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1.  INTRODUCTION

Statistical analysis schemes combine observations with a background consisting of a short-range forecast,

taking into account their respective error statistics. The background error statistics are absolutely crucial

to determine the intensity and the spread of the increments brought by the observations. The forecast error
for any meteorological field § can be noted L/ where ¥, and ¢, are vectors representing

respectively the background field and the true state. This paper re-addresses the problem of specifying

forecast error characteristics.

Two basic quantities describing the statistics of y, - Y, are the mean vector and the covariance matrix:

E=v,-%,V=(0,~-1v) (W, - q;,)’. The mean E is generally taken as 0, and the covariance matrix

V is split between variances, horizontal and vertical correlations. Moreover, for the horizontal correlations,
one makes the assumption of homogeneity and isotropy. The useful information then reduces to a single

function of distance f{r).

The current statistics used in OI are based on observational studies (Hollingsworth and Lonnberg, 1986;
Lénnberg and Hollingsworth, 1986, hereafter denoted HL86 and LHS86; Lonnberg, 1988) in which statistics

are accumulated over the Northern American radiosonde network. The horizontal auto-correlation function

N
is fitted by a series of Bessel functions: f(r) = E d)i J, (ku‘—;)- The horizontal extent of the USA is
n=0

3000 to 4000 km and so this method gives information for equivalent spherical total wave number greater
than 9 to 12. It does not give useful information in the range [0,10]. This is not critical in OI because
it uses data over a limited area at a time, but in 3DVAR, information about this large-scale component of
the background error correlation had to be provided. Philippe Courtier proposed a parametric formulation
for the auto-correlation wind spectrum (Memo R43.12/PC/CE/245, 9 October 1992) and Bill Heckley
showed how untuned parameters could lead to spurious large-scale increments (Memo R43.12/WH/293/DA).

Attempts are made to improve the specification of large-scale forecast error correlations.

The same statistics from HL86 and LH86 were used to derive vertical correlation functions for the OL
. However, recent studies from 1D-VAR suggest the specification of these functions determines the success
or otherwise of attempts to assimilate satellite radiance data. This will also be important in 3D-VAR, and

so vertical correlations are also investigated.
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2. ‘;énARGE-S{CALE COMPONENT OF THE BACKGROUND ERROR CORRELATION
ESTIMATED FROM SATELLITE DATA
2.1 The method

To determine objectively the large-scale contribution of background error correlation using observed
increments, global data coverage is needed. Satellite data are the most appropriate data source 1o be used
for this purpose. The radiance measured in a particular satellite channel is effectively a weighted average
of the temperature profile T(z) |

R - [ BOQ) —‘-’—f‘%dz

Thus calculating radiances from the model and comparing to measured values allows an "observation” of
model error in this vertically averaged space. Fig 1 shows the extent of this vertical averaging process for
the TOVS channels used in this study, the results of which are presented in section 2.2. Departure fields

in brightness temperature from PRESAT output files are used. A departure field is written as ¢, - ¥,,
where s, is the background field and s, the observation. In the following, we will denote X and o, the

empirical mean and standard deviation of a field X. The basic assumption is that, once the departure has

been properly normalized: (y, - ‘I’o)’ - by = ¥, — (b ~ W) , its spatial correlations reflect the spatial
g .
Yp - ¥ :

correlation of the forecast error (¥, - lll,)’ (actually, it represents the forecast error correlation multiplied

by a constant, where the constant measures the ratio of background error to total error (background and
observation)). This should be true, at least in the large scale, where observation error correlations between
the radiances themselves may be ignored. Clear data from NOAA11 and NOAA12 over both land and sea
are used. These data are bias-corrected using an air -mass dependent procedure to remove the bias between
model and observation (Eyre, 1992). This should further remove any chance of radiance correlations

contaminating the results (remark: the bias correction is applied separately for each satellite).

