loss function is
ultimately based on maximum likelihoodvarguménts. To maximize the ﬁkelihood it is often convenient to
instead minimize the negative of the logarithm of the conditional probabilit"yio‘f the wind given the observed
backscatter values. Since our knowledge of the necessary statistics is lacking; some assurriptions must be
made. It is however known that the measurement errors tend to scale 'witkh‘ thc true o (FiScher, 1972).
Cohvenient assumptions then lead to a loss function specified as the sum of Squared residuals or sum of
squared normalized residuals, where the residuals are the difference bétwgéﬁ the calculated and observed
backscatter or logarithm of backscatter. Several of these we)re‘ investigaied by Chi and Li (1988). It should
be noted that the required statistics are those describing the. distribﬁtion'of the combined measurement and
model function errors. Example loss functions for ERS 1 are given in Fig. 1. Here the loss function is
calculated as simply the sum of squared normalized residuals. Generally global search procedures have
been inst(ituted"t’ddetelk‘mine rough estimates o'f’ the minimé of the cost funétic;n:followed by a refinement
step to obtain more precise estimates (e.g. Jones et al., 1982). The values of wind speed and direction

corresponiding to the minima are the ambiguities.
A more analytical algorithm has been proposed by Wentz (1991), but this requires assuming a special form
for the azimuthal dependence of the model function. In general this approach might be used in place of a

global search to provide startihg values for further refinement.

2.2, Ambiguity removal

A number of ambiguity removal schemes have been devised. On one extreme, Wurtele et al. (1982) used
teams of meteoi‘ologists, while on the other extreme one might simply choose the most likely ambiguity or
the ambiguity closest to some reference field. Typically the reference field is a six hour forecast but Endlich

et al. (1981) used low level cloud motion as the reference field.

Two widely used data sets containing dealiased SASS winds are discussed by Chelton et al. (1989). The
first is a subjectively dealiased data set prepared by meteorologists at AES (Canada), JPL and UCLA under
the direction of Petér Woicéshyn (JPL), following the procedures detailed in Wurtele et al. (1982). This data
set covers the 14 day period beginning 6 September 1978. The second data set is the objectively déaliased
data, which is a by product of the study of the surface wind and flux fields by Atlas et al. (1987). This data

set covers the entire SEASAT mission and uses techniques detailed by Baker et al. (1984) . A number of
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the studies of section 3 make use of one of these two data sets.

To aid design studies of NSCAT and ERS 1, simulation studies of the new scatterometer instruments were
conducted. With three antenna configurations these simulation studies showed that the fraction of most
likely ambiguities which are in fact closest to the trath is near 0.60 (Schroeder et al., 1985). This fraction is
termed instrument skill. An instrument skill of 1 is perfect. Several new objective and autonomous ambiguity
removal schemes have been devised taking advantage of the high expected instrument skill. In simulation
these schemes work well. However, as shown by Schultz (1990) as the instrument skill decreases from
0.60 to 0.50, the ambiguity removal skill decays from nearly perfect to nearly useless. Schultz also showed
that ambiguity removal skill decays rapidly as the horizontal clumpiness of the instrument skill increases.
That is when there is a area of incorrect rank 1 ambiguities, spatial filtering cannot help. In practice purely
autonomous schemes have not worked well. Fortunately, these techniques do work well if initialized with

a good first guess based on a recent forecast (Scott Dunbar, pers. comm.; David Offiler, pers. comm.).

The autonomous ambiguity removal schemes vary widely but all are based on the idea that the true field is
horizontally consistent in some sense. The JPL algorithm (Shaﬁ‘er et al., 1991), like that of Schultz (1990)
is based on the median filter. This filter is ideal for removing randomly occuring noise. According to the
classical definition, the median of a set of values is chosen so that there are the same number of values
which are larger and smaller than the median. For image processing a window is chosen and the filtered
value at the center of the window is taken to be the median of the data values in the window. This can be
applied to wind components. Schultz extended this definition for circular data so that wind directions can
be median filtered. A simpler alternative which works well for ordinary, circular or vector values is based
on an alternative definition of the median (Shaffer et al., 1991): The median of a set of values is the one
which minimizes the sum of the distances (absolute values) between the given value and all other values
in the set. The JPL algorithm uses the vector winds in this definition. For ambiguity removal the rﬁedian
filter is used iteratively to determine a reference field, which in turn is used to select the ambiguities to be
presented to the filter in the next iteration. The initial selection may be the most likely ambiguities or the

ambiguities closest to a recent forecast.

