Adjoint of a non-hydrostatic model

P.Bernerdet, S.Farges, K.Yassine, CNRM, Météo-France
| ~ April 27, 1993 |

Abstract

The form of the adjoint equations depends upon the scalar product chosen. We
argue that, for adjoint model assimilation, the adequate scalar product, giving conver-
gent gradients, is based upon the covariances of the guess errors. We give an estimate
for the condition number of the minimization problem. Our non-hydrostatic model
evolves under the anelastic constraint; this constraint should be used at observation
times, instead of applying a filter at initial time as would be the case for a compressible
model.

However, for the adjoint equations to be compared to the direct ones, the appropri-
ate scalar product is based upon energy. Non-hydrostatic equations are usually written
in a form closer to the original Euler equations of fluid dynamics than hydrostatic ones;
it gives an opportunity to have a closer look at the adjoint equations and their relation-
ship to the direct ones. We discuss the behaviour of advection terms and the exchange
between buoyancy and vertical advection of reference potential temperature.

Conservation of energy establishes adjoint relationships between the discretized
operators of the direct equation. Among other things, this leads to a symmetric for-
mulation of the pressure equation. While it is not automatic that the adjoint of a
discretized operator converges, so it does with a careful choice of discretization. The
pressure equation with this symmetric d15cret1za.t10n is easily solved by an 1terat1ve

- procedure.

The development of the adjoint is eased as many operators are already present in
the direct model.
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1 Introduction

During the Pyrex experiment over the French Pyrenees mountains some stationary non-
hydrostatic flows have been observed. We wish to apply the mterpolatmn principles of
Rabier & Bernardet (1991) to these data. That is, we wish to minimize the model tendency
while enforcing the state of the model to agree with the observations. An important part of
the signal collected by the research planes during the experiment is due to lee waves. The
resolution of this interpolation problem by gradient methods makes the need for the adjoint
of a non-hydrostatic model with orography.

The construction of the functional to minimize does not make reference to a scalar prod-
uct; it is the notion of gradient which points to an underlying scalar product we have to
choose; choosing it is of no consequence upon the minimum; however the right choice will
ease the minimization process. We should not forget that what we try to analyze are contin-
uous fields of velocity, temperature represented through a discretization process. We should
then ensure that the scalar product chosen is such that the gradients are sufficiently regular
and that they are not misrepresented through discretization.

On the other hand, the equations of motion conserve some form of energy, and scalar
products which bear a relation to it seem more natural in order to interpret the dynamics of
the adjoint equations; at this stage the equations should make no reference to a particular
reference system or discretization process.

We choose the anelastic type of model; this is more convenient as it simplifies the model
state and as we disregard acoustic waves; we have to look how this anelastic constraint
conveys to the adjoint and how it is taken into account at observation time.

Hamiltonian mechanics are a method to deduce energetically consistent model equations
from an approximation to the energy; here, we adopt a more limited point of view to show
how the notion of adjoint helps to design a consistant set of direct equations.

Spatial discretization uses the C-Arakawa grid; the interest here is that, in contrast with
a Galerkine approximation, some choice is left for the discretization of the operators; even
if the direct equations do not conserve energy, we can construct their adjoint; however,
enforcing conservation shows that some of the discretized operators are linked together by
adjoint relationships; as a consequence, the elliptic equation for pressure involves a symmetric
operator; then its solution can be found by a standard preconditioned conjugate gradient
algorithm. ' ‘

So the plan of this paper is the following:

1. independently of the type of model, we discuss adjoint model assimilation as an in-
terpolation problem and what scalar product one should use to get a well behaved
minimization

2. we introduce the anelastic equations and use the notion of adjoint operator in the
design

3. we try to interpret the adjoint equations and discuss what scalar product is the most
appropriate
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4. we use the notion of adjoint for the discretization of the direct model and show that a
minimum effort is necessary to get the adjoint once we have the direct
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2 Scalar product for adjoint model assimilation

The variational methods seek to blend in a single assimilation step observations gathered
during a finite period; the general problem is cumbersome but admits several simplifications;
the adjoint model method of assimilation neglects the model error; it is applicable whenever
the spatial scales of the deviations between the analysis and the guess X, have their evolution
accurately predicted during the analysis period; of course, finer scales remain unpredictable
whatever the accuracy of the model for a too long assimilation period, but scales described
by the operational rawinsonde network are used accurately by the current models.

In this section, we examine the importance of the scalar product chosen to define the
descent direction during adjoint model assimilation.

2.1 The variational problem

The state of a model x is composed of several scalar fields; for the vertical plane anelastic
model we are to use, we have horizontal and vertical speed, and potential temperature:

X = (Z) Then we seek the state of the model x; at the initial time ¢y of the assimilation

period. We then construct a single scalar functional J where all sources of disappointment
are gathered:

e asmoothing term'expresses that we want the initial fields xo = X(#;) to be as smooth
as the spatial covariances C of errors of the guess x,0 = x,(to) entitles us to expect;

¢ an observation term states that we expect the true state of the atmosphere at location
my, and time ¢y, represented in the model by x(my, ), and the K observations %; to be
close; we assume that observations are not correlated, so departures from observations
are weighted by the variance of the observation error o}.

Here, we can introduce the "observation operators” Hj. In the case of pointwise obser-
vations, they are defined by Hyx = x(my, t). Thus we write:

J(x) = 1/2 / (%o —%0) C~ (X0 —X50) +1/2 3 o072 (Hyx — %5)? (2.1)
fl k=1,K

If the guess and the observations are all taken at the same time, minimizing J amounts to
the variational formulation equivalent to optimum interpolation. Otherwise, to relate the

'The smoothing term is written in 2.1 in a concise way. If x(m) is a scalar depending upon the
space location m, then C or C~! are scalars depending upon two space markers m and n; the smooth-
ing term should be written: [(x(m) — x;(m)).C~}(m,n)(x(n) — x,(n))dmdn. C and C-! satisfy:
¥x : [ C(m,n)C~(n, p)x(p)dndp = x(m);

When x is a vector field, C is a matrix depending upon two space markers and the dot in the smoothing
term refers to a scalar product.

If x is a scalar and space markers are discretized, x(m;) = x; is a vector and C is a covariance matrix. If
x is a vector, C is a matrix of matrices.
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different observations times we rely on the fact that the atmospheric state x(m, t) should sat-

1sfy the non-linear model equations N, assumed accurate; thxs strong constraint is embodied
in the Lagrangian L:

v ~ ox
L(x,y) = J(x)+ g y. (5;- - Nx)

y is a Lagrange multiplier and ) the domain of the model. The Euler equations list the
conditions for J to be a minimum under the constraint.

