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Abstract

The main part of this study is devoted to perform a strict comparison between two assimilation
algorithms, sequential and four-dimensional variational, on a 24-hour period extracted from a baro-
clinic instability situation representative of mid-latitude dynamics. In the case of linear dynamics
and under the hypothesis of a perfect model, these two four-dimensional algorithms are known to
lead to the same optimal estimate of the atmosphere at the end of the assimilation period, and
both methods can be generalised in the nonlinear case. The full sequential algorithm being too
resource-demanding to be implemented as such, we will test in the sequel the four-dimensional
variational method (4D-VAR) and a simplified sequential method based on three-dimensional vari-
ational analysis (3D-VAR). We deliberately do not exceed the range of validity of the tangent-linear
model in the experiments. 4D-VAR is then expected to be almost equivalent to the generalisation
of the sequential Kalman filter in the nonlinear case, i.e. the Extended Kalman Filter. As for the
simplified sequential algorithm, it can be seen as an approximation of this full Extended Kalman
Filter, for which the forecast error matrices are crudely evaluated before each analysis instead of
being explicitly computed from the complete dynamical equations. In the 4D variational scheme,
the consistency of the propagation of information with the dynamics is illustrated in an experiment
assimilating some localized ATREP data. The large impact of these additional observations over
a large geographical area appears to be very beneficial for the quality of the analysis. Comparing
the results of both methods in various configurations, 4D-VAR is systematically found to behave
substantially better than the simplified sequential algorithm, with a more accurate analysis at the
end of the assimilation period and a much smaller error growth rate in subsequent forecasts. On
the one hand, extremely bad specifications of initial forecast errors are found to be detrimental to
both algorithms. On the other hand, the 4D variational algorithm proves to be more robust to the
way gravity waves control is implemented.

In the second part of this study, a similar comparison between 4D-VAR and a simplified opera-
tional assimilation cycle is carried out using real data on an extreme event, the October 87 Storm
over France and Britain. The model used for both the assimilation and the subsequent forecast is
a T63L19 model, adiabatic or with very simplified physics. Although the 36-hour forecasts started
from the 4D-VAR analysis and the Optimal interpolation analysis are different, none of them is
really successful in predicting the storm. It appears that, for this explosive cyclogenesis, the model
used in the experiments is too crude to extract a clear signal from the results obtained with different
assimilation methods.
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1 Introduction.

Numerical weather prediction is an initial-value problem, and high-qu.ality analyses of the atmosphere
are necessary for the production of reliablé forecaéts. Thev basis of four-dimensional assimilation is to
use all the available information in order to produce the best possible initial state for the prediction.
The available information consists of the observations, distributed in time, and of the physical laws
which govern the evolution of the flow. The latter are in practice available under the form of the
numerical prediction model to be used for the forecast. Detailed reviews of data assimilation are given
in Ghil and Malanotte-Rizzoli (1991) and Daley (1991) and we will just here briefly introduce the two
basic algorithms used to solve the problem, which are shown to lead to equivalent results under certain
assumptions (Lorenc, 1986). The more common approach is sequential and comes from estimation
theory (Ghil et al., 1981) where one seeks a minimum error variance estimate. Optimally, in the case of
linear dynamics, it takes the form of the resource-demanding Kalman filter, and is naturally extended
to the weakly nonlinear case under the form of the Extended Kalman Filter (EKF). In most operational
centres, a degraded form of this algorithm is implemented, consisting of a cycle of analyses and 6-hour
forecasts. The main approximation is that the forecast error covariance matrices are prescribed instead
of being explicitly computed from the relevant dyhamica.l equdtidné. An altem&tiiré to sequential
estimation is the Vaﬁatibnal approach, coming from control theory (for the underlying theory see
Liomns, 1971 and for a general description of its application to meteorologjr, see Le Dimet and Talagrand,
1986). The goal can be described as optimising an objective criterion which quantifies the distance
between model statés and the available information (data and prior knowledge). Assuming the model
to be perfect, one seeks a model trajectory over the assiﬁjlation period and the optimisation problem
depends’ solely upon the initial state at the beginning of the period. Using‘ an adjoint model, the
minimizing solution caﬁ be found at a cost 'Which is ndt prdhibii;ive, although still hjgh for operational
implementation. » _

Current operational systems are performing globally well (see Hol]jngsworth et al., 1986) but are
neverthéleés sub-optimal (Da.ley, 1991; Daley, 199'2),. They do not extract properly all the informa-
tion contained in the avajlable data. One of the most striking examples of their weaknesses is the
prediction of the 15-16 October 1987 Storm ovef England’and France, for which various authors have
attributed the failure of most models to properly forecast,tlle intensity of the storm in the short range
to data assimilation problems (see Lorenc et al., 1988 and Jarraud et al., 1989). Indeed, cyclogenesis
conditions are such that the approximation of separability between horizontal and vertical correlations
of bakground errors ‘commonly ﬁsed in the analysis step' is expected to.break down. Therefore, this

kind of meteorological situation seems appropriate to perform a comparison of new methods such as
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4D-VAR with a more classical assimilation cycle. A preliminary study aiming to understand the be-
haviour of 4D-VAR in the case of an idealised baroclinic instability situation was carried out'in Rabier
and Courtier (1992), hereafter denoted RC92. The major result was that, in most cases, 4D-VAR is
able to reconstruct the entire atmospheric state from a time series of observations of only part of the
spectrum, because of the explicit use of the dynamics in the assimilation process. In particular, when
initialised by an atmospheric state far away from the desired result, the method leads to impressive
results, taking advantage of the dynamical coupling between various components of the flow. Such
a benefit of the consistent use of the dynamics had also been found in the case of a hydraulic jump
by Lorenc (1988a). When starting the algorithm from a reasonable prior estimate of the atmospheric
flow, wluch Wlll be the case in the followmg, 4D-VAR is also expected to 1mprove upon classical cycles.
In partlcular it has been shown by Dee (1991) for a 1-D hnear model that even a sxmphﬁed Kalman
Filter lea,ds to substantlal 1mprovements over optlmal mterpolatlon R.ecently, Gauthier et al. (1992)
ha.ve illustrated the benefit of using the full EKF over simplified methods.

The aim of this paper is first to estimate the beneﬁt of using an elaborate assimilation scheme in
a realistic primitive-equ'a,tion model, and a representative dynamical problem. The same baroclinic
instability situation as in RC92 was chosen to compare 4D-VAR with a sequential assimilation cycle

relying on a three-dimensional variational analysis (3D-VAR). The 3D-VAR scheme is the one being
developed at the European Centre for Medium-range Weather Forecasts (Pailleux et al., 1991), but
other centres such as the National Meteorological Center are already using a three-dimensional varia-
tional approach as an alternative to optiinal interpolation (Parrish and Derber, 1992). The 4D-VAR
scheme is also the one included in the ARPEGE/IFS model, developed as a,‘cbopera,tive project be-
tween Météo-France and ECMWTF (see Courtier et al., 1991 for a comprehensive description). It has
recently been compared with a sequential estimation in the case of real data, although without using
a background term, by Thépaut et al.(1992). The methodology followed here is that of identical twin
experiment where synthetic abservﬁtioﬁs are extracted from a reference run of the assimilating model
thus implicitly assuming a perfect model. .

In a second time, we shall compare four-dimensional variational assimilation with a simplified
opera.tional sequential assimilation for the preﬁ'ction of the October 87’ Storm.

Firstly, in section 2 we state the basic equivalence between 4D variational and sequential methods
when they are used optimally, and describe the particular set-up of the experiments and in particular
the approximations made on the forecast error covariance matrices in the case of sequential assimila-
tion. The most significant results on the academic baroclinic instability situation are presented and

commented in section 3 in the case of perfect data, in section 4 in the case of noisy data and in section
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5 using a later version of the variational schemes currently still under development. Then, real data
experiments on the October’ 87 Storm are presented in section 6. Finally, a discussion concludes the

paper in section 7.

2 Framework of the experiments

2.1 Theoretical equivalence between the two algorithms.

All assimilation algorithms existing at present can be described as a more or less approximate form

of statistical linear estimation, which can be summed up as follows.

We assume that observations are available, making up a vector y, and that we want to estimate

quantities making up a vector z. We also assume that y can be related to z by the relation

y=Hz+e (1)

where H is a known matrix of coefficients defining the components (or combination of components)
of 2 which have been observed, and ¢ is an observational error. This error is of course unknown, but
it is supposed to be unbiased, and to have a known covariance matrix £. Among all unbiased linear

estimates of z, the one which minimizes the error variance is

i =(HTS'H)1HT s 1y o @)

and the corresponding estimation error

$—2z=(HTS'H)'H 2 ‘ (3)

is proportional to the observational noise. It possesses a variance-covariance matrix equal to

(HTS1H)! | “

The estimate & is called the Best Linear Unbiased Estimator (BLUE) of z from y. It can also be

found by minimizing a distance function

1, rely, | |
J(€) = 5(y— TS (y - HE) | (5)
with respect to ¢ (Jazwinski, 1970). In the particular case when the error € is Gaussian, the distance

function is the argument of the exponential in the conditional probability function p(z/y), and.the
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value of £ minimimizing J is the least-square estimate of z, either linear or nonlinear. It is also the
maximum likelihood estimate of = (Lorenc, 1988a).