The operational ESA ambiguity removal scheme is named CREO (Cavanié and Lecomte, 1987a,b; Graham
et al., 1989). CREO first produces two horizontally coherent fields in each area by filtering the ambiguous
winds. CREO then chooses the field which has the greatest number of mostly likely ambiguities. If

this choice is not clear cut CREO instead chooses the field which agrees best with the reference wind
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field, normally a recent forecast. In this case, if neither CREO field agrees with the reference field, no
scatterometer winds are produced. In regions of relatively smooth flow, the two CREO fields will be 180°
out of phase and will be the only reasonable fields. In regions of more complicated flow several reasonable
altematives may be possible. Data may then be very wrong or rejected because neither of the two fields
generated is the “‘right’”” one. Further the method of determining the two fields is rather simplistic: Starting
with the rank 1 ambiguity 1n one corner of the area, neighboring ambiguities closest in direction are chosen.
This process continues outward from the starting location. The second field is generated in the same way,

but starting from the rank 2 ambiguity.

A very different approach to ambiguity removal is described by Badran et al. (1991) who train neural nets
to resolve the ambiguities. One neural net is trained to answer the question ‘‘Should the central wind vector
in the 5 x 5 window be rotated 180°?”’. A second neural net is trained to detect 90° rotations. An iterative
combination of the two nets produces nearly perfect results in tests with a simulated instrument skill of 0.75.

(This group has also recently applied neural nets to the wind retrieval problem (Thiria et al., 1993).)

3. SCATTEROMETER IMPACT STUDIES

In an impact experiment two parallel suites of data assimilation and forecasts are run, differing only in
whether or not a particular data type is included in the analysis. In anticipation of the launch of SEASAT,
Cane et al. (1981) performed a simulation impact study. Substantial positive impacts were obtained.
However several simplifying assumptions made in the study may have affected these results. For example,
the simulated winds were at the lowest model level, not at the surface. Also no errors or errors with a very
simple random statistical structure (and no ambiguity removal errors) were used. The optimistic results of

this simulation study have not been reproduced with real data.

3.1. SASS data studies

Because of the long hiatus between the SEASAT and ERS 1 missions, a number of SASS data impact

studies have been preformed.

SASS global data studies have been carried out by a number of institutions, including NMC (Washington)
(Yu and MacPherson, 1984), ECMWF (Anderson et al., 1991), the UKMO (Ingleby and Bromley, 1991),
NASA (Goddard) (Baker et al., 1984; Lenzen et al., 1993) and the U.S. Navy (Duffy et al., 1984). In
these experiments, generally small insignificant differences are seen in the Northern Hemisphere analyses.

Significant differences are seen in the tropics and larger differences are seen in the Southern Hemisphere
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analyses. Forecast impacts tend to reflect the degree of difference in the analyées. For the most part the
forecast impacts are interpreted as neutral in the Northern Hemisphere and tropics and slightly positive in

the Southern Hemisphere.

The results reported in these exﬁeriments are qualified and preliminary because of small sample sets and
the inadequacy of the ground truth in the Southeni Hemisphere. Additionally, it has been suggested that
the SASS data may have had a greater potential usefulness than current scafterometer data,A because of the
paucity of other data‘sources in 1978. In particﬁier the drifting buoys in the 'tropic:s and seuthem oceans
and the advances in infrared satellite retrieval techmques may make it even more dlfﬁcult to obtam posmve
forecast 1mpacts from present day scatterometers. Furthermore advances in data assxmﬂatlon systems may

have a similar effect.

A number of impact studies examined the Queen Elizabeth II storm, a very difficult forecast case of explosive
cyclqgenesis (Anthes et al., 1983). We mention two papers which examined the impact of the SASS winds
on the forecast skill of a limited area model for this case. At NASA (Goddard), Duffy and Atlas (1986)
using a limited area model with a 100 km grid, showed positive impact. In this study, the positive impact
was obtained using a vertical correlation function to spread the inﬂuénce of the data in the vertical. Duffy

and Atlas found that data inserted at a single level had little effect.

The QE II case was also studied with a high resolution limited area model (60 km grid) at KNMI by Stoffelen
and Cats (1991). In this study the NOSCAT forecast was already quite good. SCAT minus NOSCAT analysis
differences were small scale and the forecast impact of the SCAT data was positive. This suggests that the

scatterometer data can provide useful information on the small scale which is otherwise unobserved.