2.2 Adjoint equations

Stating that the Lagrangian is stationary under variations of x and y results in the Euler
equations; the first one relates to the variation in y and gives again the constraint:

ox s ; L L
E = Nx . ; S (2.2)
the second one relates to the variations in x:
96x : ‘ ,
8L(x,y) =6J(x)+ - y. (Ft- - L6x) (2.3)

where L, linearization of N, is defined by: N(x + 6x) = N(x) + L(x)dx; L is usually a
differential operator; various integrations by parts lead to isolate 6x in 2.3; more generally,
‘we define a scalar product by a matrix operator M; for our anelastic model it will be:

— | - -1,7 _ ‘ - [ =y g /) ‘ " . ‘ »

(x;x"Ym /xM. nx[tmT],a(uu + 00 00) o (2.4)
and recall that the definition of the adjomt of a linear operator L is: (y; Léx)a= (L*y; X},
then taking the adjoint of the linear differential operator L is just making the required

integration by parts; the second Euler equation is thus what is called the ad301nt equa.txon
of 2.2

oy | .. -2 r . SR |
‘a‘{ + L y = —ok 2Hk (Hex — Xi) 5;, o (2.5)
with the appropriate time boundary conditions:
= MC! )
0 "o (26)

The adjoint variable y satisfies the adjoint equation L* between observation times; at each
observation time the adjoint variable undergoes a jump at the observation location; so the
adjoint model has the task to integrate backwards the pointwise perturbations represented by
the Dirac weights §; at the observation points m;. Solving the assimilation problem amounts
to find x and y satisfying 2.2 and 2.5 with the initial and final time boundary conditions 2.6.
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2.3 Underlying interpolation

Some insight in the interpolation method can be gained if we do not follow the above ap-
proach. Instead, as model states x(t) satisfy 2.2 we eliminate x(t;) in 2.1 in terms of x(to)
thanks to the resolvent A defined such that (m, ;) = Ni&(m,to); then J is written:

J (xo) = 1/2 /n (%0 = %;) O~ (%0 — %;) + 1/2 3" 05? (HiNjxo — %s)? (2.7)
J will be minimum if its first variation is null; here we write §J using the scalar product 2.4:

6J = <MC—1 (%0 —x,); 6x0>M +3 o2 (CLH (HkN!,xO - 5’:;,) 1 6Xo) (2.8)
where we have introduced L, the linearized resolvent:
Ni(x+ebx) = Nix +eLibx+ o (62)

and its adjoint £*. In the case of pointwise observations, H} represents a pointwise pertur-
bation of the model state. Let us define the scalars A by:

A = —0;2 (Hkaxo - ik)

These scalars are functions of the solution x, and are not known before the problem is solved;
however the following relation is necessary for 6J to be null:

(X0 —x0) = 3 MCMTLiHy= 3 MCLLH, - (29)
L : v k=1,K o L‘k=1,K

L’ is the transpose of L; we have used the relation £’ = M~1L*M; as expected, the choice
of the scalar product which defines the adjoint has no influence upon the solution.

2.9 states that the analyzed deviation from the guess at initial time is the sum of the
K functions of space C L} H}, (these are the Green functions of the problem); we stress that
the number K of observations in an assimilation problem is determined by the observation
network, while N, number of model degrees of freedom should be chosen large enough so
that the solution x converges; otherwise, in the case of a too dense observation network
(compared to model resolution) some aliasing should occur. ;

Fig. 1 shows these Green functions for the anelastic model linearized around rest state
and C isotropic when t; varies. Fig. 2 is obtained with an aspect ratio of 10 between the
horizontal and vertical scales. e -

The analysis at final time is:

X = X, + Z )\kNTC£;H; (2.10)

If the resolvent N and its linearization £ are identity (this is what occurs if T' = p), we
have optimum interpolation with covariance C:

XT = X,T +Z z\kCH: Co (2.11)
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Figure 1: Green functions 2.9 for the biperiodic (x,z) anelastic model linearized around rest
state and reference potential temperature; an observation of temperature is placed at the
center of the domain for a time-lag ¢y —t, = 0, 7 /N, 2« /N, 47 /N with N the Brunt-Vaissala
frequency '

345



;i
3 /ll,l)":!/l

Figure 2: Same as Fig. 1, but for a covariance function with the horizontal scale stretched
by a factor of 10

Comparing 2.10 and 2.11 we see that the covariance used to determine the Green functions
with nontrivial A is NCL*. '

In the simple linear, homogeneous case described in fig. 1, there is no differencé between
the Green functions 2.10 and 2.112. Differences would come for example from amplification
processes absent here.

The adjoint model, instead of transporting the covariance matrix forwards as does the
Kalman filter, transports by £* the deviations from the observations, analyzes them at time
to with covariance C, and transports the result forwards with the non-linear model. The
advantage, compared with Kalman Bucy filtering, is computational economy; the difficulty,
present also in Kalman-Bucy filtering, is we expect the discretized adjoint to be able to
cope with pointwise perturbations H} well enough so that the Green functions CLH; are
well approximated (for distributed observations, such as satellite soundings, the problem
is alleviated); the direct model has to accurately predict the non-linear evolution of the
smoothed fields 2.9, which might be a far more easy job.

The simple example of fig. 1 shows that, in a first approximation, dispersion is used to
relate obervations made at different times but has no net effect upon the evolution of the
covariances. Covariances are advected in the absence of amplification processes.

2This will be shown in the Interpretation of adjoint section
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2.4 Consmtant scalar product

To solve the assimilation problem is to determine the minimum for 2.7; it is found by following
the gradients of J, or combinations of the successive gradients; by inspection of 6J we find:

VJ=C"1(xo—x,) — Y MLLHE. (2.12)

so, comparing with the solution form 2.9 we find that the gradxent is not in the K-dimensional
subspace where the solutlon lies. -

L | N =64 R T ' 'N=16
20 T T T - ’ '
0 — i 0
20}------ SRR  SECTRRY | SPPR Fesesnoennaes -5
T SO S | R Poenonnnnee 10
V.71 S ........... .......... - -15
80 : - -20
0 2 4 6 0 2 4

Figure 3: Gradient VJ with one observation marked by a circle and a Ga.ussxa.n covariance
of guess error. Left: with N=64 modes, Right: with N=16 modes

‘Let us take the example of the identity model (£=I) and K=1 pointwise observation at
location my; Figure 3 shows that the first gradient VJ = H}, obtained with =4 = z,, is the
discretization of the Dirac distribution 6(m — m,) corresponding to a pointwise modification’
of the guess; its norm increases with model truncation®: the problem is meaningless in 1ts
continuous representation. : :

We conclude that there is no convergence of the gradient 2.12 for pointwise observatlons
when model truncation increases.

For a discretized model, however, the minimization process converges, beginning by the
smallest scales; but when the mode] truncation increases, the minimization becomes harder
and harder to perform (Fig 4); with N=64 modes, 25 iterations are what is needed to get
half the way towards the solution.

