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‘Abstract

A four-dimensional (4d) variational assimilation (4dVAR) seeks an optimal bal-
ance between observations scattered in time and space over a finite 4d analysis
volume and a priori information. In some cases, 4dVAR is able to closely fit both
observations and the a priori initial estimate, by making very small changes to the
initial conditions which correspond to those rapidly growing perturbations which
have large amplitude at the observation locations and times. Some observations
may occur at locations and times for which the amplitudes of rapidly growing per-
turbations are not large. In order to fit such data larger changes to the initial
conditions are necessary. Such cases may result in amplification of the analysis in-
crements away from the observation locations. This situation occurs generally for
surface data, because of the damping effect of surface exchange processes. These
interactions are seen in experiments using single observations.

To further explore the impact of surface data in 4d VAR, we conduct experiments
with and without ERS1 C band measurements of backscatter. As expected and
in contrast to conventional approaches, the impact is not confined to the lower
troposphere and the analysis increments are balanced. We focus on the case of
a small intense North Atlantic storm which struck the coast of Norway on New
Year’s Day, 1992. The scatterometer data do have a significant, apparently positive,
impact on the 4dVAR analysis in this case. The example using scatterometer data
also demonstrates the ease with which 4dVAR assimilates nonstandard data, which
have a complex, highly nonlinear relationship with the model variables.
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1 Introduction.

A four-dimensional (4d) variational assimilation (4dVAR) seeks an optimal balance be-
tween observations scattered in time and space over a finite 4d analysis volume and a
priori information (Thépaut and Courtier, 1991; Rabier and Courtier, 1992; Thépaut et
al., 1993). The key a priori information used in 4dVAR is knowledge of the dynamics of
the atmosphere. In addition 4dVAR ordinarily uses an estimate of the initial conditions,
i.e., the atmospheric state at the start of the analysis period. (This background informa-
tion is used in the experiments described here.) Because the atmospheric dynamics allow
for extremely rapid growth of small initial perturbations, it is possible to fit observations
at the end of the analysis period by making very small changes to the initial conditions.
In certain experiments with a single observation at the end of the analysis period (Section
3.1), we will show a strong correlation between the analysis increments, i.e. the analysis
minus the initial estimate, and the most rapidly growing linear perturbations, for the
given atmospheric state and for the time period of the analysis.

Thus in some cases, the 4dVAR is able to closely fit both observations and the a priori
initial estimate, by making very small changes to the initial conditions which correspond
to those rapidly growing perturbations which have large amplitude at the observation
locations and times. Of course observations may in principle occur anywhere and at
various times. A large observation increment near the start of the analysis period will
necessarily require a large change to the initial conditions. Similarly, observations at later
times may occur at locations (e.g. in the boundary layer) for which the amplitudes of
rapidly growing perturbations are not large. Again larger changes to the initial conditions
will be necessary. In some of these cases, a very rapidly growing perturbation may still
be the most “economical” way of fitting the data. In such a case the amplitude of this
perturbation will be large, but not maximal at the observation location, and the analysis
increments will be largest not at the observation location, but at the location of the
maximum amplitude of the growing perturbation. This situation occurs generally for
surface data, because of the damping effect of surface exchange processes.

We will demonstrate this amplification of the analysis increments away from the ob-
servation locations in the case of a single surface wind observation (Section 3.2). This
experiment shows that the impact of surface observations will be very different in 4dVAR
from the impact seen in static analyses either from the standard so-called “optimum in-
terpolation” (OI) analysis or the 3d variational analysis (3dVAR). In particular in static
analyses, the impact of surface data on the analysis tends to decay with height, whereas in
certain 4dVAR analyses this impact grows with height. Furthermore, during subsequent
forecasts, we expect analysis increments confined to the surface to damp out due to surface
friction. Additionally, in 4dVAR the influence of the data is extended in the horizontal
to greater distances and in nonisotropic patterns. The 4dVAR response to a single obser-
vation at the end of the analysis period is proportional to covariances predicted by the
Kalman filter for this problem. Our results therefore serve to demonstrate the potential
three-dimensional complexity of such covariances, already shown explicitly by Gauthier
et al. (1993) for the extended Kalman filter in the case of non-linear barotropic dynamics.

To further explore the impact of surface data in 4dVAR, we examine the impact of
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ERSI C band measurements of backscatter (Section 4). These scatterometer measure-
ments are closely, but highly nonlinearly, related to marine surface winds. As expected
and in contrast to conventional approaches, the impact is not confined to the surface
and the analysis increments are balanced. We focus on ihe case of a small intense North
Atlantic storm which struck the coast of Norway on New Year’s Day, 1992. The scat-
terometer data do have a significant impact on the 4dVAR in this case. Evidence from
the high resolution operational analysis and forecast and from AVHRR imagery lead us
to conclude that this impact is positive.