32, A preliminary ERS 1 impact study

We have recently completed a preliminary assessment of the impact of the ERS 1 scatterometer wind data’
on the “‘current’” (T106, L19) ECMWF analysis forecast system (Hoffman, 1993). In our experiments, at’
the start of each analysis the current 6 hour forecast (hereafter referred to as the ‘first guess’’) is used as
the reference field in the CREO ambiguity removal algorithm. Within the statistical interpolation procedures
(collectively called OI here), the ERS 1 data are thinned to 100 km resolution and a strict quality control
on the scatterometer wind directions is imposed. Only 5-10 percent of the thinned scatterometer winds,

produced by the ambiguity removal algorithm, are rejected for any 6 hour period by OL
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The impact of the data is found to be neutral. This conclusion is based on comparing analyses and forecasts
from assimilation cycles which are identical in all respects except that the control experiment uses no

scatterometer data.

The two sets of analyses are very similar except for the low level wind ﬁelds over the ocean. Impacts on
the analyzed wmd ﬁelds are greater over the Southern Ocean where other data are scarce. In the Northern
Hemlsphere analysrs d1fferences are very small except d1rectly at the scatterometer locatrons For the
most part the mass ﬁeld increments are too small to balance the wind increments. While the effect of the
nonlmear normal mode 1n1t1ahzat10n on the analysis drfferences is negl1g1ble the differences tend to wash

out in the subsequent 6 hour forecast This tendency affects the longer forecasts as well. The observed
forecast impacts appear to be the result of analysis ‘‘noise’’, i.e., quasi-random dlfferences in the analyses

which arise in the assimilation in regions of poor data coverage.

On the other hand the low level w1nd analys1s dlfferences are clearly d1rectly related to the inclusion of
the scatterometer data Companson of the time averaged analyzed wind fields and subsequently of the
scatterometer observatlonal mcrements suggest that, in the Southern Hemrsphere, the scatterometer corrects

the tendency of the model to overestimate the wind speed under conditions of warm air advection.
These experiments are preliminary in several respects. Greater impacts might be expected in the future
following refinements to the scatterometer model function, the ambiguity removal algorithm and the analysis

procedures.

4. VARIATIONAL METHODS

Recently, in collaboration with the ECMWEF, we have added the capability to analyze ERS 1 ¢ data to the
new (under development) 3d and 4d variational analysis procedures (3dVAR and 4dVAR). The advantage of
the variational techniques for NWP is that the resulting analysis is perfectly adapted to the forecast model in
terms of representativeness and initialization. Furthermore for scatterometer data, all other available data as
well as the forecast, balance constraints and; in the case of 4dVAR, the model dynamics, are used naturally
to remove the ambiguity of the scatterometer data. Thus, these procedures approach the goal of using all

available data to remove the ambiguity of the scatterometer winds.

4.1. 3dVAR

The idea of using the ¢ measurements directly in a variational analysis was first suggested by Hoffinan
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(1982). Roquet and Ratier (1988) presented some preliminary calculations along these lines. Long and
Mendel (1990a, 1990b, 1991) present a complete methodology and theory for the case when the wind field
is modeled in terms of polynomials in along and across track directions for the divergence and vorticity in
the region. Long (1993) further extended this work and presents several interesting éxamples using SASS

o values.

Within the context of 3dVAR the surface wind field is deduced from the control variable in just the same
manner as any trajectory variable—the model variables are intérpbléted to the observation locations and

then transformed into the observed quantity (Fig. 2b).

In 3dVAR and 4dVAR the observation function for scatteromefer 0¥ data is Jycqr, which calculates the misfit
to the scatterometer data as

Jocar = €T07 e,
Here ‘

e = (09 calculated) — o%(observed)) / sd(a®),
are the normalized departures, O is the observational error correlation matrix and qo is the normalized
backscatter at the scatterometer frequency (using a linear not Iogarithmic scale). Some alternatives to this
definition are possible but have not been examined. Currently all observational correlations are taken to

be zero.

The standard deviation of the observation, sd(c?), is key in the definition of J,.,. For scatterometer data
the expected error of the observation is reported as a percent, denoted K,. In this case the observational
standard deviation is
sd(o%) = (K,/100)0%(observed).

K, should include three error sources, namely communication, radar equation and model function uncer-
tainties. In addition, for an analysis, the variability on the scales of motion smaller than the analysis grid
but larger than the instrumental cell size, should be added to these error sources. Of course that part of K,
corresponding to model function uncertainties depends on instrument viewing geometry, polarization and the
true (-bu‘tkunknown) value of the surface stress. In the calculations presented here, we take Kp'as a known
constant in the variational analysis calculated in terms of o%(observed). According to maximum likelihood
theory howevef a9 caZculated) should be used here and an additional term added to J,.,. The calculation
of instrumental K, can be quite complicated (Chi et al., 1986). However, other sources of variability must

be estimated in a much simpler manner and errors in these may well dwarf the instrumental K,
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Fig. 3 Estimates of K, (%) plotted as a function of incidence angle and o (a) and a smoothed fitted version (b). The locations of
the raw estimates for mid and fore beam and for low, medium and high wind speeds are shown.