In the case of time evolving systems when one wants to reconstruct the state of the system at, say,
the final time of an observing period, the BLUE £ can be determined either by explicit minimization of
a functional J similar to Eq. 5, which measures the misfit between a model trajectory and the ;'fwa.ilable
data, or by implementation of sequential estimation over the observing period. The first method is
called variational assimilation (Le Dimet and Talagrand, 1986). The second leads to Kalman ﬁltermg,
which is a classical tool in estimation theory (Ghil et al., 1981). o ”

- In the case of an exact linear model, both algorithms lead to exactly the same result at the end
of the assimilation period. If the model is linear, but. not exact, there is still identity between the
-~ results produced by both algorithms, provided the model equations are introduced in‘th@’a variational
assimilation as weak constraints, i.e. as additional terms in the distance functionbto be minimized.
However, in that case, 4D-VAR becomes as expensive as the full Kalman filter, since the control
variable now contains all the successive aftxibéphéric states over the assimilation period. :

Both methods can be implemented in nonlmear cases Sequentlal estlmatlon requires the specifi-

cation of an appropnate law for the time evolution of the estimation eéfror. This can be done by using
‘the tangent-linear equation which leads to Extended Kalman Filtering. .

Using these methods remains justified. from a theoretical point of view, at least as long as the local
tangent-linear hypothesis is valid. |

Let us denote z = (zg,Z1,...,2n) the four-dimensional vector of the time-series of atmospheric
states over the period one wishes to analyse [tg, t,,]. It is assumed that the numerical model M which

gives the time evolution of the atmospheric state

wom=MEOE O

is exact. We further assume that the tangent-linear approximation is va.hd i.e. the dev1a.t10n from the
true state remains small enough so that the expansion of M in a Taylor series can be approximated

by its first order term only

M(t;,to)(%0 + 620) = M(tuto)(ﬂ:o) + Mt )b . - _(7)

for i = 1,n, where M'(i;,1p) is equal to the mtegratlon of the tangent-linear model from to to t;, the

linearization being performed in the vicinity of the trajectory starting from zo.

Let us write the observations taken over the time period [to,?,] as a four-dimensional vector
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¥ = (0,91, ..., Yn)- In this notation, some of the y;, ( = 0,n) might be empty if no data is available
at that time. For the operator H;, generally nonlinear, giving y; for a given z;: y; = H;(=;), we will

make the same tangent-linear hypothesis as for the numerical model

Hi(z; + 6z;) = Hi(z;) + H{.&x,- (8)

One further assumption is that we have a prior knowledge about the atmospheric state, given by

a background field z; at time ?p, coming generally from a previous forecast.

Some information about the statistics involved in this estimation problem are also available. It is
assumed that the (¥;)i=0,» and z; are unbiased variables, for which the knowledge of the error variance
matrices (O;)i=o,n and P; is available. It is also assumed that the observation errors are uncorrelated

in time.
Firstly, in the case of variational estimation, one minimizes

I(z0) = ';':Z:(% — Hi(Mi(20)))" 07 (3 — Hi(Mi(w0))) + %(z,, ~ o) By (@5 — @o) (9)
In most previous experiments (Rabier and Courtier, 92; Thépaut and Courtier, 91), no account was
taken of the background term which is a valid approximation as long as the assimilation period
is sufficiently long to contain enough observations to determine z¢ without other prior information
(Lorenc, 1986).
Minimization of J requires the knowledge of its gradient given by

i=n

Jho = 3 M'(ti,to) T H;* 07 (v — Hi(Mi(20))) + Py (z5 — 20) (10)
=0 .

Assuming that the tangent-linear approximations are valid on [zp,z,] where z, is the desired

analysed state, the development of J in a Taylor series is quadratic

T(@a) = J(z8) + Tpy (5 = 20) + 5(5 = 20) Ty (50 ~ 23) (11)

where J;, is the gradient (Jacobian matrix) of J evaluated at point z; and J;'b is the Hessian matrix
evaluated at the same point. If the Hessian matrix was exactly known, we could then get the minimum

of J in one single iteration of the Newton method

n -1

Co=ap—Jy,  JL, ' (12)
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However, in most cases, this Newton step is too expensive, the storage of the Hessian matrix is im-
possible or nonlinearities are present and several iterations of a Quasi-Newton algorithm are necessary

(see Lorenc, 1988b, for a simplified implementation of this algorithm).

As for the sequential estimation, it takes the form of the Extended Kalman Filter (EKF) (for a
complete derivation, see Ghil and Malanotte-Rizzoli, 1991). Starting from a background zo,, = =,
with error covariance matrix Py, = P, the fol»lowing’ steps have to be performed between times ¢; and

tit1s for (i=0,n-1):

o (1) a,nalysm step to update the background ﬁeld (current estlmate) Tig

"’i = iy + Ki (!/z - Hi(zig)) : o (13)
where the so-ca,lled"gain matrix K; is given by

K;= P,_,,H'T(H P HT +0; )-1 B O (14)

and the correspondmg estlma.tlon error cova,na,nce matnx P

R=(I.—K.-H£)H;g - (1)

(ii) forecast step to carry the analysis vector z; and its error variance matrix F; to time #;1,

Ti1,g = M(Big1, i)z ' . (16)

Pit1,g = M'(tig1, ) P(M'(ti41, 1)) + Qs (17)

where Q; represents the model-generated error covariance. In the following we will always take Q,' =0
1mphc1t1y assuming that the model-generated errors are neghg1ble
The a.nalys1s step (i) can be performed exther dlrectly as in class1ca1 optlmal interpolation, or equiva-

lently by Immmlzmg

SRR PRI S 1 - |
J(zi) = 54 - Hi(2:))' 07 (yi = Hi(z)) + 5(zig - w-')TP 1(ﬂ":,g z;) (18)
which is what is being done in 3D-VAR (see Pailleux at al., 1991). One of the main advantages of

three-dimensional methods upon optimal interpolation is that no geographical selection of observations

is needed.
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What should be kept in mind is that, in the linear context and if the model is perfect, 4D-VAR
" and the Kalman Filter lead to the same result which is the best estimate of the atmospheric state at
the end of the assimilation period. In the nonlinear case and if the model is still perfect, although
no general result exists for the strict equivalence, if the tangent-linear hypothesis is valid, results are
expected to be very close (by the way, it would be 1nterestmg to quant:fy the difference that exists
between them, even if it is small) ' '

" The question is now to quantify the impact of the apprexima,tions of the EKF which have to be
done in the operational practice on the quality of the analysis. One of the prevailing weaknesses of
current assimilation systems being the approximate specification of the forecast error covariance matrix
(Pig in our notations), we will simulate a degraded EKF by running an assimilation cycle composed
of 3D-VAR analyses for which the forecast error covariance matrices are prescribed instead of being
explicitly computed according to Equation 17. Comparing the result of this simplified sequential
algorithm and of 4D-VAR will then give an indication on the benefit of using a more elaborate scheme
in an identical twin-experiment context. “ ,
| The main limitation of this approach is tha.t we do not take mto account the model-generated
error. Since the perfect is perfect in tlus case, and that the four-drmensxona.l variational scheme
assumes that the model is perfect, 4D-VAR is certainly given an advantage. However, it would not
have been straightforward to perform a similar study taking into account the model error for various
reasons. The first one is that our knowledge of such model deficiencies is rather limited. The second
one is that, although the full Kalman Filter contains a model error covariance term (Equation 17), no
such obvious way of introducing this information exists in 4D-VAR. Different approaches have been
tried by several authors. Following the simple remark that, in the case of assimilation, one wants to
make a forecast from the final time of the assimilation period, Courtier and Talagrand (1990) gave
a larger weight to more Tecent observations in the definition of the cost function. Derber (1989)
showed how one could use the varlatlonal context to exhibit the model error which, under certam
assumptions, would lead to the best ﬁt of a model traJectory to the available data over a glven tune
period. More recently, Zupanskr (1992) extended this study by lookmg for both the 1mt1a.l COnd.ltIODS
and the model error field which would minimize an appropriate cost function. The 1nclusxon of model-
error lnformatlon in 4D -VAR is thus very much at a research stage and 1t was not our purpose to
investigate this area. In any case, one has to remember that the companson performed in this study

is valid only under the assumption of a perfect model.
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2.2 Set-up of the experiment.

The baroclinic instability situation which will be used in order to compare the two assimilation methods
is the same as in RC92. It was built in the same way as in Simmons and Hoskins (1978) or in Thorncroft
and Hoskins (1990). The basic zonal flow symmetric about the equator is baroclinically unstable and
the linearly most‘unst‘a;blie mode at zonal wavenumber six is selected. It provides the initial conditions
of the simulation of the life cycle of a baroclinic wave. The primitive equation model used in this study
is the ARPEGE/IFS model. The vertical discretization consists of the 19 levels of the hybrid pressure
/ o vertical coordinate (Slmmons and Burridge, 1981) of the 1990 operational ECMWF model, and a
T21 triangular truncation of the spherical harmonics representatxon of the fields is used. No diabatic
effects are cons1dered in thlS study The results are consistent w1th those of Simmons and Hoskins
(1978): the wave grows for mne days and then decays because of the reductlon in barochmaty of the
flow and barot-ropl-c effects. The most intense cyclogenesis occurs between days six and eight with a
maximum drop in surface pressure of 8 hPa per day. We will concentrate on the characteristics of the
flow at this time, with a 24-hour assimilation beriod over the interval (day 6,day 7), and a subsequent
forecast period from day 7 to d’ay‘8. The surfa-é:é pressure fields at days 5, 6",: 7 and 8 in the Northern
Hemisphere are illustrated in Fig. 1. It was x;hown in RC92 that the tangent linear approximafion is
valid in this particular meteorological situation for ranges up to one or two days, even for substantial
amplitudes of initial perturbations (20 hPa for the surface pressure at midl-atitudes). This confirms
results previously obtained by other authors (in particﬂar Lacarra and Talagrand, 1988 or Vukicevic,
1991) and is of significance in our study to guarantee a good approximate equiva;lence between 4D-VAR
and the EKF. ' | o

The observational pattern is intended to represeht a schematic daily situation, where only conven-
tional observations are considered. Data are gathered at “s-ynoptié” hours (0, 6, A12, 18 and 24 UTC),
with a constant dilétri;buti'on. A simple representation of the heterogeneous space coverage (alternation
ocean-land) is given by the simulated radiosonde network illustrated ‘in_ Fig.l 2 which consists of 464
stations. Each report consists of wind and geopotential observations af the standard 16 pressure levels
ranging from 1000 hPa to 10 hPa. It should be noted that no direct use is made of temperatures,
as in ECMWF operational analysis. The error statistics (matrix O;) are those used‘,operationa.lly
at ECMWF, with in particular a vertical correlation for geopotentials (ECMWF, 1992). In terms
of number of individual scala,r quantities, we have 111360 data over the assnmlatxon period (for the
observations alone), compared with an equivalent 28072 spectral components necessary to define an
atmospheric state at truncation T21.