The example using scatterometer data also demonstrates the ease with which 4dVAR
assimilates nonstandard data, which have a complex, highly nonlinear relationship with
the model variables. The scatterometer data are notorious for having a directional ambigu-
ity (Price, 1976). Generally 2 or 4 distinct wind vectors or ambiguities may be determined
from the backscatter measurements at a single location. If the ambiguities can be ranked,
and if the ambiguity ranked first does in fact have a high probability ( Pr > 0.6 ) of being
the closest ambiguity to the true wind, then spatial filtering techniques are effective at
choosing the correct ambiguity (Schultz, 1991). Otherwise additional information must
be used to resolve the ambiguities. This is the case for the ERS1 scatterometer. The
variational assimilation method provides a natural means of combining the backscatter
measurement with various other observations and a priori sources of information (Section

4).

2 Methodology.

In the experiments presented here, the 4dVAR assimilation determines the model evolu-
tion which minimizes a cost function. This cost function measures the sum of the misfits
to the observations and to an estimate of the initial conditions at the start of the analysis
period. The model is assumed to have no errors. By this expedient, the control variable,
i.e. the variable which we vary to minimize the functional, is reduced to the initial condi-
tions. However, the assumption of a perfect model, as well as fundamental predictability
properties of the atmosphere (Gauthier, 1992), restrict the 4dVAR to limited time periods.
Here all experiments are 24 hours in length.

In what follows we briefly present the functional, the model and the minimization
procedures. The references cited below contain further details. Features of the 4dVAR
which have not been formally published yet—the parametrization of vertical diffusion
and surface friction, and the observations cost function for scatterometer ¢° data—are
presented in greater detail. Also we briefly present (again providing references) some
results on the equivalence of 4dVAR and the Kalman filter, and on finite time optimal
modes. These results are used below (Section 3) to explain the numerical results of the
single observation experiments performed.

2.1 The 4dVAR cost function.

The principle of 4dVAR is to find a model solution which is as close as possible, in a
least-square sense, to the observations available over a time period [to,tn). (The reader
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is referred to Lorenc (1986) for a full presentation of the material of this section and of
Section 2.6.) The solution may also be required to simultaneously satisfy other constraints
either exactly or approximately. The misfit to the data and other approximate constraints
is measured by a cost function. The smaller the cost function, the better the fit. For the
case of Gaussian errors, a squared error cost function of the form given below should
* be used (Lorenc, 1986). In the present case an approximate constraint is based on a
background, z;. This background is an a prior: estimate of zp, the model state at the
initial time to. If there are exact constraints, these are used to reduce the dimensionality
of the control variable. In the present case the model dynamics are an exact constraint
and the control variable is thereby reduced to zo. These considerations lead to defining
J(zo), the cost function for 4dVAR by,

Jwo) = (H(zo) ~ ) O (H(zo) ~9) + 5 (w0~ ) B o= m) (1)
Here y is the vector of observations distributed in time and space, H is the operator
which predicts the observations from the model initial state, O is the covariance matrix
of the observation and representativeness errors and B is the covariance matrix of the
background errors. In practice the first term on the right hand side of (1) is broken up
into a sum of smaller terms for different times and different observing systems by assuming
the errors at different times and for different observing systems are uncorrelated. Note
that (1) is also the cost function for 3dVAR if z¢ is replaced by z, the model state at
the synoptic analysis time. For 3dVAR H provides the interpolation to the observation
locations and the calculation of the observed variables. In 4dVAR H also includes the
action of the forecast model.

2.2 The scatterometer observations cost function.

In Section 4 we present 4dVAR analyses with and without C'band scatterometer data from
the ERS1 satellite (Francis et al., 1991). Scatterometers are active radars which respond to
the roughness of the ocean surface in the centimeter range principally via Bragg scattering.
The measured physical quantity is radar backscatter, referred to as 0°. Measurements
of o® show a strong dependence on wind speed and direction (Schroeder et al., 1982). In
conventional scatterometer data processing, several collocated ¢ measurements may be
used to retrieve wind vectors (Jones et al., 1982). The retrieval is however ambiguous
(Price, 1976). A further spatial filtering or reference to a background field is necessary
(Schultz, 1991). To use the o data within 4dVAR we simply add a new observation cost
function. In this way the 4dVAR approach combines the scatterometer wind retrieval and
ambiguity removal problems with all other available information, including other types of
observations and other constraints. The scatterometer cost function is

S (H(z) - 0")7 O} (H () - o) )

for each group of scatterometer data. Here z is the model state variable, at the time of
the data (i.e., z is the forecast model state from initial conditions o) and H is composed

of:

Jscat =
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¢ An inverse spectral transform from spectral to grid-point space.
¢ A horizontal interpolation from the grid-points to the observation locations.

¢ A vertical interpolation to evaluate neutral stability wind at the reference helght of
the scatterometer (10 m) from wind at the lowest model level.

A model function to compute the ¢® that would be observed given the neutral
stability wind.

The adjoint of all these operators is of course needed to compute the gradient of Jscq: with
respect to the control variable. In the present experiments the horizontal interpolation is -
linear in latitude and longitude. The vertical interpolation is based on a simple logarithmic
wind profile with no stability correction. (However, provisions have been made to use the
full boundary layer formulation in evaluating Jeee: ). In this case the 10 m neutral wind
is a function of the lowest model layer wind, temperature and specific humidity, and the
surface pressure and temperature.) The model function is the prelaunch CMOD2 (Long,
1991) as tuned by Stoffelen and Anderson (1992a). According to CMOD?2, given the
incidence angle, c® depends only on the 10 m neutral wind speed and direction.