The formulation of K}, currently used is based on fitting estimates made while tuning the model function
(Stoffelen and Anderson, 1992). A reasonable fit to these estimates is linear in In(o?) (¢ in dB) and quadratic
in incidence angle (¢ in degrees). The fit is statistically significant but captures only half the variance of

the original noise estimates. Fig. 3 shows the raw data contoured and the fitted surface.

86



For ERS 1 scatterometer data, the trajectory calculation includes evaluating the 10 m winds and then
evaluating the model function. (Present model functions depend only on the 10 m wind.) To do this
properly one must know the roughness height, zp, but this in ‘turn is related to the surface stress through
the Charnock relationship. This results in an implicit function for zy which must be solved iteratively. We
choose to use a Newton method to accomplish this. The advantage of this is that the solution quickly
converges to machine precision and we may then linearize the implicit relationship directly. By this means

the linearized operator may be taken to be independent of the iteration. -

Ideally, the 10 m winds should be corrected to neutral stability conditions, because the backscatter
observations are more closely related to surface stress. The effect of stability on the calculation of the
10 m winds can also be included in the variational analysis. This effect can be substantial (easily 10%)
on the calculated neutral stability winds, but the sensitivity of the mass (temperature and surface pressure)
and moisture fields to the scatterometer winds should be small (Hoffman and Louis, 1990). However recent
preliminary work including the stability correction in 3dVAR suggest that this approach may be troublesome
without strong dynamical constraints on the solution. In one particular case of cold air advection over the
North Atlantic, the initial 10 m winds were stronger than the scatterometer winds. Consequently, the analysis
reduced the wind speeds at the lowest model level. It also increased the lowest model level temperature,
thereby increasing stability. This also has the effect of reducing the 10 m wind speed. However, the initial
stability was close to neutral and the increase in stability resulted in a final analysis of a stable atmospheric

boundary layer, inconsistent with the synoptic state. -

As a simple demonstration of 3dVAR we present results using o® data for the North Atlantic on 19 November
1991 at 1200 UTC. There are a fair number of ship reports at the time. For this case the 72 h forecast
anomaly correlation coefficient is very good, .98 over Europe and .96 for the Northern Hemisphere. The large
scale weather pattern over the Atlantic and Europe changed significantly over this 72 time period. For these
reasons we are confident that the analysis is good at the time of data acquisition (1311 UTC). Data within a
small latitude longitude window were selected. In this example the reported K, values (approximately 5%)

are used directly and a constant factor is used to correct the wind to 10 m. The analysis resolution is T21.

For this case there are 118 observations containinng 351 ¢ values and the background is a 6 h forecast.
The cost function is Jy., plus a simple 2d background cost function. The total cost function is reduced from
13351 to 6268 after 19 iterations and the gradient from 7.42e8 to 2.46e4. Fig. 4 shows the background wind

field, an intermediate solution (after 10 iterations) and the minimizing solution (after 19 iterations), evaluated
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at the scatterometer locations, in the top row of panels. The bottom row of panels, shows differences from
the background and the evolution of Jy.q (solid) and of Jyy, (dots). The importance of the background

should be noted: The scatterometer data could be equally well fit by a generally northerly flow.

42. . 4dVAR

A four-dimensional variational assimilation (4dVAR) seeks an optimal balance between observations scat-
tered in time and space over a finite 4d analysis volume and a priori information. The advantage of this
approach is that the governing dynamics constrain the solution, essentially providing an additional source of
information. In 4dVAR the analysis increments may actually amplify away from the observation locations.
In particular, this occurs generally for surface data, because of the damping effect of surface exchange

processes.

We conducted 4dVAR experiments with and without ERS 1 backscatter measurements (Thépaut et al., 1993).
For scatterometer data, the advantage of the variational approach is that it embeds the ambiguity problem in
a large data fitting problem which includes other observations, a background constraint based on balanced
error.covariances and the model dynamics. The last two factors lead necessarily to a dynamically consistent
use of the data. As expected and in contrast to conventional approaches, the impact of scatterometer data

in 4dVAR is not confined to the lower troposphere and the analysis increments are balanced.