The background field used either for the sequential algorithm at the beginning of the assimila-
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tion period or for 4D-VAR is derived from the reference run, but with some time-lag from the true
atmospheric state (-24 hours) to simulate a forecast error in which the baroclinic system is slightly
~out of phase and too weak. This background field is used in two ways: it is included in the definition
of the cost function and is also the starting point of the minimization (first-guess). The subsequent
background fields used at 6, 12, 18 and 24 hours for the sequential scheme will of course be the result
of a 6-hour forecast from the previous analysis. The statistical forecast errors will be approximated
by the differences existing between the effective background fields and the truth (the reference run).
In particular the error standard-deviations will be taken as the rms of error at model levels. In most
of the experiments, for each observed variable (wind components u and v, geopotential and surface
pressure), we will compute the rms over latitude rows and we will take 4 different values for each row,
following the data coverage which vary every 90 degrees in longitude. Moreover, we will impbse a
lower bound on the standard’ deviations equal to one tenth of the maximum value, in order to avoid
‘numerical instability during the ;specfrél transformé. This choice -of staﬁdard—deviations cannot be
considered as optimal, as it has no statistical basm As for correlations, the choice was to take them as
sxmple as possible. In most of the expenments, we have 10 vertical correlatlons no cross-correlations,
and we use the same horizontal correlation for all variables. It is'a simple exponential auto-correlation
function exp —%%), where the extension a is equal to 600 kms. Being very simple, these approxima-
tions are also very crude and much less realistic than what is currently used in operations (Mitchell
et al., 1990; Hollingsworth and Lénnberg, 1986; Lonnberg and Hollingsworth, 1986). The absence of
vertical correlations may not be of much consequence in the case of complete radiosonde soundings
(Mitchell et al., 1990), but the absence of geostrophic coupling may be more detrimental. In Section
5, a geostrophic coupling, vertical correlations, and an updated version of horizontal correlations will
be included in the definition of the forecast error covariances, to confirm the results in a framework
closer to operational practice. In any case, since a background constraint is included in both 4D
variational and seqﬁentia,l schemes at the beginning of the assimilating period, we are sure that both
algorithms are penalised by the mis%peciﬁcatiohs present in this background term. Furthermore,
'Whatever sophistications are included in correlation definition in realistic systems, those will probably
be far from being optimal unless computed by a Kalman filter (see Cohn and Parrish, 1991). One of
the major weaknesses of present correlation models are the basic assumptions of separability between
the horizontal and the vertica,l and of time-invariance, and the impact of such weaknesses is precisely
what we want to investigate. |

As we are looking for a balanced atmospheric state, we will include Nonlinear Normal Mode

Initialization during the course of the minimization in most of the experiments. As in Courtier and
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Talagrand (1990) or Thépaut and Courtier (1991), one can use a Nonlinear Normal Mode Initialization
scheme (NNMI) and its adjoint to perform the minimization mostly in Rossby space. Three iterations
of the Machenhauer algorithm are inserted both in the sequential scheme (at each analysis) and in
4D-VAR, and five vertical modes are retained (Machenhauer, 1977). As explained in Pailleux et al.
(1991), it amounts to looking for the quasi-balanced state which fits the observations. If one writes
NMI(z) the result of the operation consisting in applying Normal Mode Initialization to the vector

z, 3D-VAR consists in minimizing the cost-function, at each analysis step

J(z;) = Ja(z:) + Jo(z;) : ‘ : L - (19)
where o i k
Jo(zi) = +%(m,-,g - NMI@) PMoig - NMIG@) (20)
To(@) = 3 - B(NMIG) O (w - BN MIE) ()
« which leads to the analysed vector NMI(z;), and 4D-VAR consists in minimizing the global c_pgt-
function
~J(z0) = Ja(zo) + Jo(zo) o : | ‘(2.2)
where
Ja(zo) = %(z,, _ NMI(z0))T Py (o — N MI(20)) | (@)
To(zo) = 5 3~ BN MIG) 07 (s - BN MIG)))  (24)
1=0

‘which leads to the minimizing solution equal to the model integration starting at N MI (zo). Theoreti-
cally, if NNMI can be considered as a strict projection on the slow manifold, the effect Qf this inclusion
of NNMI is to make changes in Rossby waves only in order not to get more gravity waves than those
included in the starting point of the minimization. However, as explained in Thépa,ut and Courtier
(1991), NNMI is not strictly a projection onto the slow manifold and it can partly be inverted. But,
in any casé, in the experiments performed in this study, the analyses were found to possess a small
amount of unbalanced gravity waves.

The background fields are always used as the starting points of the minimization: they initialize

the minimization process. The minimization algorithm is stopped when either it has performed 50
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simulations, i.e. 50 computations of the cost function and of its gradient, or when the norm of the
gradient has been divided by a factor 100. It is of a limited-memory Quasi-Newton type and has been
provided by Institut National de Recherche en Informatique et Automathue (Gllbert and Lemaréchal,
1989). ) ' |

In terms of computer cost, at trunca,tion T21 'Wifh a 2400s timestep, a 4D-VAR over 24 hours
extends over 39 timestepe (3 itera,‘tio‘zvy of NMI, 36 forecast steps), and ‘eae}‘; 3D;VAR is equivalent
to 3 timesteps correspoﬁding fo the NNMi stage. On fhe whole, the seqﬂentialbﬁle, composed
of 5 analyses is 2.6 tlmes less expenswe than 4D VAR It should be noted that this is a particular
context. In a more reﬁned three-dlmensmnal analysxs we would probably not need to use NNMI which
would then reduce drastlcally the cost of the sequentlal scheme, consequently mcrea.smg the cost-ratio

between the two a.lgonthms e

3 Assimilation with perfect data.

The investigation of the behaviour of both algorithms has first been carried out in the context of
perfect data and we present in the follpwihg the mest‘signiﬁca‘nt fesults.h ,The first question we are
asking is: which algorithm is the more efficient to correct for a previous exceptional forecast error by

inserting new observations?

3.1 Assimilation experiment, starting from an unexpectedly high forecast error.

In the case ef ra.pidiy evblviﬁg situations, it is knoWn that :'current‘ operationalvsystems sometimes
have problems correcting a wrong forecast with the available data to ,produce‘a, coherent analysis. The
impact of using a more elaborate assimilation scheme such as 4D-VAR is then llikelybto‘be significant
in this kind of situations. | A

To initiate the 24-hour assimilation, we take a relatlvely poor background field and we introduce
statistics of errors representatlve ofa lugher quahty backgound field. The ba.ckground is chosen as day
5 of the life cycle (Fig. l,pa.nel (a)) which is the atmospheric s1tuat10n one day before the actual time
(see the surface pressure field for day 6, 0 UTC in Fig. 1,panel (b)). The rms errors over a latitude
row, at the latitude where they are maximum, are 3.84 ms~? for the zonal wind, 8.20 ms~! for the
meridional wind, 4.31 K for the temperature and 6.8 hPa for the surface pressure. Instea.d of those,
the standard-deviations inserted in the definition of the cost-fﬁnction are taken as‘the‘ rms of errors
relative to the difference (day5, 12 UTC; day6, 0 UTC). The maximum velues over a latitude row (to
be compared with the values given above) are aboﬁt twice as small: 2.09-m.§'1 for the zonal wind,

4.63 ms~! for the meridional wind, 2.21 K for the temperature and 3.7 hPa for the surface pressure.
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€rror rms at the end assim. period after 24-hour fest
surf. pres. | 500 hPa height | surf. pres. | 500 hPa height
Exp. 1 . 1.89 hPa 151 m 263 hPa | . 206 m
‘ Exp. 2 1.48 hPa 11.6 m 1.66 hPa 121 m
[Exp. 2+AIREP | 1.28hPa | 113m [ 153hPa | 114m |
Exp. 3 1.33 hPa | 123 m 1.71 hPa 144 m
Exp. 4 0.92 hPa 72 m 1.09 hPa 78 m
Exp. 5 1.61 hPa 14.2 m 2.07 hPa 16.9 m
Exp. 6 :1.04 hPa 7.9 m 1.23 hPa 8.3m
- Exp. 7. 221 hPa [ 19.0m .5.95 hPa 815 m
Exp. 8 1.14 hPa 89 m | 1.28 hPa 9.0 m
Exp. 9 2.37 hPa 214 m :
Exp. 10 2.08 hPa 174 m