Statistics are computed for two different periods (October 1992 and February 1989). Separate departure
fields for 0,6,12,18 UTC are interpolated using a three pass Cressman analysis to produce global fields on
a grid of 160 latitudes and 320 longitudes (radii of 5,3 and 1 grid points around each observation are used

in the analysis, but the result is not sensitive to this choice for large scale features). The empirical mean
¥, - ¥, and standard deviation oy, - ¥, are computed at each grid-point for each of the four 6-hour

slots of the 44 (October 92) and 48 (February 89) departure fields which could be successfully analyzed (i.e.
had good data coverage). The departure fields are then normalized by removing the mean and dividing by

the standard-deviation.
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For each realisation i , the normalized departure field (Di(A,p)),p is then transformed in spectral space
(Di(n,m)), .. The computation of the correlation spectra and their relationship to spectra with respect to

Bessel functions are described in the appendix.

2.2 The results

Results in terms of slopes of the auto-correlation function agree to within 10% for the two periods , except
for those derived using MSU 4 which gives the noisiest results. Results for February 1989 were generally
smoother, as the limb correction was applied to the satellite data for this data set whereas it was not done
for the October 1992 data. Results for February 1989 and for 6 channels are presented. Fig 2.a shows the
spectrum derived from MSU4 (peaking at 70-100 hPa), 2.b HIRS4 (peaking at 400 hPa), 2.c MSU2 (peaking
at 600-700 hPa), 2.d HIRS15 (peaking at 700-800 hPa), 2.e HIRS13 ( peaking at the ground) and 2.f for
HIRS 11 (humidity channel peaking at 700 hPa).

The corresponding large-scale slopes (n = 2 to 10, typically) are 0 for MSU4, 0.4 for HIRS4, 0.5 for
MSU2, 0.5 for HIRS15, 0.6 for HIRS13, and 0.6 for HIRS11. The stratospheric channel MSU4 exhibits
a rather flat spectrum at large-scale (in fact, the spectrum is hardly regular enough to give a significant slope
different from 0). In the tropospheric channels, slopes increase from 0.4 in the upper troposphere to 0.6 in
the lower troposphere.

3. HORIZONTAL AND VERTICAL CORRELATIONS DERIVED FROM NMC'S METHOD
3.1 The method
The basic strategy of the NMC method is to accumulate statistics of the differences between forecasts at

different ranges valid at the same time (Parrish and Derber, 1992). The assumption behind the method is
that the differences between these forecasts represent forecast error. For this study the method is applied
to comparisons of 24 and 48 hour forecast fields valid at 12 UTC on the same day. This choice is
somewhat arbitrary, but using the 24 hour forecast as a validation avoids any problems associated with spin-
up. It also allows differences to be examined over 24 hours, a period not too long in order for the error not
to be significantly different from a 6 hour forecast error, and not too short that the forecasts are too similar

because of the lack of update by data.

The truncation selected for the computations was T106 L31 and operational forecasts were compared for
December 1992. As a first step, the covariance computation was performed directly in spectral space. The
mean error field is a full spectral field (locally varying mean) which is removed from each departure field.
However, for the necessary division by the standard-deviations to go to correlation matrices, the variances
were globally averaged at each level. This is of course a slight approximation, but is believed to be

sufficient,
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32 The horizontal correlations

Horizontal covariances were examined for each vertical level. Fig 3 shows the variance spectra for wind
(3.2) and temperature (3.b) at levels 1 (dotted line), 18 (dashed line) and 31 (solid line). It can be seen from
the slopes that in the small-scales much more energy is present in model error close to the ground than high
in the stratosphere. In the large scales the differences between the slopes are more subtle. However, for
the temperature spectra one can notice a slightly steeper slope for lower levels, which is in agreement with
the tesulis obtained from the radiances in section 2. In figures 4 and 5, the autocorrelation spectra for all
levels are presented in terms of wind and temperature respectively, for levels 1 to 10 (Fig 4.a and Fig 5.a),
levels 11 to 20 (Fig 4.b and 5.b), levers 21-30 (Fig 4.c and 5.c). The top levels show more dispersion,
particularly in the small-scale (where there is less energy at the very top of the model).