To get around that problem, we have to change the descent directions. The gradient
depends upon the scalar product chosen; any descent direction can be made aligned with

SLet x be represented in a monodimensional scalar grid-point model over a periodic domam m € 0,2x
with N points m; = 2ix/N by a column vector x;; the scalar product is defined by (x, Y= E,,-l N Tl
if x=1, its norm is 27 independently of truncation N; then an observation in m; is made through the line
vector HY = 6’ the gradient is the column vector H] = N 6' the norm of the gradient is 2— and i increases

with N
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Figure 4: Minimization with gradient VJ. Left: with N=64 modes, Right: with N=16 modes;
+ mark the exact solution, circles the observations

the gradient by a proper choice of the scalar product?; let us define a new scalar product,
related to M, by: |

(& F)a = (M7'%;§ (213)
and choose M to be equal to guess error correlations: M=C; the gradient becomes:

Vod = (%0~ x,;) — Y MCLLH, (2.14_)

As is shown in figure 5, the gradient converges®as soon as model truncation gives a good
spatial representation of the guess correlation error; '
If the deviation from the guess x{—x, at iteration i and the previous gradients (Vo J), j <
i are already in the K-dimensional subspace, then the present gradient (VoJ)', the next de-
scent direction d* and the next deviation from the guess x4t —X, lie also in that space. This
shows that, if x] = x,, then all the minimization is made in the K-dimensional subspace.
As the conjugate gradient method is exact in a number of steps equal to the dimension
space, the mimimum will be attained in at most K steps when the evolution model is linear;

in the presence of 1 observation, 1 descent only along 2.14 will be necessary, as shown in
Fig. 6. : v .

“It is not difficult to show that, if d is a descent direction, then we can choose M to define the scalar
product such that the gradient is -d. N ’ " L
Let us construct an orthonormal basis {e,} with e; aligned with VJ: V.J = g1e; and ez in {d,VJ}:

d =die; +dze;
d is a descent direction if (d;VJ) = dig; < dO; the dgradient with the scalar product defined by M as
! o . . : 1 2 '

. 51 N _ _
in213is VyJ = MVJ; any matrix M = | ~g;, & * | witha > —3‘;’57‘ is positive definite

and satisfies MVJ = -d
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Figure 5: Gradient CVJ with one observation and a Gaussmn covariance of guess error.

Left: thh N=64 modes, Right: w1th N=16 modes )
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Figure 6: Mlmrrnzatlon with gradlent CV1J. Left: ‘with N-—64 modes, nght with N=16

modes
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We thus find that the scalar product appropriate for the adjoint model assimilation
problem should be based upon the correlations of the guess errors at initial time.

Nevertheless, we shall see that for the adjoint equations to reveal their meaning the scalar
product used to define £* should be based upon the energy of the system.

2.5 Condition number for minimization

Bounds upon residual error e, at step n of an iterative minimization process are usually
expressed in terms of the Hessian condition number . For example, for conjugate gra.dJent
methods (Golub, 83), we have:

(en; He) < 4 (; - ?) ™ oo Heo)

In our case, the Hessian for the preconditioned problem with gradient 2.14 is H = I +

C'?H'O"'HC'* where H and O are defined as H = ", HyL;, and O = diag(o}).
Practically, when C is homogeneous, convolution by C to get the gradient 2.14, or decon-

volution to compute the scalar product 2.13 is easy: it amounts to a multiplication (division)

in spectral space; for a spectral model, the matrix C is diagonal when it applies to spectral
components.

Let us show that & is simply related to the ratio of the guess error to the observation
error and that & converges as well as model truncation increases.

First, in the case of K=1 observation, H is identity with a rank one modification; let
A = O~ HC H' be the ratio of the discretized variance of guess error at the observation point
and time HC H' to the observation error variance Oj; the eigenvalues of H are 1, except the
one associated with the eigenvector w = C*2H’ which is g = 1 + M. Thus the condition
number of H is k£ = y, independently of truncation.

For the example of Fig. 4, k=2 independently of truncation. This is not the case with
no preconditioning®: k — oo when N— oo. For Fig. 4, k=53 for N=16 and goes to k ~ 1018
for N=64.

SWith the same example, let us assume that guess error is homogeneous in space; then its spectral
representatxon is diagonal: C‘,, = C16},; the spectral representation of the gradient 2.12 for an observation
in m=0 is H, = 1, as expected for the truncated spectral representation of a Dirac function. Then the
gradient 2.14 (C'I? ’)' = C) has a norm %E,ﬂ’mz C}# which is convergent when N— oo with ordinary
requirements upon the spectral behaviour of a correlation function (as soon as C}? < ,‘;, A arbitrary constant
and a>1).

6A sketch of the proof is as follows: let us take the case of no observations; then X = C~!. As C
is a symmetric bounded operator its eigenvalues p; can be ordered in a sequence converging to 0: ‘1} -

oo when i — 00; its highest eigenvalues y;, i = 1, N are approximated by those u! of the discretized
problem, so + — 00 when N — oo
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This result can be generalized for the case of K>1 observations; let (v,A) be one of the
K solutions to the generalized eigenvalue problem:

HCH'v = \Ov

Then CY2H'v is an eigenvalue of H for g =1+ .

For the case of Fig. 7, k=11 and 5.44.

With preconditioning by C we stay in the K-dimensional subspace; in fact, it is the
condition number of M restricted to it which is relevant, as is shown by the case of 1
observation. M is identity modified by a rank K perturbation, so its elgenvalues are all 1
except for the K ones given above.

Thus the condition number of the restricted Hessian is:

_ 14 /\ma:u
- 1 + Ams'n

When observations are of equal variance and decorrelated, the optimum is still found in one
step.

Practically, an estimation for « can be easily computed; we have the bound:

A < maz; (Z 4 gH ik ) (2.15)
kk )

A special case deserves attention: the monovariate case when L is identity, observations
pointwise and C with positive coefficients; it is then easy to compute this bound: we construct
the weighted sum of Green functions centered at the observations:

C(m’ mk) | |
= —_—— 2.16
o(m) = 3 25 . (216)
A is bounded by the maximum of this field: A < ¢(m;) Vk; no easy minoration is found for .
Amin; SO the majoration for & is then:

C(mk, mk:)

k<14 mazkz 5
KR!

o(m) is in fact just the gradient with observations equal to -1.

- Convergence in one minimization step does not ordinary occur with uneven spacing or
observation errors; the gradient is strong where observations are precise or clustered (see
Fig. 7); Convergence is known to occur first upon the leading eigenvectors of the Hessian.
(see Fig 8 for our test-case), and convergence has to occur first upon quite fine scales in data
rich areas before any modification to the guess is made in data poor areas. We would like
instead convergence to occur for a given wave-length more uniformly over the model domain.