Table 1 : Global rms of errors for surface pressure (in VhPa)n ‘and height at 500 hPa
(in m), at the end of the assimilation period and after a 24-hour forecast for various
experiments. : Lol : '

. E:z:p 1: Sequential algomthm Forecast error matmces ure Lept constent and initial
error variances are underestimated. Ezperiment is perfm med without any gravity-wave
control. :

o Ezp. 2: Variational algorzthm Background error variances are underestzmated
Ezperiment is performed without any gravity-wave control.

o Ezp. 2+AIREP: Variational algorithm. Background error variances are underes-
timated. E:z:perzment is performed without any gramt1 -wave contvol Additional AIREP
reports

o Ezp. 3: Sequential algorithm. Updating of forecast error matlzcea, and initial error
variances are correctly estimated. Ezperiment is performed with gravity-wave control.

o Exp. 4: Variational algorithm. Background error variances are correctly estimated.
Ezperiment is performed with gravity-wave control.

o Ezp. 5: Sequential algorithm. Updating of forecast error matrices, and initial error
variances are correctly estimated. Ezperiment is performed with gravily-wave control.
Standard observational error is included in the data.

e Exzp. 6: Variational algorithm. Background error variances are correctly estimated.
Ezperiment is performed with gravity-wave control. Standard observational error is in-
cluded in the data. '

o Ezp. 7: Sequential algorithm. Updating of forecast error matrices, and initial error
variances are correctly estimated. Ezperiment is performed with gravity-wave control after
each analysis as a separate step. Standard observational ervor is included in the data.

e Exp. 8: Variational algorithm. Background error variances are correctly estimated.
Ezperiment is performed without gravz'ty—wavc control. - Standard observational error is
included in the data.

e Ezp. 9: Sequential algorithm. Updatzng offmecaat error malucea, and 1initial error
variances are correctly estimated. Ezperiment is performed with gravity-wave control.
Twice the standard observational error is included in the data.

o Ezp. 10: Variational algorithm. Background error variances are correctly estimated.
Ezperiment is performed with gravity-wave control. Twice the standard observational error
is included in the data.
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Fig. 2 Radiosonde network as simulated in the assimilation experiments. Each radiosonde
is indicated by a ‘circle. Panel (a) represents the Norihern hemisphere and Panel (b) the
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Fig. 3 Surface pressure error fields in the Southern hemisphere at the end of the assim-
ilation period, for the sequential algorithm (Ezp. 1) and the variational algorithm (Ezp.
2), in respectively panels (a) and (b). Forecast error matrices are kept constant and initial
error variances are underestimated. Ezperiments are performed without any gravity-wave
control. Isolines are drawn every 1 hPa.
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The matrix defining the forecast errors is kept constant over the assimilation cycle. No use is made
of a constraint to impose an analysis free of gravity waves. ‘

The global rms of error of surface pressure and of height at 500 hPa are presented in Table 1,
for the sequéntial algorithm (Exp. 1) and the 4D variational algorithm (Exp. 2) at the end of the
assimilation period, and after a 24-hour forecast.

For the surface pressure, the error rms at the end of the assimilation period is 1.89 hPa for
the sequential scheme and 1.48 hPa for 4D-VAR , and after 924-hour forecast these values become
respectively 2.63 hPa and 1.66 hPa. Not only is the sequential algorithm found to produce an analysis
of worse quality but the error growth is also higher than in the case of >4D-'VAR. In this case, and in
most of the following experiments, conclusions can be drawn from looking at the error fields in both
hemispheres, but we will illustrate the results by showing the charts relative to one hemisphere only
(either North or South), to reduce the amount of figures. |

Here the results are presénted for the surface pressure error fields for instance in the Southern
hemlsphere at the end of the assimilation penod in Fxg 3, panel (a) for Exp. 1 and in Flg 3, panel
(b) for Exp. 2. V

One can instantly notice the weaker errors in the case of 4D- VAR in agreement w1th the better
global rms of errors. The maximum absolute error value is 7.04 hPa to be compared with 10.5 hPa in
the case of sequential estimation. It can also be noticed that the error field is less noisy in Exp.2 tha,n
in Exp. 1: the pattern is more regular. | )

In both cases we find higher values of errors in the three-quarters of the hemisﬁhere where the data
density is low than in the region (90W,180W) where the data coverage is more favourable. Another
remark can be made about the horizontal extent of the influence of isolated observations. For the
sequential scheme, the error field exhibits low values at about 453, which clearly shows up for instance
at 20W and TOE. Such areas of weak errors are clearly related to the preseﬁce of isolated observations,
for which they represent the local radius of influence. This is not so clear for the 4D f/ariationa,l scheme
which then appears to distribute the information spatially in a smoother manner. |

This first comparison clearly shows the benefit of using the 4D variational approach over a simplified
sequential algorithm. We will see in the following how some of the weaknesses of the sequential
assimilation can be a,lleviated‘by inserting a control of gravity waves, but we will first in the following

section concentrate on the use of the dynamics in 4D-VAR.
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3.2 Propagation of information in 4D variational assimilation.

Let us now consider the same experiment as Exp. 2, and see how the introduction of AIREP reports will
be used in 4D-VAR to help coming closer to'rea,]ity. In addition to the previdus simulated radiosonde
network, some information about the horizontal wind at the 250 hPa level is now inseerted, at latitudes
58N and 58S, every 80 minutéé. For each of these two latitudes, 64 “airplane reports” are equally
distributed in longitudé. During the 24-hour assimilation period we thus have, at 18 different times,
reports on the upper-level wind at 128 locations. It should be noted that this additional iﬁforma.tioﬁ
is quite negligible in terms of number of observations, compared with the whole radiosonde network.

The impact of the AIREP reports is illustrated in Table 1 where the rms of errors of (Exp. 2+
AIREP) should be COmpa,red iiv'it‘h fhoée relative to Exp. 2. One can see that this impact is globally
positive, with in pérticul@f{an ’iinprovement ‘c’)f about 15 percent on the quality of the surface pressure
at the end of the assimilation period, which is far from being negligible. The sensitivity of surface

_pressure to upper-level winds was found in another context on the same baroclinic instability case by
Rabier et al. (1992), where the adjoint method was used for sensitivity problems. |

In Fig. 4 are presented the differences between pressure fields at the end of the assimilation period

in the Northern hemisphere for instance: panel (a) shows the difference between the truth and the
experiment without AIREPs, and panel (b) shows the difference between the expérimeht without
AIREPs and the experiment with AIREPs (multil;lied by 10). These two difference fields are of :
opposite sign, which shows that there has reélly been an improvement due to the new information.
‘One can also notice that, as anticipated from linear estimation theory, the changes are greater in
the regions where the radiosonde coverage is not very dense, that is where the estimation errors
were relatively high (from OE to 90E, and from 180W to 90W). The overall agreement between the
structures of the difference fields over the whole hemisphere, between 70N and 20N is remarkable: the
alternation of negative and positive values is quite similar. Of course the impact of AIREP data is
bigger in the immediate vicinity of the latitude 58N where the data is inserted, but it is also significant
further South. The changes brought by the introduction of new data amount to an important portion
of the initial errors, i.e. the errors in the experiment Exp. 2. For instance, the correction is of about
1 to 1.5 hPa in regions where the initial errors were ranging from 2 to 6 hPa.

Another illustration of the propagation of information can be found in Fig. 5, for the temperature
fields at the begining of the assimilation period. Panel (a) shows the temperature differences between
the truth and the experiment without AIREPs, and panel (b) the temperature differences between
the expériment without AIREPS 'z‘md the experimént with ATREPs, both of them being multiplied

by 10. First of all, one notices that the maximum impé.ct on the temperature field is not located at
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ning of the assimilation period for {D-VAR. Panel (a): temperature differences between the truth and
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the same pressure level as the observations, i.e. at the 250 hPa level. It is located in the mid and
low-troposphere, between 500 hPa and 850 hPa. Secondly, the temperature differences exhibit well
correlated patterns: in particular, the horizontal wavelength and the vertical tilt are similar. Using
a Kalman filter in the context of a two-layer shallow-water model, Todling (1992) found that the
presence of shear enhances exchange of information between the layers with consequent reduction of
the analysis errors, which is perfectly consistent with the vertical propagation of information described
in our experiment. Our results are also a confirmation of those obtained in a similar experiment using
real observations by Thépaut et al.(1992). _
The major conclusion which can be drawn from this experiment is that four-dimensional variational
assimilation is truly propagating information in an efficient manner, since new isolated observations
have a large impact on the quality of the analjrsis over a lé,rge geographical area and for various

meteorological parameters, even if they are not directly observed.

3.3 Influence of gravity-wave control and of a better specification of forecast error

variances.

We have seen that, in the case of badly specified forecast errors and without any constraint on the
degree of balance of the analysed state, 4D-VAR behaved substantially better than the sequential
algorithm, and we have illustrated in the previous section how the dynamics inserted in the 4D
variational scheme helped propagating observational information. The next step is to perform the
comparison in a more favourable context for the sequential algorithm, and two major differences from
the previous experiments are described.

The first improvement is related to the forecast error variances. These are now updated before each
analysis in the sequential algorithm, and are taken as the geographical error variances (ba,ckgrou'nd
minus truth) over each quarter of each latitude row, at every horizontal level. The forecast errors are
then no longer underestimated and the fact that the quality of the forecast improves more in data-rich
areas is taken into account. The second improvement is linked with the gravity-wave problem: as we
are looking for a atmospheric state, Nonlinear Normal Mode Initialization and its adjoint will be used
to perform the minimization mostly in Rossby space.