The assimilation experiments of Thépaut et al. (1993) are for the 24 hour period 12 UTC 30-31 December
1991. A violent storm struck the coast of Norway 24 hours later. As expected, the impact of the ¢° data is
large in the Southern Hemisphere, with differences of up to 10 hPa in the surface pressure field. Substantial
differences can also be observed in the Northern Hemisphere, especially in the North Atlantic. Generally
the o° data strengthen the activity of the affected systems. The impacts on the analysis and forecast of the
New Year’s Day storm are small but the scatterometer data do have an apparently positive impact on the

4dVAR analysis in this case.

4.3, Other variational approaches

As an alternative to using the o° values directly, one could use scatterometer winds or ambiguities obtained
using a point-wise data processing system in a variational analysis. Hoffiman (1982, A1984) used SASS
ambiguities to derive wind analyses using a variety of additional data and smoothness constraints. Harlan
and O’Brien (1986) used the subjectively dealiased SASS data to simultaneously analyze surface pressure

and vorticity subject to a weak constraint on the kinetic energy of the solution. The fact that this technique
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affects the surface pressure analysis may be advantageous since in studies where winds only are assimilated,
changes to the mass field are small and tend to decay in subsequent forecasts (Duffy et al., 1984; Hoffiman,
1993). We might mention in this regard another technique, which though not a variational method, uses
scatterometer wind data to produce a surface pressure analysis: Brown and Levy (1986; Levy and Brown,
1991) use SASS winds and a boundary layer model to deduce geostropic winds from which an estimate of

the pressure field can be obtained if a single pressure observationis available.

5. CONCLUDING REMARKS

There is a great potential utility to the scatterometer observations. Better definition of the surface wind
field over the oceans can aid operational forecasting of meteorological and oceanographic parameters. In
addition very short range forecasting and nowcasting of intense, small scale or rapidly evolving oceanic
storms and associated wave ﬁélds, wh‘ic.'h> might otherwise be unobserved, will be possible. A particular
advéntage of the scatteforﬁeter is"that it is unaffected by clouds or light precipitation. (Heavy precipitation
corrupts the Ku band radar returﬁs of SASS and NSCAT (e.g. ‘Guymer et al., 1981), but does not effect
the C band radar returns of ERS 1.) | ’

Scatterometer data is alsb in‘vahiable‘ for a variety‘ of scientific "investigations. The main reason for the
importance of scatterometer dafa is that the exchanges of energy—Ilatent and senéi‘ble—and momentum
between the atfnosphere and the oceans are nonlinearly modulated by the surface wind speed. Thus
scatterometer data are vital for understanding the coupled climate system, and for prox}iding accurate

boundary conditions for studies of both the étmosphere and ocean on a variety of spatial scales.

5.1. Current research

The stream of scatterometer data from ERS 1 has been relatively constant and ﬁninterruptéd since August
19§1. (There wére some planned interruptions due to orbit shifts early in the fnission.) As a consequence and
considering that ERS 2 will be launched in 1994 there is considerable interest in vusing the data at operational
and research.centers. While the total effort is substantial, the number of persons directly involved at any

one organization is small. Here is a brief and incomplete summary of current research.

At the UKMO (David Offiler, pers. comm.) a parallel run was made during the last three weeks of March
using the latest model function and their own wind retrieval and ambiguity removal algorithms. Impacts

on the 5 day forecasts were neutral in the Northern Hemisphere, marginally positive in the tropics and
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substantially positive in the Southern Hemisphere. ERS 1 data will begin to be used operationally in
September 1993.

At the ECMWF (Ad Stoffelen, pers. comm.) a very considerable effort has gone into model function
development and developing the capability of using the scatterometer data in the variational analysis. Further

refinement of the ambiguity removal is underway and further additional parallel runs are planned shortly.

At NASA (Goddard) (Robert Atlas, pers. comm.) parallel experiments are underway, comparing the utility
of winds from several sources. In addition retrospective work to combine ERS 1 scatterometer data, SSM/I
wind speeds and ECMWF operational analyses is planned. The object of this effort is to produce the best

possible consistent time series of ocean surface winds.
At NMC (Washington) (Tsann-Wang Yu, pers. comm.) work is proceeding on implementing the use of the
scatterometer o data in the spectral statistical interpolation (SSI) analysis system. ‘This has necessitated

some general changes to the SSI to allow for nonlinear observational operators.

At AES (Canada) (Saroja Polavarapu, pers. comm.) work is currently underway on using the ERS 1

scatterometer data for Canadian weather forecast models.

At the Norwegian Meteorological Institute (Lars-Anders Breivik, pers. comm.) work is currently underway

on using the ERS 1 scatterometer data in the Institute’s data assimilation system.