We assume that the scatterometer observational errors are uncorrelated. The observa-
tional standard deviation is usually given in terms of K, , the expected standard deviation
of o° expressed as a fraction. That is the observational standard deviation is Kp02 e -
K, should account for several error sources, namely communication noise, radar equation
and model function uncertainties and representativeness error. Large values of K, gen-
erally occur for low wind speed, small incidence angles and small values of 0°. Here we
use a model of K, polynomial in In(¢®) and incidence angle, developed for the model
function and analysis resolution used. The calculated values of K, range from 0. 1 to 0.3.
With these simplifications, Jyq; takes the form :

Jmo €. SSET’UE 2
Z ( del b d) ‘ (3)

2
I{ Gabse'rued)

scat

Both (2) and (3) are used for either 3dVAR or 4dVAR. Within the 3dVAR and 4dVAR
configurations in the IFS system, the handling and use of the scatterometer o0 parallel
in many respects the handling and use of TOVS radiance data (Pailleux et al., 1991 and
Andersson et al., 1992).

2.3 The model and its adjoint.

The primitive equation model used in the following experiments is the IFS/ARPEGE code
(cycle 9) which is described by Courtier et al. (1991). The vertical coordinate is the hybrid
pressure-o coordinate (Simmons and Burridge, 1981). The number of vertical levels is
19. Horizontally, spherical harmonics with a triangular truncation at degree 63, are used
to represent vorticity, divergence, temperature, specific humidity and logarithm of surface
pressure. The concatenation of these spherical harmonic coefficients for all vertical levels
is the model state vector z. The number of points in the colocation grid in the vicinity
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of the poles is reduced to save computing time (Hortal and Simmons, 1991). No physical
parametrizations are used in the model, except a horizontal diffusion similar to the one
described in Thépaut and Courtier (1991) and a simple linear scheme for representing
vertical diffusion, described in the next section. In spite of these parametrizations of
diffusion, we will refer to this model as the adiabatic T63 model hereafter. The numerical
validation of the tangent-linear and adjoint versions of this model has been performed as
described by Thépaut and Courtier (1991).

2.4 The linear parametrization of vertical diffusion.

The present experiments use a version of the model, which has linear parametrizations
of diffusion and is otherwise adiabatic. Only this version of the imodel has an existing
adjoint. The simplified vertical diffusion of Buizza (1993), which is used: here, effects u
and v wind components and dry static energy. (In the present experiments the diffusion
does not operate on dry static energy). In general we may write the vertical diffusion
equation in terms of a vertical flux divergence,
0
p%% = - ;; ¢ (4)

Here 1 is the u or v wind component (or dry static energy), and Fy is the flux of .
In the simplified parametrization, the fluxes are assumed to be independent of stability.
Further, the density p and the height above the model surface z are assumed to be
known fixed functions of the model vertical coordinate, derived from the ICAQO standard
atmosphere. In addition, a number of other variables described below are assumed to be
known constants. As a consequence, the simplified vertical diffusion is strictly linear and
the finite difference form of the vertical diffusion operator at a single latitude longitude
grid point is simply a constant tridiagonal matrix. The specific parametrizations of the
fluxes are now given. '
Between any two model levels the flux is parametrized by

F¢ = pou*LDf(Z)g—f (5)

where pg is the surface density, u, is the surface friction velocity (0.5 m/s over land; 0.2
m/s over sea), Lp is the mixing length and f is an ad hoc function to decrease the strength
of vertical diffusion with height. We define Lp by

Lp =kz/(1+ kz/X) (6)
where k is von Karman’s constant (0.4) and X is the asymptotic mixing length (90 m).
We take

f(z) = exp(—z/ho) (7)
where hg is the height of the planetary boundary layer (1 km).

At the top of the atmosphere Fy = 0. At the bottom of the atmosphere ( Fyy = 0 for

dry static energy, but for u or v wind component) there is a surface drag of the form,

Fy = poux[k/In(z/z0)[) (8)

where zg is the surface roughness height (50 mm over land; 0.5 mm over sea).
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2.5 The minimization procedure.

The 4dVAR minimization problem is large. At T63, with 19 levels, the number of degrees
of freedom in the control variable z is more than 300000. A robust and efficient descent
algorithm is required. Algorithms of this type are iterative and require an initial estimate
of z. In our experiments this initial estimate is always taken to be equal to the background,
z;. To improve efficienty we precondition the problem, by defining the norm of z for the
purpose of the minimization algorithm as z7B~'z. We use the variable-storage quasi-
Newton algorithm of Gilbert and Lemaréchal (1989). The method uses available in-core
memory to store recent model state and gradient increments which are then used to
approximate the inverse Hessian matrix of the cost function. In the experiments presented
here the initial estimate of this matrix is taken to be the identity matrix (however, due the
preconditioning used, the minimization is effectively performed in a Hilbert space with
metric B~!), and storage is provided to allow 10 updates of the Hessian matrix. This
storage is used cyclically. That is, once the memory is filled, each time a new gradient is
calculated it replaces the oldest gradient still present in memory. Thus the approximate
inverse Hessian matrix is always based on the most recently computed gradients.