Most of the variation of the shape of the spectrum and then of the length-scale is concentrated in the
stratosphere as previous studies have already shown (HL86 and LH86). Three representative levels héve
been chosen: levels 6 (around 100 hPa), 16 (around 400 hPa) and 26 (around 850 hPa). Autocorrelation
spectra are presented in Fig 6, where level 6 is represented by a dotted line, level 16 by a dashed line and
level 26 by a solid line. The spectra at these levels were reproduced for the departures between an

initialized analysis and a 24 hour forecast (figure 7). For each of these spectra, we computed n_, Wwhich
is the wavenumber where the spectrum reaches its maximum, the length-scale in km, (defined as the
component length-scale of HL86) and the slopes in the large-scale (n = 2 to 10), in the range

(n = 40, n = 70), and in the range (n = 70, n= 100). Results are presented in the following table:

max Length-scale Large-scale Slope 40-70 Slope 70-100
slope :

Level 6

(0-24) 10 8 288 292 0.91 0.35 -3.1 23 -5.7 -49
KEand T

Level 16

(0-24) 15 10 239 289 143 0.78 24 2.1 34 -2.9
KE and T

Level 26

(0-24) 16 12 241 262 1.37 0.85 -2.5 -1.7 -2.8 2.5
KE and T

Level 6
(24-48) S 10 299 299 1.38 0.64 -2.9 -2.6 -6.0 -5.2
KE and T

Level 16
(24-48) 14 10 238 275 224 0.91 22 2.1 -39 -3.6
KE and T

Level 26
(24-48) 12 10 232 236 1.80 0.94 20 -1.9 -3.3 -3.1
KEand T
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For both the 0-24 and 24-48 model differences, one can notice the prédominance of large-scales in the
stratosphere, with length-scales bigger than in the troposphere. A rather flat slope is seen in the very large
scales (n = 2 to 10) and a very steep slope towards the small scales. For the slopes of the temperature
spectra in the large scale one notices an increase when going from higher to lower levels. The slopes in
the troposphere are typically around 0.8 for the 0-24 differences and 0.9 for the 24-48 differences. The
results obtained from the satellite data are around 0.5. Although these results do not give exactly the same
figure, they appear to be reasonably consistent. For the kinetic energy slope in the range 40-70 values are
between -2 and -3 and in the range 70-100 between -3 and -6. These slopes agree well with the latest
results of Bartello and Mitchell (1992) who found between -3 and -6 in terms of §, spectrum which

corresponds to -2 to -5 in terms of the P, spectrum used in this study (see the appendix for definitions).

The broader correlations at higher levels, which can be seen from the bigger length scales, are in agreement
with previous observational results (HL86, Fig 13; LH86, Fig 6).

We have chosen to continue the study with the 24-48 differences. Although the results are not very
different from the 0-24 differences, they are less likely to be contaminated with spin-up problems (it is what
is currently used at NMC).

For the three representative levels chosen earlier (6,16 and 26), spectra were computed separately for
vorticity and divergence. These spectra are shown in Fig 8 (a and b) and are quite different. The
divergence errors are in smaller scales than the vorticity errors. The length-scale is 191 km as compared
to 245 for the rotational part of the wind at level 16.

To check the degree of balance in the model errors derived with this method we also computed the 500 hPa
variance spectra for wind and geopotential. These are presented in Fig 9 (a and b). The length-scales are
respectively 239 and 493 km. The value of 493 km for the component length scale of the height auto-
correlation agree well with what is currently used in OI (500 km in the latitude band 90N-30N) and
correspond to what was initially chosen for 3DVAR.

The sldpes for the wind and the geopotential spectra are respectively 1.9 and 0.9 for the range » = 2 to 10,
-2.1 and -4.2 for the range n = 40 to 70, -3.8 and -5.2 for the range n = 70 to 100. The value of -4 for
the geopotential in the range n = 40 to 70 is slightly steeper than what is actually used in OI (equivalent
slope of -3, Lonnberg, 1988), but corresponds well to results in Bartello and Mitchell (1992). Furthermore,

it is consistent with a geostrophic assumption, as there is a difference of -2 between the wind and the

geopotential spectra slopes (see appendix for details).