Intermediate experiments were carried out (not shown in Table 1), and we will sum up the results
before giving an illustration on the final experiment, with both modifications.

The introduction of NNMI is not found to have a great impact on the quality of the analyses, this
impact being even weaker for the 4D variational scheme than for the sequential one, but it changes

drastically the error growth rate in the subsequent forecast in the case of the sequential algorithm.
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Fig. 6 Surface pressure error fields in the Southern hemisphere at the end of the assim-
ilation period, for the sequential algorithm (Ezp. 3) and the variational algorithm (Ezp.
4), in respectively panels (a) and (b). Forecast error matrices are updated in the sequen-
tial scheme and initial error variances are correctly estimated. Experiments are performed
with gravity-wave control. Isolines are drawn every I hPa.
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The error in Exp. 1 was increased by 40 percent in 24 hours, whereas it does not exceed 30 percent
in the experiments with gravity wave control.

The most important changes in the quality of the analysed state at the end of the assimilation
period come from the better specification of forecast error variances. These improvements are about
4 times bigger than the ones brought by NNMI. A further remark is that the differential updating of
the variances on a latitude row leads to a more homogeneous error field in the sequential scheme, its
- spatial homogeneity becoming comparable to that of the results of the 4D variational scheme.

The results of the experiments are presented in Table 1 and Fig. 6, where panel (a) and panel
(b) show the analysed situation at the end of the assimilation period in the Southern hemisphere for
-respectively the sequential and the 4D variational algorithms (Exp. 3 and Exp. 4).

In terms of rms, it is clear from the comparison between Exp. 3 and Exp. 1 for the sequential
scheme, and of Exp. 4 and Exp. 2 for the 4D variational scheme in Table 1, that those two changes
have been highly beneficial to the quality of the estimations in both cases. The error is also increasing
more moderately during the subsequent forecast for Exp. 3 than for Exp. 1. Comparing Exp. 4 and
Exp. 3, the gain of using 4D-VAR is about 44 percent at the end of the assimilation period. Moreover,
the error is approximately multiplied by a factor of 1.29 for the sequential algorithm, and of 1.18 for
the 4D variational one, over the 24-hour forecast.

Fig. 6 can be compared with Fig. 3 to see the improvements in the Southern hemisphere (they
are very similar in the Northern hemisphere).

Firstly, the overall better quality of the analysis due to the better specification of forecast error
variances is immediately noticeable for both algorithms. It is clear that giving a more appropriate
weight to the background results in a better agreement with the truth. One could have expected
4D-VAR to be rather insensitive to the specification of forecast errors, as these are only inserted in
the cost function at the initial time. However, if we establish a parallel between 4D-VAR and the
EKF, it has been explained in Daley (1991) that it takes a long integrati‘oh of the EKF to get 1;he
correct asyﬁptotic forecast error matrix. In the present experiment 4D-VAR is not implemented on a
sufficiently long period of time to thoroughly correct for the extreme mis-specification of the forecast
error covariance matrix given at the beginning of the assimilation period in Exp. 2. As for the more
homogeneous analysis errors in the sequential scheme in Exp. 3 than in Exp. 1, it is linked with
the differential updating of the variances on a latitude row, and is easily seen by comparing Fig. 6,
panel (a) with Fig. 3, panel (a). An indication being given to the algorithm that the forecast is less
accurate over the oceans (data-void areas), more weight is given to the observations in these regions,

and more improvement due to the observation is allowed for. The opposite happens over the continents
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(data-rich areas) where the analysis tends to stick to the accurate background. The fact that 4D-VAR
produces errors which are also rather homogeneous spatially, can be thought of as coming from the
implicit update of the forecast error variances, equivalent to what is done in the Extended Kalman
Filter.

The major conclusion which can be drawn from this first series of experiments with perfect data
is that the dynamical information included in the 4D variational assimilation is clearly beneficial, as
confirmed by the superiority of the results over the sequential algorithm. The model dynamics is
able to make an efficient use of observations. The approximate similarity of 4D-VAR with the EKF
also illustrates the implicit update of the error variances according to the data density, which has to
be explicitly simulated in the assimilation cycle to lead to similar results. We now proceed with the

systematic comparison of the two algorithms in ‘the context of noisy data.

"4 Noisy data.

The previous experiments illustrate the prevailing differences between the algorithms (simplified se-
quential and 4D variational) used to assimilate meteorological observations. It is well-known that
observations are not perfect, and data assimilation algorithms also have to be compared in the case of
noisy data. In a practical situation, data assimilation methods have to act as filters to retain only the
useful information provided by each observation. We will first run what we call a “basic experiment”,
similar to the previous experiment (control of gravity waves, updating of the forecast error covari-
ance matrix before each analysis), for which some random noise has been added to the observations.
The observational noise is built in such a way as to satisfy the statistics underlying the definition of

observational error matrix introduced in the definition of the cost-function..

4.1 Basic experiment.

The basic experiment is intended to simulate a realistic situation, where the background field is
relatively accurate and the data rather noisy (the observation error is taken from current operational
values at ECMWF and, as an example, at the 1000 hPa level, the error standard-deviations for the
height and for the wind are respectively 4.3 m and 2.0 ms™!). The two assimilation algorithms are
given the same handicap, which is an approximate definition of the forecast error covariance matrix,
in particular in the definition of the correlations. As previously, for the sequential algorithm, the
forecast error covariance matrix is updated taking approximately into account the spatial variability

of observations. A control of gravity waves is inserted through the use of a NNMI scheme.
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In Table 1 the two experiments (sequential and 4D variational) are referenced as Exp. 5 and Exp.
6. There is a clear deterioration in quality from the previous comparison (Exp. 3 and Exp. 4) due
to the introduction of noise in the observations. At the end of the assimilation period, the surface
pressure rms are 1.61 hPa for the the sequential algorithm (Exp. 5) and 1.04 hPa and for the 4D
variational algorithm (Exp. 6); after 24-hour forecast these values become respectively 2.07 hPa and
1.23 hPa; and after 5-day forecast they become 2.57 hPa and 1.57 hPa (these 5-day figures are not
indicated in the table). '

As in the perfect data case, the error is approximately multiplied by a factor of 1.29 for the
sequential algorithm, and of 1.18 for the 4D variational one, oﬂrer the first 24-hour forecast. Comparing
4D-VAR with a sequential algorithm relying on optimal interpolation , Thépaut et al.(1992) also found
a slower growth of error in the case of the 4D variational scheme,

The difference in quality between the results of the two algorithms sétura.tes after a few days, with
a global difference in rms of errors equals to 1 hPa at the 5-day range. The saturation of the difference
between the two algorithms eomes from the meteorological situation in which the maximum instability
of the flow occurs during the assimilation period and then decreases afterwards.

For the 500 hPa height, we have respectively 14.2 meters for Exp. 5 and 7.9 meters for Exp. 6 at
the end of the assimilation period, which corresponds to approximately 44 percent improvement.

Results are shown in Fig. 7 for the surface pressure errors in the Northern hemisphere (panels
(a) and (b)) and the Southern hemisphere (panels (c) and (d)). Comparing the error fields in the
Southern hemisphere for the perfect data case (Fig. 6, panels (a) and (b)) and for the noisy data case
(Fig. 7, panels (c) and (d)), one can see that the error structures are very similar, although an overall
degradation of the quality of the analyses is present. In the Northern hemisphere, the data-void areas
clearly show up for both algorithms (Fig. 7, panels (a) and (b)), but the maximum errors are much
worse in the sequential case (panel (a)). These important differences over the oceans are also visible
on the one-day surface pressure forecasts, displayed in Fig. 8, panels (a) and (b). When comparing
those with the truth (Fig. 1, panel (d)), we see that the errors on the ocean lows are of 3 hPa for
the four-dimensional case, whereas they reach more than 5 hPa in the sequential case. Moreover, the
corresponding weather systems are better located in 4D-VAR.

Of course, the figure of about 40 percent improvement at the end of the assimilation period when
using 4D-VAR is by no means intrinsic, as it corresponds to this particular assimilation experiment.
This experiment was built in such a way as to be rather representative of meteorological reality,
nevertheless it cannot have the same fepresentativeness as extensivg statistics which are normally

used to compare different assimilation schemes. But what can be argued from this result is that,
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Fig. T Surface pressure error fields at the end of the assimilation period for the sequential
algorithm (Ezp. 5) and the variational algorithm (Exp. 6) are presented in respectively
panels (a) and (b) for the Northern hemisphere and (c) and (d) for the Southern hemi-
sphere. Forecast error matrices are updated in the sequential scheme and initial error
variances are correctly estimated. Ezperiments are performed with gravity-wave control.
Standard noise is inserted in the observations. Isolines are drawn every I hPa.
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indeed, the fully four-dimensional scheme is potentially extremely beneficial to the quality of the
analysis.

Worth noting is that the same experiment was run with forecast errors and observation. errors
divided by a factor of 10, to be absolutely sure to be in the range of validity of the tangent linear
hypothesis. The same relative difference in the quality of the analyses is found between the two
algorithrns It proves; that we are really in the context where- the beneficial impact of 4D-VAR is
not related to: its: better treatment of nonlinearities but to its more coherent use-of the dynamical
information, linear: or not.