2.6 The equivalence of 4dVAR and the Kalman filter.

It has been often stated that under certain conditions the solution of the 4dVAR problem
and that of the Kalman-Bucy filter are identical (e.g. Daley, 1991). Both methods and
the arguments showing this equivalence are outlined by Lorenc (1986). As noted by Daley
(1991, page 384) this equivalence is exact only when

¢ The forecast model is linear.
e The interpolation operator H is linear.
e The forecast model is perfect.

Also the equivalence holds only for the analyses produced at t,. That is, for any time
within the analysis time period the 4dVAR solution is influenced by data throughout the
time period, whereas the Kalman filter analyses at any particular time makes use only
of previous data. The 4dVAR solution, under the above conditions, is better identified
with the fixed interval Kalman smoother. The interested reader is refered to Jazwinski
(1970, examples 7.8, 7.16), who derives the Kalman smoother from the same maximum
likelihood principle which leads to the 4dVAR minimization problem.

A consequence of the theoretical equivalence between the two methods is the implicit
use in 4dVAR of flow-dependent forecast error covariances. In general one expects that the
application of a full Kalman filter to a 4d data assimilation problem will lead to inhomo-
geneous forecast error covariances since these covariances are the initial background error
covariances evolved according to the linearized model dynamics. The exact transport in
time of the forecast error covariance matrix is not tractable with the actual resolution
of the operational models. The practical advantage of 4dVAR comes about because the
forecast error covariances are not explicitly computed. However, they are implicitly used
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in the 4dVAR assimilation. The single observation experiments reported here allow us to
visualize the forecast error covariances of the Kalman filter equivalent to the 4dVAR.

The equivalence of 4dVAR and the Kalman filter, which provides a means of inter-
preting the results of our single observation experiments (Section 3), is only approximate:
The forecast model is not linear, but over the 24h period the evolution of perturbations is
approximately linear. (The 4dVAR solutions would be little effected if the tangent linear
model were used in place of the nonlinear model). The interpolation operator is in fact
very close to linear. However, here we consider only the case when the observation is of
a model variable at a grid point. Finally, the forecast model is far from perfect, but we
limit our comparison to a Kalman filter which ignores model errors.

First we note that for an optimal analysis z,, such as from 3dVAR, or an idealized O1
or from the analysis performed at each step of the Kalman filter, the analysis increments,
T, — T, are a linear combination of the observation in crements, y — H(z;) , (Lorenc, 1986,
equation 28),

2, — 2y = BHT(H BHT + 0) 'y — H(z)] (9)

where the matrix H' is the linearization of H in the vicinity of the current state .
For the Kalman filter z; is the forecast from the previous analysis and B and H are
defined accordingly. In the case of a single observation, located at a model grid point,
and taking the model state to be a grid point representation, H'? becomes a vector as
long as the model state vector containing all zeros except for a single one corresponding
to the observation variable and location. In this special case (9) simplifies to

Y — Tha

Tem b= <baa + Oaa> BO( (10)
where o indexes the observation in the model state vector so that b, is the background
covariance of the observation variable and location, 0., is the observation variance and
B, is the column of B corresponding to the observation variable and location. This
shows that the analysis increments are proportional to By, i.e. to the covariance of the
background error at observation variable and location with the background error of all
other model variables and locations. Note that (10) shows that at the observation location,
the analysis increment is smaller in magnitude than the observation increment. However
depending on the structure of B, the analysis increments at other locations can be larger
than the observation increment.

This relationship also holds for the 4dVAR solutions at ¢, in our single observation
experiments because the 4dVAR solution at ¢, is equivalent to the corresponding Kalman
filter solution for this problem. The corresponding Kalman filter is one in which there are
no model errors and no other observations. In such a case the only actions of the Kalman
filter until the final analysis are to advance the model state and the error covariances of
the model state to t,. Thus the 4dVAR solution for a single observation at ¢, is a column
of the predicted covariance matrix of the corresponding Kalman filter. This covariance
matrix is predicted using linear dynamics, which simplifies in this case to

B(t,) = RB(to)RT (11)

where R is the tangent linear model dynamics for the period [to,tn].
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To date no one has applied the Kalman filter to an atmospheric model (nor to any other
model) with 300000 degrees of freedom. However, thanks to the analysis presented here,
the results of Section 3 demonstrate just how complex the predicted error covariances can
become in such a case, in just 24 h. This very complexity has important implications for
the eventual implementation of the Kalman filter—any approximations made in modeling
the covariances must still be capable of representing very complex structures.

2.7 Finite time optimal modes.

In Section 3 we will compare the evolution of the 4dVAR increment patterns during the
analysis period with rapidly growing perturbations of the atmospheric dynamics for the
specific meteorological situation. To measure the perturbation we use the energy norm
as defined by Rabier and Courtier (1992, equation 11). Since our problem is limited in
time and the tangent linear model evolution is not represented by a symmetric matrix,
exponentially growing nermal modes do not maximize the growth of the perturbation.
Instead we study so-called optimal modes (Lacarra and Talagrand, 1986; Farrel, 1989),
which maximize linear disturbance growth over a given time period (Molteni and Palmer,
1991). As shown by these authors, these optimal modes are the eigenvectors associated
with the largest eigenvalues of the operator R* R, where R is the tangent linear model of
(11), and R* is the adjoint of R, for the norm used to measure the perturbation growth.