12
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(a) wind, (b) geopotential, (c) geopotential computed from wind using geostrophic balance,

(d) geopotential computed from wind using linear balance.
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This difference of -2 in the slopes does not apply exactly at smaller scales, or at all at large scales (1.8 and
0.9). Fig 9 (c and d) shows the geopotential variance spectra which would be obtained by applying both
,,,,,, a geostrophic balance (¢ = fy) and a linear balance (A = (V. V) to the wind spectra. All the
geopotential spectra (i.e. observed, geostrophically balanced, linearly balanced) agree well in the range
n = 10 to 100, but both balanced spectra disagree with the observed one in the range n = 0 to 10.
Although the linearly balanced spectrum is in better agreement with the observed one than the simple
geostrophically balanced spectrum, it is clear that we should apply a more elaborate relationship between
balanced mass and wind increments at these large scales. On the whole, there is 10% less energy in the

error variance for the balanced geopotential than for the observed one.

3.3 The vertical correlations

In the previous section, the spectra of the variances at each level { were given as

N R
=Y Y @ ve.

A=0 m=-n

The covariance between levels Zi and Zj may be written

Cov@, ) = o [ [ VOow20 WOk m.2pdidy

N R
CovZi, Zp - Y, Y wi @) @)

n=0 m=-n

and the corresponding correlations, dividing by globally averaged standard deviations are

1
9, g,

C(Zi, Z) - Cov(Zi, Z)).

The standard-deviations for height are compared with those from LH86 (column 1 below). The height

statistics can be computed directly from pressure level geopotential fields (¢?) (column 2) or can be

deduced from the temperature statistics by the hydrostatic relationship, assuming no error in surface pressure

(¥7) (column 3).

15



o($%obs) o(?) o(dD
10 hPa 50 m 40 m 93 m
100 hPa 16 m 16 m 19m
150 hPa 17m 18 m 20m
200 hPa 17m 22 m 22 m
250 hPa 20 m 25m 23m
300 hPa 20 m 26 m 25m
400 hPa 16 m 23 m 22 m
500 hPa 13 m 19 m 18 m
700 hPa 10 m 15m 10 m
850 hPa 10 m 14 m Sm
1000 hPa 10m 16 m 1m

(NB. the 10 hPa value for a(¢p?obs) is the one used in OI at mid-latitudes)

It can be seen that the computed values are slightly larger than those observed in HL86, but the three
different sets of standard-deviations follow roughly the same vertical structure. A maximum at the top
(10 hPa) is observed and a minimum at the lower levels. There is also a local maximum at 300 hPa and
a local minimum at 100 hPa. Similarly, standard deviations for wind and temperature have been derived:
they compare well with HL86/L.HS86.

Some discrepancies are visible between o(¢?) and o(d);) at the top level and the two lower levels. These

might be due to inaccuracies in the way we derive height statistics from temperature statistics, in particular,
close to the ground where an error-free surface pressure is assumed. However, these differences in standard-
deviation do not significantly affect the vertical correlations and it was decided to use the statistics derived

from temperature as they are more continuous.

Fig 10 represents the vertical correlations for temperature (10.a), rotational part of the wind (10.b), divergent
part of the wind (10.c) and geopotential (10.d).

The temperature results agree well with the vertical correlations derived from background-radiosonde

statistics shown in Fig 11.a (previously used in 1D-VAR, see McNally, 1993) and with those from HL86

(derivcd from thicknesses) reproduced for convenience in Fig 11.b.
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The correlations of the rotational part of the wind and of the geopotential look reasonable, although are
slightly broader than in Fig 16 of HL86 and Fig 10 of LH86. This can be explained by the fact that HL86
and LH86 statistics are computed over North America. The vertical structure functions used in the
operational OI are e.g. broader over the oceans. The vertical correlations of the divergent part of the wind

are quite sharp, but these are known to be sharper than the ones for the rotational part (HL86).

The only inconsistency found is between the temperature results and the vertical temperature correlations
of the OI over land. There is less discrepancy with the OI vertical correlations over the ocean even if they
are still too sharp. These are derived by differentiation of functionally fitted height statistics which have
been artificially sharpened for the analysis of wind measurements (Fig 11.c). These are much sharper than
our results and also exhibit negative side-lobes close to the main peak, a direct consequence of

differentiating rather sharp height statistics. Attempts have been made below to explain this inconsistency.