52.  Outstanding problems

While the potential of satellite scatterometry is great, a number of outsfanding problems remain. First, there
is the qﬁesﬁon of the model function. There are some experimental results showing that backscatter is
affected by geophysical parameters other than the vector wind. Atmospherig: stability, ocean swell, salinity
and others have been suggested (e.g. Brown, 1983; Glazman et al., 1988). Should some of these be included
in the model function? How. will the wind refrieval be effected if this is done? Even without these additional
parameters, further work on tuning the model functions is required. One difficulty is the small amount of
high quality surface truth data available over the oceans. This is especially true at high wind speeds,

precisely the regime we most want to observe.

The ambiguity removal procedures developed for scatterometers have so far been disappointing. While
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the autonomous procedures work well when tested with simulated data, they have proven inadequate for
real data both in the case of SASS and ERS 1. As is the case with satellite temperature retrievals, other

information besides the scatterometer data must be included to produce optimal results.

If the use of other data is allowed to retrieve the scatterometer winds, then one should use all available
data in the process. From this point of view, the best scatterometer data products are operational analyses
produced using the scatterometer data. However, analysis procedures have been optimized for conventional
radiosondes and satellite temperature soundings. Research on the best use of scatterometer data for NWP
will therefore aid most other uses of the data. In this regard, variational analysis approaches appear most

promising.

ACKNOWLEDGMENTS

I have benefited from many discussions with numerous colleagues over the years. My research in
scatterometry has been primarily supported by NASA, the United States National Aeronautics and Space
Agency. I am currently a member of the science teams for the NASA scatterometer (ADEOS NSCAT)
and the EOS scatterometer (STIKSCAT). This work was supported by Jet Propulsion Laboratory contracts
057644 and 959341, subcontracts to NASA contract NAS7-918. ‘

REFERENCES

D. Anderson, A. Hollingsworth, S. Uppala, and P. Woiceshyn. A study of the use of scatterometer data
in the European Centre for Medium-range Weather Forecasts operational analysis-forecast ‘model. 2. Data
impact. J. Geophys. Res., 96(C2):2635-2647, 1991.

R. A. Anthes, Y.-H. Kwo, and J. R. Gyakum. Numerical simulations of a case of explosive marine
cyclogenesxs Mon Weather Rev 111 11741188, 1983. '

R. Atlas, A. J. Busalacchl E. Kalnay, and S. Bloom Global surface wmd and ﬂux ﬁelds from model
assimilation of SEASAT data. J. Geophys. Res., 92(C6):6477-6487, 1987.

F. Badran, S. Th1r1a and M. Crepon Wind ambiguity removal by the use of neural network technlques J
Geophys. Res., 96(C11):20521-20530, 1991. : ,

W. E. Baker, R. Atlas, E. Kalnay, M. Halem, P. M. Woiceshyn, S. Peteherych, and D. Edelmann. Large-
scale analysis and forecast experiments with wind data from the Seasat-A scatterometer. J. Geophys. Res.,
89(D3): 4927—4936 1984.

R. A. Brown. On a satellite scatterometer as an anemometer J. Geophys Res., 88(C3) 1663 1673 1983

R. A. Brown. On satellite scatterometer capabilities in air-sea interaction. J. Geophys. Res., 91(C2)'2221—
2232, 1986. Special Section: Frontiers of Remote Sensing of the Oceans and Troposphere from Air and
Space Platforms. : S - :

92



R. A. Brown and G. Levy. Ocean surface pressure fields from satellite-sensed winds. Mon. Weather Rev.,
114:2197-2206, 1986.

M. A. Cane, V. J. Cardone, M. Halem, and 1. Halberstam. On the sensitivity of numerical weather prediction
to remotely sensed marine surface wind data: A simulation study. J. Geophys. Res., 86(C9):8093-8106, 1981.

A. Cavanié and P. Lecomte. Vol 1. Study of a method to dealias winds from ERS-1 data. final report
European Space Agency, 1987. Contract 6874/87/CP-I(SC). ~

A. Cavanié and P. Lecomte. Vol 2. Wind retrieval and dealiasing subroutines. final report, European Space
Agency, 1987. Contract 6874/87/CP-I(SC).

D. B. Chelton, M. H. Freilich, and J. R. Johnson. Evaluation of unambiguous vector winds from the Seasat
scatterometer. J. Atmospheric Oceanic Technology, 6: 1024-1039, 1989

C -Y. Chi and F. K. Li. A comparative study of several wind estimation algorlthms for spaceborne
scatterometers IEEE Trans. Geoscz Remote Sens., 26:115~ 121 1988.

C. -Y Chl D. G. Long, and F. K. Li. Radar backscatter measurement accuracies using digital Doppler
processors in spacebome scatterometers IEEE Trans. Geosa Remote Sens GE- 24 426—437 1986.