This shows that the nature of the remaining difficulty is to be found in uneven data
density.
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Figure T: gradient CVJ. Left: with o7 =1 and 0;? = 10, Right: with uniform observation
error
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Figure 8: Leading Eigenvectors of the Hessian. Left: 3 leading ones, Right: the fourth one
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Figure 9: Minimization with gradient CVJ
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To get around, we have to abandon the clean framework just developed; practically, to
avoid costly operations, precondltmmng should be restricted to multiplications by diagonal
or other sparse matrices, either in spectral space (this gives convolution in real space), or
real space (this is modulation); the preconditioning to get CVJ in 2.14 enters the first
category; here we want modulation according to data density; it is known pointwise from
2.16; the gradients for isolated observations have some characteristic half-width « (coming
ma.mly from the decorrelation length of guess errors); in order for the gradients to be not
too distorted, the modulation should have scales superior to a. We propose to con51der
modulatlon by the inverse of:

HCH'|;
a(m)—1+ZCb(m m,)xz:| kklk

(2.17)
where C} is a convolution operator of half-width 8. The above formula is not as terrible as

it looks; it boils down to 2.16 in the spec1al case where the formula is valid and f=a.
The gradlent is thus:

V,,JJ = d—? X (XQ - X, — Z)\kCL:LH,IC) L | (218)

We then obtain a better convergence in the first descent steps; convergence is, of course,
comparatively deteriorated in further iterations: with the gradient 2.18 the solution cannot
any longer be reached in K steps due to the distortion of the Green functions; The optimum
for our test problem has been found for the convolution length B=1.5a; for f=00 we recover
the gradient 2.14.

N=32niter=1 = N = 32 niter = 1
0.1 ; — o ! :
0 0o
A 0.1
-0.2 0.2
s

Figure 10: Minimization with gradient CVJ (b=00) and =1 x CVJ (B=1.5)
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itern® 0 1 2 3
CVJ(B = o0) 1.71 | 0.58 | 0.007 | 0.00036
o1 x CVJ(B=1.5) | 1.71 | 0.035 | 0.0031 | 0.00084

Table 1: Distance to solution during minimization according to type of preconditioning

3 The non-hydrostatic set of equations

As the most widely used system for variational assimilation is based upon the hydrostatic
equations, it might be helpful to recall in this paper the derivation of the anelastic equations
with some emphasis upon the energetics.

3.1 The Euler equations

We adopt the tensorial notations by Bonnet, Luneau (89); once acquainted with them it is
possible to write advection terms in flux form in a concise way. The advection of the vector
© by the advectmg field ¥ is expressed with the help of the divergence of the tensor # ® &
its components in the orthogonal cartesian system €; are given by:

Ouivi

—&;

ozi

The Euler equations express the conservation of mass, momentum, and "total energy” Er =

1/24.@ + ¢, T:

ViRd=

=—+Vopi = 0
E—+V.(pu®u+fi) = pg
+V. (pETﬂ' + pf.ﬁ) = il

In a closed domain, E = f; (1/2pu® + pc,T + pgz) is conserved. A classical approximation
to it manipulates the potential term under the hydrostatic hypothesis and will appear later:

E= / (1/200 + pe,T) + / zp (3.1)

We can derive an equation for potentlal temperature to be used in place of the total energy
E7T; under flux form:
dpb

B +V.pif =0
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3.2 The anelastic system

The compressible system necessitates some tricks in the temporal discretization to cope with
the rapidly moving sound waves; we focus here on the essential phenomena and simplify the
model state by considering a filtered system.

We define for p, 6 and p reference values j(z), 6(z), #(z) in hydrostatic balance: dp =
,Egdz, deviations from them are primed quantities: p(z,2) = p(2) + p/(z, 2), etc, and assume
p' << p (anelastic hypothesm)

Perturbation in density p’ is neglected everywhere, except in the buoyancy term where it
is multiplied by g; g is assumed greater than the accelerations. The filtering of sound waves
result from the omission of the local derivative in the contmmty equatlon

From the linearized state equation we have:

(14 B) -2,
D

The anelastic system is thus:

95 A a
T VGien = o -
- 9p8 .

-+ V(@) = 0

where we have gathered in P all the terms containing pressure.

3.3 Pressure term and conservation of energy

In this section we want to show by a simple algebraic argument that, as pressure does not
appear in the 0 equation, then the form of the pressure term is deterrmned by the expressmn
of kinetic energy. L :

Let us gather in S buoyancy and advectlon terms so that the momentum equation is:

dpi o ’
:at =5- pr o o (3.2)

and define kinetic eﬁergy as:
E.= /n (1/2p1.4)

Its tendency is:

dt o
The first term is conversion from kinetic energy to potentlal energy; normally, pressure does

not appear in the potential energy, so the contnbutmn #.P) has no other to cancel w1th
for it to be null we require that:

[3~4

Vit V.ji = 0,87 =0 = <p*; ?> =
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It is a stapdard theorem’that with the above condition there exist a scalar p such that:

= V(p)

1| M

The momentum equation then writes:
dpi 6’

. = -— -‘_--0___— p_’
5 TV-(pE®)=-§> pVﬁ

and, with the definition of Exner pressure = = T'/6 and the relation % /8z = ~g/8 we verify
that the system then conserves a total energy of the form 3.1 without the boundary term:

E= /ﬂ (1/24.% + ¢,70) pdzdz

This form of the pressure term is identical to the one used by Lippé, Hemler (82) or
Lipps (90) for models expressed in Exner pressure; the pressure term used by Durran® can

"The matrix form of this theorem is more familiar and will be employed later for the discretized model;
if the discretized divergence is represented by a matrix A and the gradient by the adjoint matrix —A*, then
the above theorem amounts to the fact that Ker(A) and Im (A*) are supplementary: if 7 € K er(A) and
PLi, then P € Im(A*)

SIn Durran (89) one uses a pseudo-density:

p=

Ql'bll

the anelastic constraint has the form: o

V.p0d=0

In contrast with the energy 3.1, no combination is made of potential and internal energy involving the
hydrostatic approximation, but the pseudo-density is used:

E= /p"'dzdz (1/2142 +1/2v + gz + c.,%ﬂ)

The pressure term can be found from the expression of kinetic energy and constraint only; let us write the
momentum equation as: ‘ :

= adv + buoy — P

|

the pressure term produces no energy if:
s - .- g ﬁ
Vi: V.pi=0= [ p*i.P= (p0u).-0-=0

Then, in the same way, there exists a scalar 7 such that:

P =cyVr

which is precisely the form appearing in this paper.
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be guessed in the same way from his continuity equation and approximation to the kinetic
energy.