At this stage;, 1t is 1nterestmg to 1nvest1gate the rebustness of the methods, by testing: them in
shghtly different! condltmns In partlcular, we will study the impact of relaxmg the: constra.lnt on the

balance of the flow-and of: a:larger observational noise on the two: algonthms

4.2 Sensitivity of the results: to various parameters.

Practically,. opmmallty is not. within our rea.ch as we w1ll never have enough: 1nformat10n to:derive the
exact error: statlstlcs necessary for the estlmatmn process. And this is. even more true:for the forecast
error statistics than for the observational errors, because since the former: are horizontally correlated
they require the knowledge of too;.manyvcoeffiCient'sa (Dee; 1991). We thus h‘zw:e‘ to:implement sub-
optimal filters, and as suggested by: Gelb. (1974), these should not be implemented without performing
a set of experiments in order to test the sensitivity of the algerithms to the various assumptions used.
Here, our point is not: to extensively study such sensitivities as: neither of the tw.o:a.l'gpri-thms‘ will be
used as such in practice (in particular, the forecast error matrix will be more sophisticated). But
we are interested in testing the robustness of the methods to: the specification of the slow manifold
constraint, which can be treated in: many ways (see Courtier and Talagrand, 1‘990;;. Navon and Zou,
1991; Zou and Navon, 1991). We are looking for a state, and'the question we now ask is. whether a
constraint on the gravity-waves should be included in the analysis step, or Whether- is it sufficient to
perform a NNMT as a separate step after the analysis. One should remember that: our forecast error
covariance matrix is univariate, not including any information on geostrophic coupling for instance.
The result of the analysis step is then: very likely to possess a fair amount of gravity waves, but these
might be filtered out by: the initialisation step. We perform: an experiment similar to the basic one;
except that no. NNMI is included in 4D-VAR and that a separate initialisation step is performed at
the end of each analysis-in the assimilation cycle. Results show a drastic decrease in the quality: of
the analysis at the end of the assimilation cycle for the sequential a.lgorithm(eompare in Table 1 the

results for current Exp. 7 and Exp. 5), the rms of surface pressure errors going from 1.61 hPa up to
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Fig. 8 One-day forecast surface pressure fields for the Northern hemisphere for the se-
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F1g9 Surfdce pressure error fields for the Northern hemisphere at the end of the assim-
ilation period for the sequential algorithm (Ezp. 9) and the variational algorithm (Ezp.
10) are presented in respectively panels (a) and (b). Forecast error matrices are updated
in the sequential scheme and initial error variances are correctly estimated. Experiments
are performed with gravity-wave control. Twice the standard noise is inserted in the ob-
servations. Isolines are drawn every I hPa.
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2.21 hPa. No such phenomenon is seen to happen for the 4D variational scheme, with only a slight
increase in the rms from 1.04 hPa for Exp. 6 to 1.14 hPa for current Exp. 8. Of course, this is not a
thorough investigation of the problem, but it points out the remarkable robustness of 4D-VAR, as far
as the slow manifold constraint is concerned. In the case of 3D-VAR much more care must be taken in
the definition of the forecast error covariance matrix and/or the way the balance is directly imposed.

The other sensitivity problem we study is not related to approximations made during the estimation
process, but to an external parameter, namely the variability in the quality of the observations. What
happens if the observations are n01s1er'7 Aga.m, an experiment similar to the basic one is performed
the only difference being that the noise is doubled The sequential and 4D variational experiments
ate respectively called Exp 9 and Exp 10. As can be seen in Table 1, the four-dimensional scheme
(Exp. 10) leads to an approximate global doubhng in errors, with in particular the surface pressure
rms jumping from 1.04 hPa in Exp. 6 to 2.08 hPa. It is perfectly consistent with the tangent-linear
hypothesis, as can be seen from Eq. 3 relating the estimation error to the observation error. This result
suggests that 4D-VAR acts roughly as a linear estimation of the atmosphere from the observations,
With a negligible impact of the background field on the quality of the estimate in this particular
experiment. On the other hand, the estimation error of the sequential scheme is multiplied by é. factor
smaller than 2 (the rms of 1.61 hPa in Exp. 5 becomes 2.37 hPé, in Exp. 9). The quality of the result
of the sequential algorithm does not depend solely upon the observational noise. It appears that
the successive weights given td the background fields in the assimilation process are certainly over-
estimated, although the forecast error standard deviations had been approximately updated. This
excessive weight is then likely to come from the bad specification of the forecast error correlations,
and in particular the lack of a geostrophic cbupling.

Results are also shown in Fig. 9 for the surface pressure errors in the Northern hemisphere (panels
(a) and (b) for respectively the sequential and 4D variational algorithms) to be compared with the
standard observational noise (Fig. 7, panels (a) and (b)). In the case of 4D-VAR, the degradation is
rather uniform in space, athough for the sequential scheme, comparing Fig. 9, panel (a) with Fig. 7,
panel (a), it can be seen that the degradation is the most important in relatively data-dense areas. In
data-void areas, too much weight is certainly given to the background terms, and as a consequence,
the contribution of the background to the estimation error is important.

Therefore, in this particular experiment, the quality of 4D-VAR is found to be mainly governed by
the quality of the observations, whereas the quality of the sequential scheme also depends drastically
upon the accuracy of the specification of forecast error variances.

These results highlight the importance of a very accurate definition of the various parameters
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included in the implementation of the assimilation algorithms, and in particular in the description of
the forecast error covariance matrices, or of the slow manifold constraint for the sequential scheme.
They also raise a subject which has not been treated here, namely the observation quality control.
Both algorithms are expected to deal with this problem, and in particular Lorenc and Hammon (1988)

have shown how information about gross errors in data can be inserted in the variational context.

5 Results with a different formulation of the J; term.

So fa.r, the approximations in the forecast error correlations have been exaggerated, compared w1th
~ those performed in the operatxona.l practlce We will now present the results of an experiment similar
to the basic one (section 4.1), but with a more elaborate version of the Jg term included in the

cost-functions to be minimized by the variational schemes.

5.1 Formulation of the Jgz term.

As previously, the forecast error covariance matrix to be used in the Jg term is separated into its
standard déviations component and its correlations component. The main difference comes from a
better specification of the correlations, with the inclusion of both a vertical and a geostrophic coupling
(and an updated version of the horizontal correlations). |

The vertical correlations are those used operationally at ECMWF. The geostrophic coupling is
introduced in a way comparable to the one used in the Spectral Statistical Interpolation scheme, at
the National Meteorological Center (Parrish and Derber, 1992). The spectral fields of both the control
variable and of the background field are separated into their Rossby and gravity components. Then,
two contributions are included in the definition of the Ji term: one measures the misfit between the
Rossby parts of the vorticity fields, the other measures the misfit between the unbalanced parts of the
height fields and the misfit between the divergence fields (we accept a fraction of 10 percent of the
flow to be out of the Rossby modeé). More details can be found in Heckley et al. (same volume).

As for the forecast error standard deviations, they will be taken cfmstant on the horizontal at each

model level.

5.2 Results.

We will now present the results equivalent to experiments 5 and 6 described in section 4.1 with this
new formulation of the Jg term. As a first experiment, we performed one 4D-VAR and one sequential

assimilation using as forecast error standard deviations the global rms of error over each model level.
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Fig. 10 Fits to the data at the end of the assimilation period for the sequential scheme (thick curves)

and the 4D variational scheme (thin curves). The full lines represent the rms of the differences

the dotted lines represent the bias. The observations are zonal and meridional

(analysis-observations),
components of the wind and heights. The values are computed separately for three different areas:

Northern Hemisphere, Tropics and Southern Hemisphere. The number of data is indicated on the

right-hand side of the plots, the pressure in hPa on the left-hand side.
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| Fig. 11 One day forecast 300 hPa vorticity fields for the Southern hemisphere. Panel a) represents

the forecast from the analysis produced by the sequential scheme, panel b) the forecast from the analysis
produced by the 4D variational scheme and panel c) the reference field. The units are 10-3s~1.
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A representative value for the initial backgound field is 3.5 ms~! for the wind at 1000 hPa. The
analysis error rms at the end of the assimilation period for the height at 500 hPa is 19.5 m for the
sequential algorithm and 12.4 m for the 4D variational algorithm. These rms are higher than those
computed for the basic experiment (respectively 14.2 m for Exp. 5 and 7.9 m for Exp. 6). This comes
from the fact that in the basic experiment, although the forecast error correlations were crude, the
forecast error standard deviations were computed in a rather sophistkated way, taking into account
horizontal variations. It is clear that, for this academic situation, most of the forecast error is located
at mid-latitudes, with almost no error over the tropical area. A global averaged standard deviation
is then by no means representative of the values of the forecast errors at mid-latitudes. A better
approximation would be about twice thjs global rms, and we have redone the previous experiments
multiplying by 2 the computed background global standard deviations.

As a remark, the forecast error standard deviation for the initial background field (at the beginning
of the assimilation period) is now taken as 7 ms-1 foi' the wind at 1000 hPa, to be compared with
a typical value of 3.5 ms~! in operations. The initial background is then less a.céurate by a factor
2 than a typical operational background. In the sequential scheme, the forecast standard deviations
are updated before each analysis, and the value bbtained before the last a.na.lysis at the end of the
24-hour period is 3.4 ms™1, The final background field is now as accurate as a typical background.
On the othei' hand, the accuracy of the observations is taken everywhefe equal to the accuracy of the
American 'radjosonde network, that is 2.0 ms~! for the wind at 1000 hPa. On the whole, we are then
giving relatively more weight to the data and less weight to the background than in the operational
practice.

As far as the analysis error rms at the end of the assimilation period for the height at 500 hPa
are concerned, they now drop to 10.9 m for the sequential algorithm and 5.7 m for the 4D variatioﬁa.l
algorithm. Firstly, one can notice that the quality of the results has been dra,stically‘improved ;by the
better specification of the forecast error standard deviations, fbr both algorithms. Secondly, the quality
of the analyses is now better than that produced by the basic experiment. Thirdly, the difference in
quality between the analysis produced by 4D-VAR and the one produced by the sequential scheme is
still very significant.