Within the IFS system, a Lanczos algorithm (Simon, 1984) has been developed to
compute these optimal modes (Buizza, 1992). For computational cost reasons, the modes
are computed at a T21 resolution, but horizontal diffusion is suppressed in the model
to avoid excessive damping of the small scales The vertical diffusion of Section 2.4 is
retained in these calculations.

3 Single observation experiments.

As discussed in Section 2.6, 4dVAR implicitly evolves the background covariances in time.
Thus in contrast to simplified sequential assimilation schemes such as 3dVAR, 4dVAR is
able to implicitly specify flow-dependent covariance functions. Here we study the case
of the small intense storm which caused extensive damage in Brittany and southwestern
England on 16 October 1987 (Jarraud et al., 1989). We find that within 4dVAR, a single
key datum, indicating the position and intensity of a developing storm, can have a very
significant impact.

Section 2.6 also shows that the analysis increments from a single datum are propor-
tional to the error covariance of the background. For 3dVAR, this error covariance is
designed to be nearly identical to the forecast error covariances used in the conventional
OI (Heckley et al., 1992). The OI covariances are themselves fairly homogeneous and
isotropic in the horizontal, with simple correlations in the vertical and between variables
(Shaw et al., 1987; Undén, 1989; and references therein). In our 4dVAR experiments the
background covariances used at {o are identical to the constant in time 3dVAR background
covariances. In 4dVAR, these covariances evolve implicitly, as described in Section 2.6,
becoming extremely complex by .
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In these experiments, the analysis increments appear to be closely connected to the
optimal modes of Section 2.7. An informal argument why this must occur follows: Any
initial state perturbation can be thought of as projecting on the initial states of the optimal
modes, i.e., the eigenvectors of Section 2.7. The 4dVAR solution will naturally tend to
project primarily on the fastest growing modes. Consider for example, a mode which
decays in time. The 4dVAR solution perturbation might have a projection on such a
mode, but that part of the 4dVAR solution will decay with time and have negligible effect
on the observations part of the cost function. It will however inflate the background part
of the cost function. Therefore the initial state projection on the decaying modes should
be zero. Conversely, rapidly growing modes can have large effects on the observations part
of the cost function, with quite small effects on the background part of the cost function.

3.1 A height observation at 250 hPa.

In this experiment and in the experiment of Section 3.2, the background field is a 6 hour
forecast, taken from a T63 OI assimilation cycle, valid at 00 UTC 15 October 1987. Fig.
1 presents the 24 hour evolution of the background 500 hPa height and mean sea level
pressure fields. The adiabatic T63 model forecast shown here is poor, considering that
the intensity and the location of the actual storm was a minimum low pressure of 951 hPa
between Brittany and Cornwall at 00 UT'C 16 October 1987. However, for our purpose,
the rapid evolution of the dynamics of the model during the assimilation period is more
important than the forecast skill. In particular note the strong deepening of the 500 hPa
trough, and the movement and deepening of the surface low from 985 hPa at 20°W-43°N
to 978 hPa at the tip of Brittany (5°W-49°N). During this period, the vertical tilt of
the low between the surface and 500 hPa is typical of a rapidly intensifying baroclinic
sttuation.

In the assimilation experiment we include only a single geopotential height observation
located in the trough at 250 hPa (5°W-44°N) at the end of the period. The observation
increment (observation minus background) is —70 meters, with an expected standard
deviation of 12 meters. The minimization procedure is allowed to continue until the norm
of the gradient of J is reduced by a factor of 1000.

Fig. 2 shows the geopotential height and wind analysis increments (analysis minus
background) at the end of the assimilation period for 250, 500, 850, and 1000 hPa. Clearly
the analysis increments are not isotropic. While the maximum amplitude of —76 m
is obtained at 250 hPa in the vicinity of the observation, there is an important west-
east propagation of the information consistent with the dynamics of the model for this
situation, leading to a second extremum of opposite sign ( +39 m ) near 20°W-40°N. Both
extrema propagate vertically down to 850 hPa, the vertical tilt of the positive extremum
between 850 and 500 hPa is consistent with lower troposphere baroclinic instability of
this meteorological situation. ' ‘

As a comparison to the 4dVAR results we perform a simple equivalent 3dVAR data
assimilation. Having only one observation at the end of the assimilation period, the
analysis differs from the background only at this time. The resulting increments (Fig. 3)
correspond exactly to the spatial structure of B. When compared with Fig. 2 and the
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Fig. 1

Background fields for 00 UTC 15-16 October 1987. Shown here are the Northern Hemisphere (a) 500 hPa
gecpotential height and (b) mean sea level pressure for 15 October and the (c) 500 hPa geopotential height and
(d) mean sea level pressure for 16 October. The fields for 15 October are from the initial estimate of the initial
conditions for the 4D-Var minimization. The fields for 16 October are from the 24 hour Té3 adiabatic model
forecast from the initial conditions. Contour intervals: 80 m and 5 hPa.
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Fig. 2 The 4D-Var analysis increments (analysis - background), at the end of the 24 hour assimilation period, for
geopotential height and wind at 250, 500, 850 and 1000 hPa, corresponding to a single height observation at
250 hPa. Contour interval: 10 m.
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Fig. 3 As in Fig. 2 but the 3D-Var analysis increments at the end of the assimilation pericd. Contour interval: 10 m.