Besides closing the energetics, this form of the pressure term will s1mp11fy the va.natmnal
problems to be found later. : :

For further reference, let us introduce the modified anelastic equations of Ogura &
Phillips; they do not ensure conservation of energy due to a different pressure term P = Vp

3.4 Elliptic problem for pressure

We have two prognostic equations; pressure here enters as a Lagrange multiplier so that
the anelastic constraint is satisfied; taking the divergence of the momentum equation 3.2 we
eliminate the temporal derivative thanks to the continuity equation and obtain an elliptic
equation for p:
V pVp = V. g

The pressure term keeps the divergence null but also ma.mtams the boundary conditions for
. In a closed domain the wind i 1s tangent to the boundary; if 7@ is the unit vector orthogonal
to the bounda.ry, the condltlon n = 0 translates into Neumann boundary conditions for

p: 7.Vp =n. S for lateral open boundanes the Orlanski radiative condition a.m =4+ ca'” =0
still leads to the specification of Z i and to a Neumann problem for p-

4 The adjoint equations

While it is sometimes advocated that the adjoint refers only to the discretized form of the
equations, we think it worth to have a look to the continuous problem.

4.1 The anelastic constlr_ai’n‘t‘

Let the Hnéarize& evolution operator be L = L, ) We will write Vp instead of (Y) )

. Lg

The model equa.tlons in the Llpps-Hemler form can thus be written as:
opx | |

ot |
p = (V.pV) V.Lpx; pOp/0it = il.Lypx

= Lpx—pVp

taking the scalar product by x* we integrate by pa,rts to get x. isolated on the left hand side;
we are left with

(V.5 (V.5V) ™" V.Lyjx)
We thus have to know the adjoint of the inverse operator with inhomogeneous boundary

conditions. To avoid this difficulty, two approaches are possible: the one in which we define
the model state space, the other in which we come back to the Lagrangian formalism.
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4.1.1 Lagrangian method:

We will incorporate in our Lagrangian explicitly the anelastic constraint; here we have pro-
vided with observations at only final time.

ap | ; ; .
L(x,x",p,7) = /n %00~ %o + /Q (aL:‘ — Npx + pvp) - /Q FEVT + 0% (Hx — %)?

which should be stationary for all variations in x,y ( 0,) , P, 7, resulting in the Euler

equations:
Ba:c Npx+pVp = 0
oy | _r. _
Bt +pLl’y+pVe = 0
: V.pgt = 0 vn=0

plus adequate boundary conditions in time.
The adjoint variable evolves with the same constraint as the direct one and the role of
the pressure 7 as a Lagrange multiplier is here evident®. :

4.1.2 Projection method

We have to recognize that not all velocities @& of £, space of vector functions of position
qualify to be part of a model state. They have to belong to a subspace F defined by:

V.pi 0

d@.fi|. = 0 (rigid boundaries)

The pressure term corresponds to a projection P : €~ > F of the model state; P is a
projector (a projector satisfies to P? = 'P): ¥ is left unchanged if it already is in F. The
temperature component of the model state is left unchanged by P. :

We have to consider the immersion Z from F into £ and distinguish formally the two
spaces even if FCE; If L is the linearized evolution operator for a time-step the complete

SWould we have taken the modified anelastic form of the pressure term for the direct (P = Vp), the
resulting adjoint equations would have been:

S +pLY+ VT = 0
Vo = 0 ©9i=0

Then the adjoint variable would evolves with a different constraint from the direct one: the speed would be
non-divergent, not the momentum density.
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evolution operator writes: PLT; the adjoint will be: T*L*P* according to the scheme:

F F F F
I | Tt P AN ¥ | P
E — € E « €&
L ‘ L*

The adjoint of 7 is the orthogonal projection upon F by:
(@) —i=0=>Vie F: (i;7-T"0) =0
The Lipps-Hemler'%form of pressure gives the following projection:
i€€—P@E)=i-V(V.e9) " Vi
We verify P is orthogonal, so Z* = P, provided enters the scalar product uﬁder the fé;m of
kinetic energy: - '
(@;7) = / pi.ddzdz

The "lagrangian” and projection methods, are slightly different for the modlﬁed a,nela.stlc
equations

In the projection method, the adjomt variable ¥ evolves in F a,ccordmg to:

: ay ey, =
5 =~TLPy; Vi =0

while in the Lagrangian method the adjoint variable z = (":) evolves in D: -

0z _
ot

The two projections Z* and P* are both perpendicular to F; we have in fact P*I* = P*
If the relation z = P*y is valid at starting time, it will be conserved:

oP*y
ot

This shows the two methods are equivalent; the second one has one projection less.

—P*L*z;V8 =0

= _P'L*P'y = —P'L*z

10For the Shallow-convection form, P is defined by: ,
te€ —>'P(u) =1i- p"IVA 'y it

and is not orthogonal; different projectors are necessary for the B.dJOIHt and for the dlrect
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4.1.3 Observation term and boundary conditions

The adjoint equations with the observation terms and boundary conditions in the presence
of the constraint are:
dy

35 +TL"P'y = —op*T" Hy (HTx - %) &, (4.1)

with the appropriate time boundary conditions:

{YD =I*C 'Ixo

iy 4 (4.2)

to be compared to 2.5 and 2.6. This shows two things: the constraint is used at observation
time and is part of the observation operator; the observation of one component of speed will
be used to modify both components, without any recourse to the initial time covariances of
the departures from the guess. ,

The equivalent for the hydrostatic models would be to assume the model trajectory
stays on the ”slow manifold” upon which the initialization process projects and make one
initialisation step at each observation time.

4.2 Interpretation of the adjoint equations

Scalar product:
To define an adjoint, we need a quadratic norm; the exact energy is not quadratic; instead,
we will use the quadratic aproximation 2.4 valid only for small departures of 8 from 4.

Let u,w,0 be the basic flow for linearization (different from the reference state p,p,0
necessary in the anelastic approximation), u’,w’,8’ the perturbations from that basic flow
and u*,w"*, 0" the adjoint perturbations.

The linearized equations, in the Lipps Hemler form are:

ot _ —pRVE — pit. Vi — 9—%— —5Vp

ot
o5
ot
Upon scalar product with the dual variables, @*, 6*, reordering the adjoint equations are:
opu* gpo*vo
ot g 9,

3179* ==t — mhie D1 =0 02
el —V.pua ~ pu Vo + pf*i.Vin (0 )z

The terms in the adjoint momentum equation are:

= —pu.Ve' - V.pi'd

= ~V.pi' @i+ (Veud).pi+

PVp

e V.pi* ® i, advection of the velocity perturbation, identical in the direct

® ‘%"1%’5, buoyancy term modified from the direct by the factor %;9—
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o (V ® @*).pil, adjoint of the perturbation of advection in the direct and hardly réa,da.ble,

part of it is absorbed by the pressure term, it helps going to the vortlcxty formula.tlon,
with:

pu=k><V'¢; w=Vx4u

retaining only the advection terms in the vorticity equation:

& s () s (w2).

Upon scalar product by #* , neglecting the gradients of p : 5 = 1, the adjoint of the
above terms is:

Ow* .
5 = -J (Y,w*) — ...

only the advection of w* remains in the adjoint; the clumsy term has vanished.