Taking the wavenumber range n = 10 to n = 100 ("synoptic-scale"), vertical correlations were computed
from the 48-24 hour forecast statistics. In figure 12 results for the rotational part of the wind (12.a), the
stream function (12.b) and the geopotential (12.c) are presented. If the geostrophic assumption is valid
(¢ = ¢/f), the same statistics for streamfunction and geopotential should be observed. Comparing Fig 12.b
and 12.c, streamfunction correlation structure is seen to be slightly sharper than that for geopotential. This

suggests there is some imbalance between wind and geopotential in the forecast error statistics.

Also implicit in the derivation of temperature correlations from the OI statistics is the assumption of
separability (i.e. same vertical correlation for each horizontal scale). To investigate the separability

assumption, one can introduce a vertical correlation matrix defined separately for each term of the horizontal
expansion as in HL86. In our notation, the covariance between two points separated by a distance r on the

horizontal at two different horizontal levels Zi and Zj can be written as

P/

N
VEZDwG + nZ) = Y, (P@) P(Z))* C,(ZZ)

ne=o 2n + 1

where P,Z) = Y L@ Vi@

m- -
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P@) = Y @ vi@y

Y vn@) i@
and C_(Zi,Zj) = 2=
(P,@)P,Z))*

If the vertical correlation matrices C,(Zi,Zj) are independent of n and equal to a matrix C(Zi,Zj), the

. N P,
expansion becomes y (x,ZD Yy (x + r,Z)) = C(Zi,Z)) ¥, P, @HP, (Zj))*—z——-l-.
n=9 n +

Furthermore, if the horizontal spectra P,(Zi) are independent of level and equal to P,, the expression is

N P o
fully separable y (x,Zi) ¢ (x + r,Zj) = C(Zi,Z)) E P, _n@__ The variation of the vertical correlation

n=o v2n + 1

matrices C, (Zi,Zj) with respect to n can be investigated.

In Fig 13 the vertical correlation matrices for the vorticity part of the wind (panel a) and the geopotential
(panel b) are shown summed over the wave numberranges n = Q0 to 10, n = 10t0 20, n = 2010 30,n = 30
to 40, n = 40 to 50 and n = 50 to 60. The sharpening of the structure when going to smaller scales is
striking for both variables, which questions the validity of the separability hypothesis. This is consistent
with the findings in HL86 and LH86, although the dispersion was less marked. A lack of separability is
also seen in the vertical correlations for the rotational part of the wind and for the streamfunction being
different. Thus, even assuming a perfect geostrophic balance, vertical correlation structure summed over
all wavenumbers for wind is sharper than that for geopotential. This result was found in Phillips (1986)

and could be explained for a theoretical ensemble of geostrophic modes.

The main (and easy to implement) part of the non-separability is the dependency of the correlation matrices
with the total wavenumber n. As structures become sharper in the vertical for smaller horizontal scales,

this can be seen as a 3D-isotropy. An influence from all the three factors described above (namely, our
wind statistics being broader than those of Ol, slight imbalance between wind and geopotential and a lack

of separability) to explain the differences between our results for temperature and the ones derived from the

26



‘pUIM B} Jo Jed [BUOHELO By} JO} SISqUINUSABM JO SaBUEI SNOLBA 10 PaIndLWod BdY 0SE [9A°] J0} SISBOI0} JUgY PUE JUpg USIMIS] SSOURISYIP o} SUOHE|LIOD [BIILIOA (®)el B

(09/0G) 10A "1102 (gY/p2)iapoOW (05/0¥) 10A *1100 (8h/p2)iBpOL (ov/0€) Joa "1100 (8Y/¥2)apow
I &0 90 v0 2O 0 20 v¥O0- 90 80 I | &0 90 ¥0 20 © 2O~ ¥0- 90 €0 I I g0 90 ¥0 Z0 O <20 PO~ 90 80 -
L L L . Lyt . 1 L . 000} 1 r L 3 1 1 1 1 1 1 0001t L A 1 L o 3 L \ L 0001