249




evolution of the dynamics presented in Fig. 1, one can see that isotropic and barotropic
covariance functions are poorly adapted for such a meteorological situation. '

The 4dVAR method, being a smoother, spreads the data influence both forward and
backward in time. The 4dVAR increments 24 hours before the observation are shown in
Fig. 4. These increments at the initial time are quite small, within the uncertainty of our
best analysis, and similar in magnitude to the data misfit at the final time. One can see
that the increments propagate horizontally with basic state steering current. The negative
extremum at 500 hPa at ¢, is 20° east of that at #g, consistent with Fig. 1. In addition to
the baroclinic signature in the lower troposphere and the eastward horizontal advection,
we note that the perturbation propagates vertically with a maximum amplitude shifting
from 400 hPa (not shown) to 250 hPa during the 24 hour period.

Note that the single height observation leads to balanced height and wind analysis
increments at all times. The mass-wind balance at %y is a result of using a background
covariance B based on a balance relationship. This mass-wind balance is then preserved
by the model dynamics.

We now compare the 4dVAR increments (Figs. 2 and 4) to the fastest growing per-
turbations of this particular meteorological situation. Fig. 5 presents the vertical cross-
section of the norm of the first 6 eigenvectors of the operator R*R at time % and after a
24 hour linear evolution. For the first three eigenvectors, the maximum energy is located
near model level 11 (around 500 hPa) at time ¢ and model level 8 (around 250 hPa)
24 hours later. The amplification factor (i.e. the square root of the eigenvalue) for the
three most unstable modes is approximately 4 for the 24 hour period. Thus any linear
combination of the first three eigenvectors is unstable with this growth rate.

Fig. 6 presents the spatial structure of the first eigenvector at time #o for 1000, 850,
500 and 250 hPa for the stream function field. This most unstable mode as well as the
two subsequent eigenvectors (not shown), are localized in our area of interest. As seen in
Fig. 5, the amplitude is maximum at around 500 hPa. At this level there is a negative
" pattern over Newfoundland, a positive one located at 40°W-50°N and another negative
one at 20°W-50°N. The shift in location of the extrema between 500 and 850 hPa shows
the baroclinic nature of this first mode.

The structure of the mode 24 hours later is presented in Fig. 7. The maximum of
amplitude is now at about 250 hPa. The negative pattern previously located at 20°W is
larger and located at 4°W. The two other extrema have also moved rapidly eastward. In
fact, the location of the observation for the assimilation experiment is the position of the
maximum amplitude of this mode at this time.

There is certainly a visual agreement between the shape and the evolution of the
most unstable mode (Figs. 6 and 7) and of the 4dVAR solution (Figs. 4 and 2) over
this assimilation period. Omne cannot expect a perfect match since the first eigenvector
spans only part of the unstable subspace described by the first three unstable modes.
In particular, the location of the extrema for the next two eigenvectors are shifted 5°
westward. However, some features match up well. In particular, at t, the secondary
positive extremum of the 4dVAR solution corresponds quite well to the positive pattern
of the mode at (20°W-40°N), except that for the mode, the positive perturbation extends
further west. At ty, the spatial structure of the increments, inferred by the observation
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~ Fig. 6 Streamfunction at roughly 250, 500, 850 and 1000 hPa (respectively model levels 8, 11, 15 and 19) of the most
unstable mode at the initial time. Contour interval: .510*m®.s™.
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present 24 hours later, corresponds roughly to the shape of the unstable mode. The
location of the extrema is, in particular, quite similar.

3.2 A wind observation at 1000 hPa.

This experiment parallels that of Section 3.1, except that here a single zonal wind obser-
vation is inserted at 1000 hPa. The observation location is again 5°W-44°N. The u-wind
increment is 20 m/s. The observational standard deviation is 3 m/s. The resulting anal-
yses are presented in Figs. 8, 9 and 10, which are analogous to Figs. 2, 3 and 4 presented
in Section 3.1. ‘ '

First considering Fig. 8, the impact is largest at 250 hPa, the level of the maximum
amplitude of the optimal mode, not at 1000 hPa, the level of the observation. Also the
~ pattern of the 4dVAR analysis increments at 250 hPa are very similar to the previous
case, but shifted a few hundred km eastward. As in Fig. 2, the dipole pattern at 250
hPa persists in the vertical, but now rotates counterclockwise with increasing pressure,
completing the near quarter turn necessary to match the wind observation. The decay of
amplitude with increasing pressure is less in this case. The 3dVAR results (Fig. 9) again
faithfully represents the simple background covariances. The largest 3dVAR impacts are
restricted to the levels near the data level. N '

At the initial time, the 4dVAR analysis increments (Fig. 10) are quite different than
in the case of the height observation. Since that data location does not match the location
of the maximum amplitude of the optimal modes, a larger initial amplitude is required.
The vertical structure of the initial perturbation is much more complex, with a positive
extrema at 500 hPa and a negative extrema at 850 hPa. The patterns at these two levels

are similar in shape and amplitude but of opposing sign. At other levels, particularly at
1000 hPa, increments are small. :