The terms in the adjoint thermodynamic equation are:

e V.pif*, advection of the § perturbation, identical to the direct
e po*u.Vin (52)2 , residual of the previous term if #? is not linear
e pii*.V0, perturbation of the advection of 8 (of 9 in the direct).

We notice that the buoyancy term from the direct is approximately exchanged with the
advection of mean temperature from the adjoint.
The adjoint tries to explain the perturbations at final time in a minimal normfashion;
for a scalar T passively advected the linearized equation would be: ~
; - |
—B_:‘_ = —pu.V7' - pu'.Vr
and a smoothing term for 7 would have to appear in the assimilation problem. Two posm-

bilities are given to explain the oberved perturbation: either assume the perturbation 7’ was
advected, thus the adjoint equation for 7

or*
o

or modify the basic flow advecting the perturbation, thus the following contribution to the
evolution of adjoint velocity:

= —pu.VT

ou*
This term, when the passive scalar is potential temperature, is the buoyancy term in the
adjoint momentum equation.

= —7"V7
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So there is not complete identity between the adjoint and the direct; fisrt the advection of
momentum has not the same form; second, the exchange between buoyancy and advection
of mean temperature is not exact; this has to be linked with the fact that the linearized
equations conserve the energy we have defined only when u is uniform and 84, constant.

This was the case in the example of Fig. 1. Let us determine the conditions upon the
covariances C so that they are left unchanged by the linear model evolution: £LCL' = C.

As there is no amplification of perturbations for the norm M corresponding to energy:
Vx i (x;x)p = (L£x;LX)pr, 50 L*L = T;

From the properties of the adjoint under a change of scalar product, the condition we
seek is:

LCL = LCM™IL*M =C

which shows that CM~! has to commute with £; so C must share with £ its eigenspaces.
Due to the symmetries in £ and M, the form for C can be given. £ and M are homeo-
geneous in space so they are block-diagonal in spectral space; let k = (kym) denote the
wave-number; each block £; of £ is a matrix whose order is the number of independent
variables of the model, here 2 (we can choose vorticity and potential temperature); L is
antisymmetric with pure imaginary eigenvalues —iku =+ \; and complex eigenvectors, distinct
for each wave-number. CM ™! has to share the block decomposition, soc CM-! is homoge-

neous in space. Each block of CM~! is symmetric, so its eigenvectors are real and cannot
be those of L7 unless C; M = agl. So ' ‘

| ’ ! I-c'.is; Q .
.= “EY(YR) ) = §
cem2(() () -V &)

where oy is a different (positive) constant for each wave-number. :

In other words, C is homogeneous, there is no covariance between model variables § and
w, the covariance function for § can have any admissible shape, but the covariance function
for w is deduced from the one for 6 to make equal covariances in the kinetic energy part and
potential part. This is not surprising, since the only terms left in our linearized equations
reflect the exchange between kinetic and potential energy of the perturbation. .

~'One can then wonder whether there exist a scalar product for which the adjoint veduatidns_
are identical to the direct ones so that £*£ = I. The answer is we need the basic state to be
stationary and stable; if the basic state is stationary, then there exist a quantity quadratic at
first order in u’, 6’ called pseudo-energy A (Scinocca & Shepherd, 91). Its quadratic part A
is conserved by (and defines) the linearized equations. When the stationary state is stable,
A can be used to define the scalar product. It can be shown that the adjoint equations are
then identical to the direct ones. _, : - “ B
However, conditions for a covariance matrix to be left unchanged under transport by the
model] linearized around a stable stationary state are still to be found.
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5 Discretized direct model

5.1 Generalized coordinates

We need to modify the cartesian system of coordinates in order to ease the uneven boundary
conditions produced by orography. Instead of applying a vertical change of coordinates
only, a general one can be applied. As is the case for most hydrostatic models, the model
state is expressed in terms of the horizontal components of speed. However, the change of
coordinates is explicitly apparent in the use of the contravariant speeds for advection.

The drawback is we need some algebra to get to eqn. 5.1

An adequate treatment of the subject is to be found in Dutton (86); we summarize the
only part necessary here.

The terrain following coordinate defined in relation with an underlying cartesian coordi-
nate system (z,, 1=1 2% = (z,f) the new system is denoted by overbars, and we define an

indice such that: (Z',z =1,2) = (Z,z). The vectors tangent to the isolines of Z* given by:

0z - .
{3}=2(5)

Oz

el_ |3z az

a1-|% &
0z 0z

are called the covariant basis; the vectors & = Vz' are orthogonal to the isolines and are

called the contravariant basis. The components of a velocity vector upon the tangent basis

transform as the contravariant basis under a change of coordma,tes and are thus called
contravariant components.

A surface integral can be calculated in the new coordinate system:

/ f(z,y)dzdy = / ¢**f(z,7)dzdz

N8I

g'/? is expressed in terms of the metric tensor:
1/2 = det (J; )
Inverting JZ we get reverse relations:

0z az |

N _af80. _ -1 az 9z
{;}=c{g} =g NS
0z 0%

and C is used to get the contravariant components from the cartesian ones:
i =08 = u'i; => @ = Cuf
An infinitesimal vector known by its contravariant components will have the length:

- —-

.U = u'gyu’
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with the metric tensor g defined by:

dz* Oz*
= (.J=\* J7 —
9i; = (J3)" J; 9% 0%
The gradient of a scalar has simple covariant components:
Op

é'i-ﬁp =pi= oF

On the contrary, the derivatives of vector components are not usually transforming like

tensors; we have to resort to ”covariant derivatives” where ” Christoffel symbols” intervene;
H'IPV are defined ae:

= —
v dzd ,
Some of the Christoffel symbols are null, so that the divergence, in terms of the contravariant
or the cartesian components is simply given by:
dg*/*ud BC1i g2y,
-1/2 og w _ -1/2 gy
V=g =9 FE

The cartesian components of the gradient can be found upon multiplying the above by p
and integration by parts; from:

/gll2pv_ﬁd5d§ = _/gl/zﬁ_Vpd:Edi = —‘/gl/zujC"'j g—g;dﬁdﬁ

we deduce, taking @ = i:

;; Op
z, Vp=-Cl_= 35
They can also be found by applying the divergence formula:
- - - ocC K gll 2p
i Vp=Vip=gT/i—sr=

The fact that the two expressions are sought to be equivalent in their discretized form is
what is coined "metric identities”.