In Fig. 10, one can see the fit of the final analyses to the available data at the end of the assimilation
period (these data correspond to the data used in the last analysis of the sequential scheme). The full
curves represent the rms and the dotted curves the biases. The thick and light curves show the fit
of the analysis produced by the sequential and 4D variational schemes, respectively, to the available

observations. In the tropics, for all types of observations (zonal and meridional winds, heights), the
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curves are almost the same for the results of the two assimilation algorithms. This reflects the fact
that, as the backgound was already of excellent quality in this area, both analyses also are of excellent
quality and the fits to the data just show the noise present in the observations.

In the Northern hemisphere, due to the large number of data inserted in the course of the assim-
ilation, the resulting fits to the data are also quite similar. In contrast, the results are very different
in the Southern hemisphere. This is particularly noticeable for the fits to the height data and the
meridional wind in the troposphere. On top of the observational noise, the error of the result of the
sequential scheme clearly seems to be large around 300 hPa.

A 24-hour forecast was run from the results of the two assimilation algorithms. In terms of global
error rms the values for the height at 500 hPa are now 12.8 m for the sequential scheme and 5.8 m
for the 4D variational scheme. The 300 hPa vorticity forecast charts for the Southern Hemisphere are
displayed in Fig. 11 where panel a) represents the reference field, panel b) the forecast from the result
of the sequential scheme and panel c) the forecast from the result of the 4D variational scheme.

In the area between longitudes 90°W and 180°W, where the data coverage is reasonable, the
differences between the forecasts and the reference are hardly noticeable. In the rest of the hemisphere,
the better quality of the forecast displayed in panel c) clearly shows up. In particular, the locations
of the maxima/minima are always more accurate in panel c) than in panel b) (one can for instance
check it for the maximum located at 60 ° E).

It seems that the sequential scheme has not been able to correct thoroughly for the phase-error of
the initial background. '

These additional results are particularly encouraging in that they confirm the former comparisons
performed in this study, with a multivariate 3D formulation of the Jg term in the variational schemes.
They also illustrate the importance of a correct speciﬁcation of the forecast error standard deviations,

for both algorithms.

6 OCTOBER 87 STORM

Now that we have seen how beneficial is the use of four-dimensional variational assimilation upon a
simplified sequential scheme in the case of academic baroclinic instability situation, let us extend the
comparison over a real meteorological situation. The October 87’ Storm was selected as it is a typical

example of an explosive cyclogenesis.
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Fig. 12 36-hour forecasts for the sea-level pressure in the purely adiabatic case (no vertical diffusion),
valid for 16/10/87,0 UTC, and corresponding adiabatic T63 analysz's'.‘ Panel a) represents the forecast
from the OI analysis, panel b) the forecast from 4D-VAR analysis and panel ¢) the corresponding

analysis.
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6.1 Meteorological situation and set-up of the experiments

The meteorological situation has been documented in a number of papers (Morris and Gadd, 1988;
Hoskins and Berrisford, 1988; Lorenc et al., 1988; Jarraud et al., 1989;...), and we will not go into
details. In short, between Thursday and Friday 15-16 October 1987, a violent storm hit France
(Brittany and Normandy) and the South of England. A surface low rapidly developed over the
sea, with its pressure dropping from 985 hPa to 951 hpa in 24 hours, wind gusts of 50 ms~! were
recorded and the damage was considerable on both sides of the Channel. From a forecast point of
view, the model outputs available for 16/10/87,0 UTC showed some inconsistencies. Global models of
Météo-France and UKMO were forecasting a low near the tip of Brittany, at the 24-hour range, but
underestimated its intensity (gfving respectively 970 hPa and 965 hPa). In contrast, both the UKMO
fine-scale model at the 24-hour range and the ECMWTF T106 spectral model at the 36-hour range
failed to predict the rapid evolution of the atmosphere over this region. As pointed out by Jarraud et
al. (1989), these short-range inconsistencies seem to indica,fe problems in the data assimilation part
of the numerical prediction systems. As a matter of fact, Lorenc et al. (1988) succeeded in simulating
the storm with the UKMO fine-scale model, starting from a different analysis for the 15/10/87, 0
UTC, increasing both the the cut-off period and the weights given to the observations. Simmons
(pers. comm.) also obtained better 24-hour forecasts with the ECMWF model using a later version
of the analysis scheme.

From an analysis point of view, there are two prevailing features in the atmospheric circulation
24 and 36 hours before the storm. These are an upper-level jet at about 250 hPa moving rapidly
Eastwards, and an intense low-level baroclinic zone, located over the Atlantic Ocean. When the jet
gets in phase with the low-level baroclinic zone, between 15/10/87, 0 UTC and 15/10/87, 12 UTC,
the secondary surface low starts developing explosively.

Our purpose is to test 4D-VAR on this situation, and compare a 36-hour forecast valid for
16/10/87,0 UTC coming from a 4D-VAR analysis with a 36-hour forecast coming from an analy-
sis of an operational type, produced in similar conditions. The experiments will be run at resolution
T63L19 with the ARPEGE/IFS model, with no physics or simplified physics.

The first experiment is adiabatic. We have run an adiabatic T63L19 assimilation cycle with the
ECMWFT 1odel and Optimal Interpolation analysis (OI) for four days between 12/10/87,12 UTC
and 16/10/87,12 UTC. A 4D-VAR is performed over the period (13/10/87,15 UTC; 14/10/87,15
UTC). The result of the minimizing solution of this 4D-VAR will be taken at 14/10/87,12 UTC, to be
compared with the OI valid for the same time. Due to 4D-VAR assimilation period which is extending

until 3 hours later, we have then used the same amount of data for these two analyses (4D-VAR and
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OI) at this date.

4D-VAR is minimizing a function of the type J = Jo + Jg + Jo. Jo represents the misfit between
the model trajectory and the observations. Jg quantifies the discrepancy between the initial point
of the 4D-VAR trajectory and a first-guess. The first-guess is in this case a 9-hour forecast from
the OI at 13/10/87,6 UTC. The standard deviations of this first-guess-are taken as those computed
by the assimilation system for the 6-hour forecast. valid for: the‘14/,10/87,12 UTC, averaged at each
horizontal level. We are.then giving a. disadvantage:to4D—VAR‘: by dver-estimatingithe- accuracy of
the first-guess (6-hour forecast instead of 9-hour forecast errors), and more particularly over data-void
areas due to.thehorizontal averaging: The Jg formulation is the same as the one used in section.5: a
balance is»included in the formulation of the forecast error correlations. As in:Courtier-and Talagrand
(1990); a penalty-term:(Jg) on the-tendency of the gravity modes of the analysed state is-included
in the cost-function.. We- also-used: two.iterations of Normal mode Initialization. The-minimization
algorithm was stopped after 30 iterations. We have then performed two 36-hour forecasts from the two
different analyses valid at 14/10/87,12 UTC to be compared with the OI coming from the adiabatic
assimilation:cycle valid.for the 16/10/87,0.UTC.

In Fig..12 are presented theresults of the sea-level pressure forecasts and the corresponding T63L19
adiabatic analysis. Panel a) represents the forecast from the OI analysis; panel b) the forecast from
4D-VAR analysis, and panel c) the OI analysis. Both forecasts are underestimating the intensity of
the low by a few hPa; although thelocation of the low is slightly better in the case of 4D-VAR. At this
stage, one has to b‘e’,very careful in interpreting the results because of the lack of ‘physical processes.
As a matter of fact, if one compares the intensities of the low at 50°W. and of the high pressure
at 40°W, it .is noticeable that both forecasts:deepen the low and strenghten the'highx exaggerately
compared  with the corresponding OI. Furthermore, winds at 1000 hPa:a.re too strong (not shown).
It was then decided to rerun a similar experiment including vertical 'diffusioﬁ and surface drag in the
assimilation cycle, 4D-VAR and the forecasts: In 4D‘-'V'AR, a simplified vertica,lVdiﬂ'iisiOn scheme and
its adjoint were introduced. These Were,originallyfdeveloped for computing realistic. most unstable
modes for the model (Buizza, pers. comm.), It is:then possible to use surfaée observations such as
winds from- SYNOfPsand‘DRIBUs in 4D-VAR, which makes it even more comparable with OI, in
terms of observations used. For"the forecasts, the vertical diffusion used is the oneoperational at
Météo-France for the ARPEGE/IFS model. ,

Firstly, let us compare the analyses produced by 4D-VAR and the assimilation cycle for the
14/10/87,12 UTC. In Fig. 13 are presented the analysed winds at 250 hPa for OI (panel a)) and
4D-VAR (panel b)). Both analyses exhibit an area of high winds noticeable at (45°N;40°W) corre-
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Fig. 18 Analyses for the wind at 250 hPa, valid Jor 14/10/87,12 UTC. Panel a) represents the OI
T63 initialized analysis, panel b) the 4D-VAR analysis.
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sponding to the upper-level jet, with a maximum of 96 ms™! for OI and 88 ms™! for 4D-VAR. The
lower-level baroclinic zone is also present in both analyses, as can be seen from the strong temperature
gradient aroundk(45°N;30°W) in Fig. 14. As far as the sea-level pressure is concerned, the analyses
are displayed in Fig. 15. The main low is located at (55°N;15°W), with a value of 979 hPa for the OI
analysis and 978 hPa for the 4D-VAR a,nalysis. This low pressure area is extended by two troughs, one
towards the tip of Brittany, and one towards the mid-Atlantic. The later will be the one responsible
for the storm. The corresponding pressure minimum is approximately located at (42°N;30°W) with
a typical value of 1000 hPa. What can be said about these two analyses is that, although slightly
different, they both exhibit the basic features of the atmospheric flow.