: 0s8 ¥ ose =t 058

] oaL - 00L — 00z

L 008 pd 00s 00§
oor \\ oor — 00

] 00¢ 00¢ _—— ooc
o os2 et 02 B 05z
ﬁ. .
002 s 002 =] 002
[ 051 I s : 051 o oS}
o o
o F ooy T \ 00t
o : =
o = o = oL
08 oS [4:4
[+ oe oe
[ 02 4
ol ol . oL
(0€/02) J0A 110D (8Y/bE)I@pow (02/01) Joa "1100 (gp/ve)lepow (01/0) Joa *1102 (gy/pe)iBpOLL
1 €0 90 ¥0 20 0 20 ¥0- 90 80 |- g0 90 ¥0 20 0 20 ¥O- 90 80 i- g0 90 ¥0 20 O 20 ¥o- 90 80 |-
L [l 1 1 ~. ] 1 t 1 [ 0001 ! I 1 FN 1 1 1 1 L 1 000! 1 [ 1 .N ] i 1 1 1 1 0001t
o 0S8 . 059 0 o058
\\1 004 \1\ 004 ~ 00L
\ 00S 00§ 00S
ooy oo oov
00t P ooe rd 00¢
< sz 052 0sz
002 ~] 002 / 002
o5t S o5t [ 051
o TN 2 4//
7// 00} ﬂ Vllr oot W N 0ot
i)

AY o = - oo RN oL
0s 4— 0s 0s
ot oc /ﬂ oc
oz 0z ’ ifow
439 0} 413

{edy)d

27

(egu) d



L 80 90
L 1

‘enuajodoab Joj S1equINuaABM Jo sabuel snoleA Jo} paIndwod B4 OSE 1oAd)] Jo) SISBI8I0} U PUB 1Y Usamieq Seduaialip Jo) SUOH|eLI0D [BOIHBA (@)g1 B4

(09/0G) 1ud 1102 (8p/v2)|opow

Il

0 20

0 <20 0 90 80
1 1 1 I s

-

P

0004

0S8

00

00S

oov

4§08

0s2

aoz

ost

00t

e

0L

0s

L
//

[+

b

1

(og/02) 1yd "1100 (8p/2)IepOWw

80 90 ¥0 20

1 1

0 <20 ¥0- 90 80
1 1 1 ]

ot

-

P el

0004

ose

00L

y 4

005

oob

00e

0se

002

—0G1

00t

0L

oS

[¢]3

e

0l

(edu) d

{edy) d

{0G/0v) 1ud "4102 (8h/¥T)IBpoWw

1 80 90 ¥0 20 O
11 1 1 1 1

[l

20- vo-
i

L

9'0- 80-
11

1

1-

o>

0001

e

os8

0oL

00s

4
f
\\

]

Qov
ooe

0se
002

oSt

0L

os

[+

oe

0l

(02/01) d ‘1102 (8p/p2)IBpowW

I 80 90 ¥0 20 0 20 ¥0- 90 80
1 1 1 1. 1 i ) 1 1

-

-

o

pd

/.

0001
ass
00L

00S
oov

00€
052

002
oSt

Q0t
[+72
0s

ot

)] 8

(edy)d

(edu)d

b

3

(0b/0€) yd "1109 (8p/pT)iBpoLw

g0 90 Vo 20
i i ]

0 20 ¥0 90 80
1 ! 1 1

}-

1

0s8

3

00L

4

V4

00S

/

00¢€

\

0se

(e

00l

0L

N
1
\
%

0s

oce

(874

ol

1

80 90 ¥O
i

(01/0) wd "102 (8p/v2)opow

0

i L

0 <20 ¥0- 90 80
1 i i 1

-

y

0001

Qs9

V.

00L

005

00

00g

0s2

ost

873

[

02

ot

(equ) d

(equ)d

28



OL. As a remark, another proof of non-separability can be found in the fact that the slopes of the horizontal
spectra in the synoptic scales are different for temperature (around -2, -3) and height (approximately -4).

4, SUMMARY

The first part of this study used the departures of first guess radiance from satellite measured values to
investigate the slope of the forecast error spectra for large scales (i.e the variation of error with
wavenumber). For the temperature spectra it was found that this slope increases for the lower atmospheric

levels (consistent with less energy in the very large scales close to the ground).