4 TImpact of ERS1 scatterometer o' observations.

The result that the impact of a surface wind observation can increase with height (Section
3.2) suggests that the impact of scatterometer observations may be substantial in 4dVAR.
Two 4dVAR assimilation experiments are described here for the 24 hour period 12 UTC
30-31 December 1991. As mentioned in the Introduction a violent storm struck the
coast of Norway 24 hours later. The first experiment, referred to as CONTROL, uses
all conventional upper air observations. Vasiljevic et al. (1992) describe the handling of
these observations within the IFS system. A second experiment, referred to as SCATT, is
identical to CONTROL except that scatterometer o° observations are added as described
in Section 2.2. k ‘

This case is chosen for study because of the intrinsic interest of the 1992 New Year’s
Day storm and because a preliminary study of the impact of scatterometer winds in the
operational OI assimilation had previously been performed at ECMWEF for the period from
00 UTC 26 December 1991 through 2 January 1992 (Hoffman, 1993). The conclusions of
that study are:
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¢ The impact of the data on the assimilation is weak.

¢ The analysis draws to the data without producing associated changes to the mass

field.
e The analysis changes decay in the subsequent 6 hour forecast.

e The ambiguous nature of the scatterometer winds requires strong quality control.

The present experiment tests the performance of 4dVAR for the same situation, although
with a simplified forecast model. The advantage of the variational approach is that
it embeds the ambiguity problem in a large data fitting problem which includes other
observations, a background constraint based on balanced error covariances and the model
dynamics. The last two factors lead necessarily to a dynamically consistent use of the
data. ‘ '

In both CONTROL and SCATT we add a weak constraint on the gravity waves as in
Courtier and Talagrand (1990). Also in both cases the minimization is stopped after 30
iterations. In SCATT, the o° are quality controlled in the sense that they are rejected
if the sea surface temperature at the observation location is less than 274.5 K or if the
" analyzed 10 m wind speed (from the SCATT experiment of Hoffman (1993)) is less than
4 m/s.

In spite of the complexity of Jyc.: , no convergence problems are encountered during the
minimization. In the SCATT assimilation, the distance between the model solution and
the o° data decreased substantially after 30 iterations (by a factor of 2.2 for the normalized
standard error) while the fit of the other observations is hardly changed relative to that
of CONTROL. During the minimization process, the part of the cost function due to the
observations decreases rapidly at first and then more slowly. The full cost function has
the same quasi-exponential decaying behavior because the observations dominate the cost
function. The part of the cost function due to the background is initially zero and grows
during the course of the minimization, but is always an order of magnitude smaller than
the part due to the observations. The part of the cost function due to the constraints
remains fairly constant during the minimization but is smaller still, roughly two orders of
magnitude smaller than that due to the data.

The data used in the present experiment in addition to the ERS1 sigma® observations
are radiosonde, pilot balloon, aircraft, and satellite cloud track wind observations; drifting
buoy surface pressure observations; and radiosonde temperature and humidity observa-
tions. Conventional surface observations and satellite temperature and humidity profiles
are not used. The treatement of the observations, other than scatterometer observations,
in our experiments is the same as in Thépaut et al. (1993). In our experiments the scat-
terometer data are the most numerous data at the surface, since the number of drifting
buoys is small and the conventional surface observations are not used. Also at times
other than the four synoptic times, the scatterometer data are often the most numerous
data type, even exceeding the total of all other data occasionally during the assimilation.
In the Southern Hemisphere and Tropics the scatterometer data and cloud drift winds
dominate the other data types. In the vertical the number of radiosonde and pilot bal-
loon observations is a maximum at 850 mb, decaying slowly through the troposphere and
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lower stratosphere, while aircraft reports concentrate around 250 hPa, and the majority
of satellite winds occur at 850 hPa. Typical temporal and geographic data coverage is
presented by Thépaut et al. (1993) (Table 1 and Figure 1).

Fig. 11 presents the mean sea level pressure field for the 4dVAR SCATT and CON-
TROL assimilations and the difference of the two at the end of the assimilation period.
As expected, the impact is large in the Southern Hemisphere, with differences of up to
10 hPa southwest of Africa. Substantial differences can also be observed in the Northern
Hemisphere, especially in the North Atlantic. Generally the ¢° data strengthen the activ-
ity of the effected systems. This can be seen, for example, southwest of Africa, southwest
- of South America, and southwest and northeast of Iceland. At 500 hPa (not shown) the
impact is still quite large. Again, the systems are intensified in the SCATT assimilation.

_The area near Iceland is of particular interest since at 12 UTC 31 December 1991, the
New Year’s Day storm was forming southwest of Iceland. Subsequently, this storm grew
and rapidly evolved, striking the Norway coast 24 hours later. Also there is fairly good
o? data coverage over this area at the end of the assimilation period. We have compared
the performances of SCATT and CONTROL analyses with several manual operational
analyses made by the Icelandic, Norwegian and British Meteorological services. Fig. 12
presents the analyzed mean sea level pressure, valid at this time, over the North Atlantic
produced by SCATT, CONTROL, the operational ECMWF 1213 analysis and the manual
analysis of the UK Meteorological Office. West southwest of Iceland, SCATT strengthens
the low with a substantial increase of the pressure gradient at (25°W-50°N). This seems
consistent with the operational analysis. More questionable is the presence of the ridge
between Greenland and Scandinavia and the two lows north of Iceland in both 4dVAR
runs and especially in SCATT which creates two isolines at 972 hPa. This low pressure
area is less marked in the operational analys1s The solution adopted by the UKMO
analysts is somewhere in between.