Now, let us compare the 36-hour forecasts started from these analyses with the corresponding
analysis coming from the assimilation cycle, valid for the 16/10/87,0 UTC. The sea-level pressure
fields are displayed in Fig. 16. The main low (963 hpa) in the OI analysis (panel c)) is located slightly
to the South of Cornwall, with a strong pressure gradient over Brittany. In contrast, the lows produced
by the 36-hour forecasts are not deep enough and located too far to the North. On the one hand,
the value of 975 hPa is slightly better in the case of the forecast started from the OI analysis (panel
a)), compared with 977 hPa in panel b). On the other hand, the location is slightly better in the
case of 4D-VAR. At this stage, one could think that the introduction of vertical diffusion has been
detrimental, but looking at other features (the low and the high in the Western Atlantic), these are
now in much better agreement with the analysis than in the purely adiabatic case. The problem is then
very probably coming from either the lack of other physical processes or the lack of resolution, which
are important for this explosive case, and may not be so important for more standard situations.
(Simmons (pers. comm.) improved further the 24-hour forecast of the storm performed with the
ECMWT model and a later version of the analysis scheme, from going to a T106L19 resolution to a
T213L31 resolution). |

As far as the low level height and temperature fields are concerned, Fig. 17 shows the analysed
situation (panel c)) and the forecasts. The low in the height field centred at the tip of Cornwall is not
very well reproduced by the forecasts, with a slight advantage for the forecast produced from the OI
analysis. As for temperature, although the very warm air over Brittany is not forecast properly, the
temperature gradient is definitely stronger in the case of 4D-VAR. Looking now at the vorticity fields
at 500 hPaAdisplayed in Fig. 18, it is clear that both the intensity and the location of the ’vorticity
maximum are not correct in the forecasts. However, the structure of the field is better in 4D-VAR
with two maxima, one West of Brittany and the other one West of Portugal.

It should be pointed out that both the better temperature gradient at 850 hPa and the better
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analysis and panel c) the corresponding analysis.

313



45°N 60°N

30°N

N
\
\
~ 3
\
\

00 GMT 16 OCT 1887HEIGHT

850 MBTEMP 850 MB ANPREV444
200w 0° )

f
]

N.09

VA NERRAVE
/-
I
|
!
/

1757
et
INNEN]
INENEN
J

11!
IR E N

prrrl
NN

NoG¥

NTRIAN

N.O%

00 GMT 16 OCT 1987HEIGHT
40°W

B850 MBTEMP 850 MB ANPREVS555
20°W 0° b)

60°N

45°N

30°N

314




00 GMT 16 OCT 1987HEIGHT 850 MBTEMP 850 MB AN"ABMF"0

c)

60°N
N:09

45°N
NGV

5

~q
pa W
2 R
0 *=J=Z

~

’
I
[/

L

5

)
Ay
O

t
X
A

L

Fig. 17 36-hour forecasts for the height and temperature at 850 hPa, valid for 16/10/87,0 UTC, and
eorresponding T63 analysis. Panel a) represents the forecast from the QI analysis, panel b) the forecast

from 4D-VAR analysis and panel c) the corresponding analysis.

315



45°N 60°N

30°N

00 GMT 16 OCT 1987VORTIC
40°W 20°W

500 MB ANPREV444
0°

N.O9

NoG ¥

N.O%

N
| 994
00 GMT 16 OCT 1987VORTIC 500 MB ANPREV5S55
40°W 20°W 0° b)
=
=z (o))
[«]
5 3
[Ce} s
=z E=N
h <
=z
: :
M z
o

316




00 GMT 16 OCT 1987VORTIC 500 MB AN“ABMF"0 C)
40°W 20°W 0°

60°N
N.09

A5°N
NoS Y

30°N
N.O%

Fig. 18 36-hour forecasts for the vorticity at 500 hPa, valid for 16/10/87,0 UTC, and corresponding
T63 analysis. Panela) represents the forecast from the OI analysis, panel b) the forecast from 4D-VAR

analysis and panel ¢) the corresponding analysis. The units are 10~%s71,
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structure of the vorticity field at 500 hPa in the case of the forecast from the 4D-VAR analysis, were
also present in the previous purely adiabatic case.

A hint that at least the large-scale condensation process is lacking in these experiments is given
by Fig. 19, showing the specific hunidity fields at 500 hPa. Tt is obvious, from the presence of huge
unrealistic maxima in the North sea, that both forecasts are oversaturating the atmosphere. It is
well-known that latent-heat release is an important part of marine cyclogenesis, and Hoskins and
Berrisford (1988) stressed the role of this physical process in this particular situation.

As a preliminary conclusion of this study, it can be said that in this explosive cyclogenesis, the
model used both for the assimilation stage and the forecast stage at truncation T63 without physical
processes or with oniy vertical diffusion, is not adapted to analyse and forecast such an intense meteo-
rological situation. It is clear that a disadvantage was given to 4D-VAR for two reasons. The first one
is that the weight given to the first-guess was probably overestimated. The second one is that, for the
satellite observations, we did not try to incorporate directly in the variational scheme the radiances
(which were not directly available for this period) but used the retrieved SATEMs profiles. This study
could be extended in several ways. One could imagine using more physical processes together with
their adjoints in the assimilation stage, and of course in the forecasts. Another promising approach
is to use the full model (high resolution, sophisticated physics) for the trajectory and use a simplified

model for solving a minimization problem in the vicinity of this trajectory.

7 DISCUSSION

Apart from its conceptual simplicity and its adaptability, four-dimensional variational assimilation
possesses many advantages. In particular, it can be shown to be equivalent to the optimal Kalman
Filter in the linear context and under the hypothesis of a perfect model. In that casé, its main
advantage upon the Kalman Filter is its lower cost. Moreover, in nonlinear cases, it has been shown
to be able to take advantage of dynamical nonlinearities (Rabier and Courtier, 1992; Lorenc, 1988a).
However it is still rather expensive and extensive testing has to be carried out before its possible
operational implementation (Courtier and Thépaut, same volume).

It is of primary importance to both analyse and quantify the potential benefit of using such a
method relative to more classical ones such as a simplified sequential algorithm.

The main part of this study was intended at providing a preliminary answer to this question and we
deliberately investigated the problem in a simplified context in order to facilitate the interpretation of
the results. Firstly, the meteorological situation chosen as the framework for comparison is a baroclinic

instability case typical of mid-latitude dynamics where no physical processes are included, and the
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knowledge of the such-defined truth is available at any time. Secondly, the comparison was performed
within the conditions of validity of the tangent-linear hypothesis, for which results for the analysis
given at the end of the assimilation period can be expected to be very similar between 4D-VAR and
an EKF. The basic principle underlying the set-up of the experiments is to give exactly the same
information to both algorithms on the 24-hour period under consideration. Not only the observations
are the same, but also 4D-VAR is given the same background information as the one needed to
initialize the sequential algorithm, i.e. a background at the beginning of the assimilation period and
its associated error covariance matrix. The major weakness of current assimilation systems being
precisely the approximate definition of forecast error covariance matrices, the same initial handicap
affects both algorithms.

The major global conclusion which can be drawn from the results is the significantly better per-
formance of the 4D variational scheme, as it gives consistently better analyses than its sequential
counterpart and as the error grows in the s_ubsequent forecasts at a leséer rate. k

In the context of perfect data, the propagation of information due to the coherent treatment of
the dynamics is clearly visible in an experiment where additional reports at 250 hPa over one latitude
tow are found to affect all variables and a large geographical area in a manner berfectly consistent
with the dynamics. V

Wheﬁ the differential updating of forecast error variances at each analysis step due to different data
coverage is inserted in a crude manner in the sequential algorithm, it leads to a spatial homogeneity
of errors comparable to that of the 4D variational scheme.

The prevailing strength of 4D-VAR is that these two types of information (reduction of forecast
error by previous insertion of data or complicated structure functions depending on the dynamics) do
not have to be explicitely prescribed, with necessary assumptions: they are automatically provided by
the algorithm itself.

In lé, first step to test the i'obustness of both methods to various spe‘ciﬁcations of their implemen-
tation, 4D-VAR proves to be much less sensitive to the way the slow manifold constraint is applied.
But both algorithms are rather sensitive to the specification of the forecast érfor covariance matrices,
which means that an accurate definition of those should not be neglected, even in the four-dimensional
scheme. In any case, whatever configuration was chosen for implementation of the experiments, the
quality of 4D-VAR analyses and forecasts was always higher than that of the results of the sequential
assimilation scheme, especially in the Southern hemisphere. ,

The second part of this paper was dealing with a comparison between 4D-VAR and a simplified

operational assimilation scheme, for the October 87’ Storm over France and England. The model
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used was a T63L19 model with very simplified physics (only vertical diffusion). We performed two
36-hour forecasts from 4D-VAR analysis and Optimal Interpolation Analysis, but the impact of using
a more elaborate assimilation scheme was hardly noticeable. For this explosive cyclogenesis, a more
sophisticated model would be needed in order to be able to obtain significant results. In any case, this
situation should be used as a test-case to evaluate the improvements brought by refinements in the
four-dimensional assimilation system (introduction of physics, increase in resolution). It is essential

to investigate further this four-dimensional variational scheme on such extreme events.
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