D. Duffy, R. Atlas, T. Rosmond, E. Barker, and R. Rosenberg. The impact of Seasat scatterometer winds
on the Navy’s operational model. J. Geophys. Res., 89(D5):7238-7244, 1984.

D. G. Duffy and R. Atlas. The irnpact‘ of Seasat-A scatterometer data on the nurhericai prediction of the
Queen Elizabeth 1l storm. J. Geophys. Res., 91(C2):2241-2248, 1986. Special Section: Frontiers of Remote
Sensing of the Oceans and Troposphere from Air and Space Platforms.

R. M. Endlich, D. E. Wolf, C. T. Carlson, and J. W. Maresca. Oceanic wind and balanced pressure- helght
fields derived from satellite measurements. Mon. Weather Rev., 109:2009-2016, 1981.

R. E. Fischer. Standard deviation of scatterometer measurements from space. IEEE T. Geosci. Electron.,
GE-10:106-113, 1972.

R. Francis, G. Graf, P. G. Edwards, M. McCaig, C. McCarthy, P. Dubock, A. Lefebvre, B. Pieper, P.-Y.
Pouvreau, R. Wall, F. Wechsler, J. Louet, and R. Zobl. The ERS-1 spacecraft and its payload. ESA Bulletin,
(65):27-48, Feb. 1991. ERS-1 Special Issue.

R. E. Glazman, G. G. Pihos, and J. Ip. Scatterometer wind speed bias induced by the large-scale component
of the wave. J. Geophys. Res., 93(C2):1317-1328, 1988.

R. Graham, D. Anderson, A. Hollingsworth, and H. Béttger. Evaluation of ERS-1 wind extraction and
ambiguity removal algorithms. Meteorological and statistical evaluation. Technical report, Eur. Cent. for
Med. Range Weather Forecasts, Reading, England, Jan. 1989.

W. L. Grantham, E. M. Bracalente, W. L. Jones, and J. W. Johnson; The Seasat-A satellite scatterometer.
IEEE J. Oc. Eng., OE-2:200-206, 1977. '

T. H. Guymer, J. A. Businger, W. L. Jones, and R. Stewart. Anomalous wind estimates from the SEASAT
scatterometer. Nature, 294:735-737, 1981.

J. Harlan, Jr. and J. J. O’Brien. Assimilation of scatterometer winds into surface pressure fields using a
variational method. J. Geophys. Res., 91(D7):7816-7836, 1986.

R. Hoffman. SASS wind ambiguity removal by direct minimization. Mon. Weather Rev., 110:434-445, 1982.

R. N. Hoffman. SASS wind ambiguity removal by direct minimization. II: Use of smoothness and dynamical
constraints. Mon. Weather Rev., 112:1829-1852, 1984.

93



R. N. Hoffman. A preliminary study of the impact of the ERS1 C-band scatterometer wind data on the
ECMWEF global data assimilation system. J. Geophys. Res., 98(C6):10233-10244, 1993,

R.N. Hoffman and J.-F. Louis. The influence of atmospheric stratification on scatterometer winds. J. Geophys.
Res., 95(C6):9723-9730, 1990.

N. B. Ingleby and R. A. Bromley. A diagnostic study of the impact of SEASAT scatterometer winds on
numerical weather prediction. Mon. Weather Rev., 119:84-103, 1991.

W. L. Jones, L. C. Schroeder D. H. Boggs E. M. Bracalente, R. A. Brown, G. J. Dome, W. J. Piersen and
F. J. Wentz. The SEASAT-A Satellite Scatterometer: The geophysical evaluation of remotely sensed wind
vectors over the ocean. J. Geophys. Res., 87(C5):3297-3317, 1982.

W. L. Jones, L. C. Schroeder, and J. L. Mitchell. Aircraft measurements ofbthe microwave scattering
signature of the ocean. IEEE J. Oc. Eng., OE-2:52—61, 1977. '

K. B. Katsaros and R. A. Brown. Legacy of the Seasat mission for studies of the atmosphere and air-sea-ice
interactions. Bull. Am Meteorol. Soc., 72:967-981, 1991.

A.J. Lenzen, D. R. Johnson, and R. Atlas. Analysis of the impact of Seasat scatterometer data and horizontal
resolution on GLA model simulations of the QF II storm. Mon. Weather Rev., 121:499-521, 1993.

G. Ley and R. A. Brown. Southern hemisphere synoptic weather from a satelhte scatterometer. Mon. Weather
Rev., 119: 2803~2813 1991.