These results were generally confirmed by the second part of this study which used the differences between
a 24 hour forecast and a 48 hour forecast valid at the same time (NMC method) to investigate the
characteristics of forecast error. Furthermore, the results obtained with the NMC method agree well with
other observational studies. As far as the horizontal spectra are concerned, the increase of length-scale with
altitude is in agreement with results of HL.86 and LH86 and of Phillips (1986), the slopes in the small scales
show more and more importance of the small scales close to the ground. The linear balance between wind

and geopotential seems to be reasonably valid in the range n > 10 whereas it is not in the very large scales

(n<10). Spectra for vorticity and divergence are seen to be quite different, the divergence spectrum having
more energy in the very fine scales than the vorticity spectrum. The best solution for 3D-VAR appears to
be to use different spectra for vorticity and for divergence. Different spectra for the same variable according

to the horizontal level could also be used.

As far as the vertical correlations are concerned, results for the rotational part of the wind, the divergent part
of the wind and the geopotential agree reasonably well with HL.86, LH86, although our correlation structures
are slightly broader. Temperature correlations agree well with statistics from the satellite section, and these
results have been used to revise 1D-VAR (the impact is currently being evaluated, memo
R43.12/JE/AD/68/SD from 1/4/1993). Three reasons have been identified why the temperature correlations
are broader than those implied by OI. Namely, statistics are not in strict balance, our wind statistics are
slightly broader, and more importantly, the separability assumption is not valid. The breakdown of the
separability assumption (more marked than observed in HL86 and LH86) suggests that it might be useful

in 3D-VAR to use different vertical correlation matrices for different sets of wavenumbers.

Although there is no rigoroﬁs justification why the NMC method should represent forecast error statistics,
it seems to give reasonable results which are in agreement with previous observational studies. This
agreement gives us some confidence to use the greater flexibility of the NMC method to investigate
characteristics of forecast error beyond the scope of conventional observational studies. In particular, it has
high¥ghted potential weaknesses of the current 3D-VAR formulation (i.e. same length-scale on the vertical,
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same horizontal spectra for vorticity and divergence, same vertical correlation for different variables). It

is hoped that the NMC method will allow further refinements of the statistics used in the variational scheme.
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. APPENDIX CORRELATION SPECTRA

Under the homogeneity and isotropy assumption, the correlation between two points ((A,p); (A,p")) for a

meteorological variable ¢ is only a function of the distance between the points:

- d’(lsu)—d)(lvu) . 4’(”:“')‘4’(3-':"') = UA.n)UA 1)
A ( o3(ot) ] ( oW ) U(A,p) P(Ap)

where

. X(A,p) represents the expectation of X, taken as the time-average of X at location (A,p).
. 03(A,1) = (b(A,1)-B(,1))? is the variance of the field

° (AW = SA.1)-6A,1) is the normalised departure.

04(h1)

1. FORMULATION IN TERMS OF BESSEL SERIES

In Hollingsworth and Lonnberg (1986) and Lénnberg and Hollingsworth (1986) (ILH86) a curve f(r) is

derived from accumulated statistics over the Northern Americal network and fitted by a series of Bessel

functions:

o al 2 r
- 33 i)

The wavenumbers k, are determined by the requirement of vanishing radial derivative at distance D

(J, (k) = 0, equation 175b p 226 of Hildebrand, 1976).
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The pair of spectral transforms is then written as

N
=Y ¢ J‘,(k,,-;-) ¢))
=0
1
2 2 D r\ r dr
% e Jo o J"(k"B) DD @

- Yo JA(k)

2
(2) Comes from section 11.4.5, p 485 of Abrawowitz and Stegun (1965): f b J,,(kn%)
/]

or Eq. 185.b, p 229 of Hildebrand (1976).

LH86 define the spectrum as: S, = .42 Jo(k,) = 2 f ® a0 Jo(kn%)%%. As noted by Bartello and
o

Mitchell (1992), this spectrum corresponds to what is called a "modal spectrum” which can more easily be

seen using continuous notations.