The cartesian components of moment are scalars; they result of the scalar product pu; =
zJ pu; con31der1ng that 7 is constant:

i. (V.(p 0 ) = v. ((p2.0) 9)

This equality is used to express the advection terms in the model; no Christoffel symbol will
thus be necessary.
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5.2 Component equations

Let U be g'/2 times the contravariant components of the moment; it is obtained from the
cartesian components of speed through:

U = gllzﬁcuuj |
The continuity equation writes:

| _, U
g'/*v.pit = 5 = 0

1/2 times the advection of horizontal momentum writes:

)

auU '
T 93

We are now able to write the component form of the equations:

4 (@51

dg'*pu auU' TP
a0z
ag”’pw _ owU' | g0 o o
% - “om t9g kP
dg'’p0 06U
ot - aU(?:z:'
0 = oz

These equations appear as the advection of 3 scalars coupled through the buoyancy and
pressure terms. Compared with hydrostatic models in general vertical coordinate they are
more simple. :

5.3 Discretization of the equations

The precise discretization might be important for energy conservation and stability. For
Galerkine methods, once the finite elements chosen, the discretization follows and energy
conservation is automatic. Here, with a grid-point method, conservations are easier to obtain
when one is aware of the notion of adjoint operators; partlcularly, this notion is not ev1dent
for the extrapolatlon operators at the boundaries.

The Arakawa C-grid is used; cartesian and contravariant components of speed are deﬁned
at the same points:

w w z= Az
p u p z= 1/2Az
w w z= 0
pu p z= -1/2Az
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that is w is defined at the domain boundaries, and pressure is supposed to be defined one rank
outside boundaries so that the normal gradient is defined at the w points on the boundary
w is defined at K levels; u,8 at K-1 levels; pressure is used at K+1 levels.

I found no easy way to infer the discretization of the advection terms from the divergence
equation. The advection terms are discretized as follows, with less averaging operators than
would be deduced from a strict application of the discretized divergence:

1/25 e
Bgatpu = =8 (mUmgu) — 6, (m;Wom,u) — 1. (B + P)

1/2~ ’ s )
dg atpw = —b; (mepUmow) - 6, (moewW.m,e,w) — k. (B + P)

1/25 | ‘
agat p _ —6z (U.mz0) — 6, (W.m_8)

with the classical Schumann operators:

U(z +1/2Az%,3) - U(z-1/2A:c z) ol = U(z +1/2A%,2) + U(z — 1/2A%,3)
Az : = 2

6:U =

B is the buoyancy term, P is the pressure term.
In order to calculate the vertical advection at the boundary, extrapolations ey, ew, ey, €s
of w, 8, U, W are necessary.

We ha.ve to specify the discretized relation between cartesian and generalized oomponents,
we will choose:

U 9 pu B 95 =9 oM
(W) =C (91/2510) ¢= —1/2§Em e 9'1/25_"’
oz = oz

Another extrapolation, for u, is present at the boundaries.

So we have to verify conservation of kinetic energy by the advection terms; we have also
to discover the precise form of the buoyancy and pressure term.

5.4 Conservation of energy

5.4.1 Discretized energy

We wish our equé,tlons to cbnserve énergy, at least, advection terms should conserve kinetic
energy; several obvious choices are possible, a.ccordmg to the Welght a we give to the w
component on the boundary, deﬁmng the two scalar products as:
i i
(u;v)y = z Uipvip  (Wiw)y = E QL Wiklik
k=1/2,K-1/2 k=0,K
so that:
E.=1/2 (glﬁﬁu; u)u +1/2 <g1/2ﬁw; w)w

366



and similarly: :
E, =1/2(g"*pc;7;9),

The choice a; = 1 everywhere gives more symmetric formulations. The choice ay = ax =
1/2,a; = 1 otherwise mimicks the definition one would obtain from finite elements.

5.4.2 Conservation by advection terms

If the advection by ¥ was antisymmetric in the advected quantity # (advection under the
form pw x i, with w = V x ), then conservation of energy would not resort to the non-
divergence of ¥. Here, the advection term is under flux form, so conservation occurs only
when the advecting field is non-divergent. The discretization of divergence and advection
thus are interdependant; we use in the continuous equations the identity:

@ (V.2 ® pv) = 1/29.8%50 + 1/28*V .50

This identity is not true in the discretized case due to the presence of averagmg operators;
one resorts to mtegratlons by parts and to identities such as:

(bzu;v) = — (u; 6v) (mzu;v) = (u;mzv) (mgu;dyu) = (1/26,,142)
to show that: | | |

dE,
' dt

=1/2 <m,u2; 6:.U +6 W) + 1/2 (mow?; 6,U + 5,W) - < ; g‘;”' + P>

thanks to a dlvergence-free extrapolation of U and W, and a copy of w from k =0 to k=-1
at the bottom, and a similar extrapolation at the top. "

This confirms that the discretization of the continuity equation necessary for conservation
is:

U+ 6W=0

5.4.3 Conservation by the pressure term

We wish also the pressure term not to create kinetic energy, as in the continuous case:
‘ g*pu _ _‘ -
Vu,w: (6;;6,)C (gl/gﬁw) =0 then <‘u; P> = 0

Bis orthogonal to the kernel of the above discretized divergence operator; P should be in
the image of the adjoint operator of the discretized divergence: there exist a scalar field
p* = p/p such that:

. (6D | RERREY
P g1/2pg (6" *) . | : (5.1)

where 6} represents the opposite of the adjoint of 8,. No problem occuts in the x-direction
due to periodicity. These adjoints will be discussed later.
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The discretized Poisson equation giving pressure is:

(816 050" ( .) (62:8:) O3

where S , again, represents the tendancy terms other than pressure in the moment equation.

So the discretization of advection determines the discretization of the continuity equation,
which in turn determines the discretization of the gradient for the pressure term. This results
in a symmetric discretized Laplacian, especxa.lly once one has recognlzed that the gradient
uses the adjoint of the extra.polatlon €y present inC.

So far, nothing requires the type of extra.polatlon for u; we m.tght believe that the choice
should be guided by sole accuracy.

In fact, we know that the adjoint of a convergent direct operator is not necessa.nly
convergent; especially extrapolations at the boundary create specific problems.

The adjoint of the divergence leads to a converging pressure term only with a specific
choice of the scalar product and extrapolation for u. If the extrapolation for u is derived
from 2% a" = 0 and the weights ap = ax = 1/2,a; = 1 for the w scalar product are retained,
the pressure term is convergent; if a higher order accuracy is sought by linearly extrapolatmg
u, then the pressure term we derive is not convergent; the only choice is then to give up with
energy conservation and symmetry.

So far, this model has proved to compare well w1th ana.lytlca.l solutlons or Long s model
in extreme situations and is not really sensitive to the type of extrapolations.

5.4.4 Buoyancy term

We can recognize that the form of the buoya.ncy term has to be denved from the discretization
| of the thermodynamic equation. We should have: -

(c,,r,(& 5.) ( ) cglﬂ-“> +(#B) =0
By adjonction of all the operators: | |

e [ m,06,J 3 ‘ : '

We see that there is no reason for the buoyancy term to be exactly vert1ca.1 except for a
judicious choice of the reference state. An extrapolation for 7 and 6 is required for the
tendancy at the boundaries, but is determined by the adjoint operators m} and ;.
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‘We thus have seen that in an anelastic model, despite the choice of a staggered grid and
general coordinates, energy conservation by the advection terms can still be enforced; no
degrees of freedom are allowed for the discretization of the pressure or buoyancy terms.