Evidence in support of the 4dVAR analyses comes from the TOVS AVHRR imagery.
Fig. 13 indicates a vortex northeast of Iceland at 12 UTC which intensifies in the next
6 hours. This feature is better represented in the 4dVAR assimilations than in the op-
erational analysis. Furthermore, the 0 data have a beneficial impact, strengthening the
analyzed low.

We now consider several 12 hour forecasts valid 00 UTC 1 January 1992. Fig. 14 dis-
plays the forecast mean sea level pressure field from the SCATT and CONTROL 12 hour
adiabatic T63 forecasts and from the T213 operational suite. The verifying operational
T213 analysis is also shown. We cannot expect a particularly accurate forecast with a
adiabatic T63 model; rather we are interested here in the robustness of the impact of the
o® data in the short-range forecast.

Considering first the low northeast of Iceland, which corresponds to the vortex on the
imagery. This feature rapidly grows and moves eastward. An isolated low of 960 hPa is
forecast by the 4dVAR analyses, with sharper gradients in the SCATT case, while the
operational forecast leads to a broad isoline of 968 hPa. The operational analysis produces
an isolated low of 964 hPa. The SCATT forecast, seems to deepen the low slightly too
much. This is perhaps due to the fact that the CMOD2 model function used here tends
to overestimate strong winds (Stoffelen, pers. com.).
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Weather, 1992, Vol. 47, No. 2, published by the Royal Meteorological Socisty). ‘Contour interval: 4 hPa.
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The SCATT and CONTROL forecasts underestimate the strong storm developing
south of Iceland and which is well represented both in the operational forecast and anal-
ysis. The lack of physics and the low resolution of the model are certainly detrimental in
this case of a small scale rapidly intensifying feature. However, the impact of the o° data
persists in the forecast valid 00 UTC. At this time the surface low is nearly cut-off in the
SCATT forecast and it is slightly lower in the SCATT than in the CONTROL forecast.
These results, although obtained with a crude assimilating model, are quite a bit more
‘encouraging than the forecast results obtained by Hoffman (1993) usmg the scatterometer
winds in the conventional OI assimilation system. :

Two further assimilation experiments were run in which conventional surface observa-
tions were added to both CONTROL and SCATT. In particular 10 meter wind measure-
ments from ships were included. The impact of the 00 data was not mgmﬁcantly changed
by the presence of the surface observations.

5 Concludmg remarks. |

'Thls report describes sever al 4dVAR data assimilation experiments, which explore the in-
teraction oi the model dynamlcs and the observatlons when one seeks a solutlon consistent
with both. = - : : S : :

¢ In"the first examples, of ‘single observatlons, the resultmg analysis increments are
proportional to the Kalman filter covariance functions which are implicitly used in 4dVAR.
We reconfirm that these covariance functions are flow-dependent (Thépaut et al., 1993),
in contrast to those usually specified in OI or 3dVAR assimilation systems. In this case
of the exceptional storm of 16 October 87, the baroclinicity of the basm state is reﬂected
in the forecast error covariances.

- Similarities between the evolution of the covariances and the evolution of the most
unstable modes over the assimilation period is demonstrated. A quantification of this
connection might give some a priori insight on the spatial structure of the covariances to
be used, thereby speeding the minimization process. The connection is however rather
indirect. In the first place the covariances are the columns of the matrix RBR*, while
the optimal modes are the eigenvectors of R*R. Secondly, in some situations the forecast
model errors might be significantly larger, negating the assumption of a perfect model
necessary for the equivalence of the Kalman filter and the 4dVAR.

As far as the scatterometer data are concerned, encouraging results are obtained de-
spite the crudeness of the assimilating model. These data are able to infer dynamically
consistent information in the vertical through the four-dimensional process of the assim-
ilation. There are however, stlll open smentlﬁc questlons w1th regards to several aspects
of the definition of Jeei:

. A more accurate model functlon is now a,vallable (Stoffelen and Anderson, 1992b).
¢ The effect of accounting for stablhty in the boundary layer needs mvestlgat]on

¢ Thenonnormality of the distribution of the o® departures might be reduced by using
In(0°) in the definition of Jecat -
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The problem of having a realistic description of the physical processes is a general
problem in 4dVAR. Rabier et al. (1992) have shown thal a realistic humidity analysis
is impossible without condensation processes in the assimilating model. In the present
experiments we resorted to using a linearized parametrization of vertical diffusion and
surface friction. One solution to the general problem is to develop the adjoint of all
physical parametrizations. In that case, we might expect problems of convergence due to
highly nonlinear processes in the assimilating model. Instead we plan to approximate the
full nondifferentiable minimization problem by a quadratic problem. This strategy, which
follows the ideas already under investigation at NMC, is described in detail in Courtier
et al. (1992).
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