D. G. Long. Wind field model-based estimation of Seasat scatterometer winds. J. Geophys. Res.,
98(C8):14651-14668, 1993.

D. G. Long and J. M. Mendel. Model-based estimation of wind fields over the ocean from wind scatterometer
measurements, part I Development of the wind field model. JEEE Trans. Geosci. Remote Sens., 28:349-360,
1990. : :

D. G. Long and J. M. Mendel. Model-based estimation of wind fields over the ocean from wind scatterometer
measurements, part II: Model parameter estimation. IEEE Trans. Geosci. Remote Sens., 28:361-373, 1990.

D. G. Long and J. M. Mendel. Identifiability in wind estimation from scatterometer measurements IEEE
Trans. Geosci. Remote Sens., 29:268-276, 1991.

F. Naderi, M. H. Freilich, and D. G. Long. Spacebome radar measurement of wind velocity over the ocean—
an overview of the NSCAT scatterometer system. Proc. IEEE, 79:850-866, 1991.

J. C. Price. The nature of multiple solutions for surface wind speed over. the oceans from scatterometer
measurements. Remote Sensing Environment, 5:47-54, 1976.

H. Roquet and A. Ratier. Towards direct variational assimilation of scatterometer backscatter measurements
into numerical weather prediction models. In Praceeding‘s of the 1988 International Geoscience and Remote
Sensing Symposium (IGARSS ’88), pages 257260, Edinburgh, Scotland, 13-16 Sept. 1988. IEEE, New York.

L. C. Schroeder, D. H. Boggs, G. Dome, I. M. Halberstam, W. L. Jones, W. J. Pierson, and F. J. Wentz.
The relationship between wind vector and normalized radar cross section used to derive SEASAT A satellite
scatterometer wmds J. Geophys. Res., 87(C5) 3318-3330, 1982

L. C. Schroeder, W. L. Grantham, E. M. Bracalente, C. L. Britt, K. S. Shanmugem, F. J. Wentz, D. P.
Wylie, and B. B. Hinton. Removal of ambiguous wind directions for a Ku-band wind scatterometer using
three different azimuth angles. IEEFE Trans. Geosci. Remote Sens., GE-23:91-100, 1985.

94



H. Schultz. A circular median filter approach for resolving directional ambiguities in wind fields retrieved
from spaceborne scatterometer data. J. Geophys. Res., 95(C4):5291-5304, 1990. Errata in number C6, page
9783.

S. J. Shaffer, R. S. Dunbar, S. V. Hsiao, and D. G. Long. A median-filter-based ambiguity removal algorithm
for NSCAT. IEEE Trans. Geosci. Remote Sens., 29:167-174, 1991.

R. H. Stewart. Seasat: Results of the mission. Bull. Am. Meteorol. Soc., 69:1441-1447, 1988.

A. Stoffelen and D. L. T. Anderson. ERS-1 scatterometer calibration and validation activities at ECMWE:
A. The quality and characteristics of the radar backscatter measurements. In ‘International Space Year’
Conference, pages 1019-1024, Munich, Germany, 30 Mar.—5 Apr. 1992. European Space Agency, Paris.
[ESA SP-341, July, 1992]. '

A. C. M. Stoffelen and G. J. Cats. The impact of Seasat-A scatterometer data on high-resolution analysis
and forecasts: The development of the QF II storm. Mon. Weather Rev., 119:2794-2802, 1991.

J.-N. Thépaut, R. N. Hoffman, and P. Courtier. Interactions of dynamics and observations in a four-
dimensional variational assimilation. Mon. Weather Rev., 1993. Accepted.

S. Thiria, C. Mejia, F. Badran, and M. Crepon. A neural network approach for modelling nonlinear transfer
functions: Application for wind retrieval from spaceborne scatterometer data. J. Geophys. Res., 98, 1993.
Accepted for publication.

F. J. Wentz. A simplified wind vector algorithm for satellite scatterometers. J. Atmospheric Oceanic
Technology, 8:697-704, 1991.

M. Wooding, editor. ERS-1 Geophysical Validation, Penhors, Bretagne, France, 27-30 Apr. 1992. European
Space Agency, Paris, France.

M. G. Wurtele, P. M. Woiceshyn, S. Peteherych, M. Borowski, and W. S. Appleby. Wind direction alias
removal studies of SEASAT scatterometer-derived wind fields. J. Geophys. Res., 87(C5):3365-3377, 1982.

T. W. Yu and R. D. McPherson. Global data assimilation experiments with scatterometer winds from
SEASAT-A. Mon. Weather Rev., 112:368-376, 1984.

95