5.5 The pressure solver:

In accord with the above consideration, we adopt adjoint discretizations for the gradient and
the dlvergence, the benefit is our discretized Laplacian is then symmetric and can be solved
after proper precondltlomng, by sunple a.nd efﬁcxent iterative methods

5.5.1 Boundary conditions

We can modify the divergence operator so that boundary conditions are incorporated. For
simplicity we show how in the one-dimension case: all fields will depend on z only. Then the
matrix of the discretized gradient is rectangular Kx(K+1):

Op|  _ Petijz— Pi-1p
8z Az

k=0;K

The adjoint of ﬁhe above is a rectangular matrix (K+1)xK; two boundary terms appear:

ey - —-Wg
V'“|K+1/2 = Az
- 6w
Vilpgap = Az
- w
v'ul-,-l/z = —A—Z

The modified divergence is null if the divergence is null in the inner domain, and if the
boundary condition w=0 is satisfied on the boundary In two or more dimensions we rec-
ognize that we discretize in fact the operator #'— > V.7 — #.7i6g where 62 is Dlrac masses
distributed on the boundary X. ! '

5.5.2 Iterative solution

To solve:
V. (pu—pVP)-O,paﬂ(k—l K) pi

we minimize the quadratic functional:
I(p) = [ ?Vp(1/25Vp - pi) dzdz
Its gradient for the Euclidean scalar product is: | |

VJ(p) = -V.5Vp + V.5 + 65 (3Vp — pi) .7

369



The gra.dlent is null when both the divergence is null and the boundary condltlons are
satisfied.

Such an iterative method has an efficiency decreasing quadratically with the number of
points in each direction on the grid, or with the aspect ratio Ax/Az; we precondition with
the symmetric operator A:

o 9%

gz T oz?

This operator is discretized in the same manner as the Laplacian, with the change C=I;

vertical and horizontal directions are decoupled; after horizontal Fourier transform we are

left with a tridiagonal matrix on the vertical to invert for each horizontal mode. The operator

A is negaiive definite, fast to invert and so qualifies as a preconditioning for our probiem.
The preconditioned gradient is discretized as follows:

VI = (82 48) (.sz,s)c(gllzpc*(gzp )-a5(%))

The preconditioned operator A~'A has a condition number independent of the truncation
and aspect ratio; it seems for one of the scalar products to depend linearly upon the dynamics
of g*/2, that is, with a Gal-Chen grid, of (1 — h/H)™! where h is the maximum mountain
height and H the maximum domain height. It is found that the condition number depends
strongly upon the type of extrapolation chosen for speed u; it is always low for realistic
mountain heights and shapes. In Fig. 11 we show a pro;ected velocity field for an extreme
geometry.

Ap =

5.6 Discretization of the linear and adjoint models

The complete expression of a discretized adjoint is normally cumbersome; in our case, in
spite of the grid-point formulation, things are comparatively simple; the hnea.rlzed dlrect '
model is composed of five separate steps:

1. conversion from cartesian to contravariant components; there the metric terms are
entirely hidden

2. advection of three scalar perturbations

3. perturbation advection

step 2 and 3 for the linear model are obtained from the non-hnear model: we cast the
advection term as a bilinear operator

O0x |
5}" = -B (qu, exx)
acting upon the extrapolated fields; in linearized form:
/
56_); = —B(eyU;exx’) — B(eyCu'; exx)
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CONTOUR FROM ~—18 TO 18 BY 2

Figure 11: Projection of a constant u=18m/s velocity field; shown is the resulting field of
w. The domain is periodic with Ax=Az; the orography is half a circle occupying 3/4 of the
height. '

‘B has right and left adjoints, so the adjoint advection has two terms:

ox*
ot

= —€3B; (eul;x") ~ C*ep B (" exX)

4. buoyancy calculation
5. projection by the pressure term to satisfy the continuity equation

so the linearized model require no extra development; the adjoint model is made by
combination of the a.d]omt of these five steps, however :

e the ad_]omt of step 1 was necessary for the construction of the direct model

e perturbation advectmn of potentlal temperature ha.s for adjoint the buoyancy operator
e step 2 could have been made self-ad_]omt by an adequate choice of dlscretlzatlon _

e step 5 is self-adjoint

The adjoint necessitates only the definition of the bilinear energy scalar pfoduct; however,

due to the various extrapolations in the direct model, we are led to define some more scalar
products to disentangle the adjoints of the Schuman operators defined in the direct model.
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Due to the removal of lateral boundary conditions by horizontal periodicity, only ex-

trapolations in the vertical are present. One defines scalar products labeled p and we on

extended spaces:
i

(pim)p = Z DikTik

k=-1/2,K+1/2
i
(w; W)ye = E WikWik
k=-1,K+1

We choose for example the scalar product for w as:

(Wiwhw = D wirwi

k=0,K

Adjunction rules for Schuman operators are:

(u; 6,w), = — (8:2(u); w),, (u; , mew), = (m,2(u); w),
(w; 8.p),, = — (8:2(w); p),, (w;m,p), = (m,z(w); p),
(p, 'Stw)p = = (8:2(p); W) e {p, mtw) (m.2(p); W),

z(.) is extension by 0, r(.) extension by copy; for example:
z(w)k = W, k = 03K

z(w)-1 = z2(w)g41 =0
We thus found:
m;.=myz(.), 6. =6,z()
Direct operators shrink the vertical dimension space, adjoints expand it:

m;: RK+=+1 -— RK+e, m: . RK+3 - RK+=+1

with e=-1,0,1,2 for u,w,p,we

In a similar manner, all extrapolation operators have an adjoint which shrmks the di-
mension space.

It has been found that extensmn operators encountered are a.mena,ble to some factoriza-
tions like:

, w+ epw = ey (2(w) + w)
With the above notations, extrapolations are decoupled and can easily be adapted to a
change of scalar product for w or a change in boundary conditions.

Writing the discretized adjoint is straightforward, albeit still painful. Let us detail the
two advection terms:

Perturbation advection: ’

ou
ot

= —ey (2.mz (mU.6;u*) + m) (m,;W.8u*))
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ow*
ot

Adv_ecﬁioﬁ by pértufba.tion:

= —ey, (2.mg (meepU.6;w") + m} (mewW.Eiw*))

ot
The adjoint of C is:

ou” _ —C’*( my (m:u.&,u")‘-i-» epym’ (miw.&,w") )
mg (mzu.6;u”) + ejym; (m.e,w.5w")

e TR 0z T u ng: T
=00 = faz Oz l1Uv

\"™=5z &

The advection of temperature and buoyancy terms receive a similar treatment.
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