£y = [ 8 I Ger)kdk

The transform pair is then - .
S@ = [7 Ay J Geryrdr

As in Balgovind et al. (1983), S(k) can be rewritten with respect to a couple of wavenumbers (a,b) on the

plane such as k? = @? + b?, then S(K) = S(a,b) = zi f = f “fx.y)e® e®dxdy. S(k) then corresponds
T - -

to the contribution of the particular mode (a,b) to the total correlation. The correlation at zero-distance

flo) = 1 = f: S(Okdk.
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2. FORMULATION IN TERMS OF LEGENDRE POLYNOMIA

If one develops fr) in terms of Legendre Polynomia

N
bt Z a,Pf(y) {; :ggse where 0 is the angle between the pole and the point.
=0

and if one uses the spectral transforms involving spherical harmonics for the field itself, following Boer
(1983)

N n
Y.p) =Y, 3 ¥ YR

n=0 m=-n

m 1 2n 1 -m
o= [ [ YO Oup Ay

D) = WQp).¥@'\p) = (E w:r,?(x,p)).(% w:’r,’;“(x',p'))
nm L4
=D D IR A b 4 (KN s SATY)

rm o

e—

Equivalently w:w;,"" can be expressed as a function of f{r)

Vv - (ol fvamroaand) (L[] YOOT N |

) (ZIF)Z [[[[ ¥Emw@) L") Y Qw) dhdpdhdy’

i (TIE)Z 1! (f) af :(Y)) Y, (1) Yy (V) dAdudidy’

Using % f f VES+1 PRI (M) didy’ = 87 8% Y5(A.p) (Rochas et al, 1991; Boer, 1983)
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»B)Y, (A1) drdy

e - f
we find . . ) = ()
e, - 8587 —— - ,/m o T

yan'+1 0 if (nm)* (n'm)

These are the useful relations to define the correlations in spectral space from correlations in grid-point

space.

Expressing the correlation at zero-distance

<> = [ [TV didy

ffE pY VIV YROLmY () didy

- ;ffE [WEP ¥Cup) Y,"(,p) dAdp

P> - % w:r*-f:[;": % ]

nm =0 \m=-n ‘/2n+1
— N N
<WiP> - Y @a+DWIP =Y ay2n+1 -3 P,
a0 x=0 n=0

P, = ay2n+1 is the energy of the correlation, in particular two-dimensional wavenumber », also called
"Power" spectrum.

Remark: equivalently it can be seen from:

N
=3 a Py
=0

N N
fo) - 3 ayz+i- Y P,
=0 =0

. a P
In tzrms of a couple of wavenumbers (n-m,m), the model spectrum would be written P,, - —— = Zn:1
¢2n+1
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3. ASYMPTOTIC EQUIVALENCE BETWEEN THE TWO FORMULATIONS

N
In one case: fr) = ¥ &7 J,(k r )

a=0 EB
N

in the other: f&» = ¥ a, PX(y) With y = cos8 = cosi
a0

in terms of non-normalised Legendre polynomia:

N

f) =Y, ay2n+1P(y)
=0

In the limit n ~ +e, lim P,,(oosﬁ) = J,()
Rte n

from Eq. 9.1.71 p 362 for (x = 0 of Abramowitz and Stegun, 1965)
i i) o2
a a

we then have fr) ~ ¥ ay/2n+1 J, (%)

kr
nr L3
Identification between the two formulas gives: L a D
2
. = ay/2n+l

D - Tt 5 s, - 02
7 - Ea.JZnHJ,,(%) with P, = a/2n+1

The multiplying factor between s, and P, is J%(t,) and we know that J5(k) ~ ;%- ~ -;2'-' from Eq. 9.2.28

R

p 365 of Abramovitz-Stegun.

We then have s, ~ LY
n
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4. GEOSTROPHIC RELATIONSHIP

KE" - _% (EvA™'r + D A D), with £ = Ay

If there is not divergent part KE, = -% E ATED

Replacing £ by - _'_‘(”_:__lltp: and identifying ¢ with % x ¢y, we get KE, = + _"?("ﬁ*'_lz)_ (b:z'
a a
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