VALIDATION OF WEATHER FORECASTS DERIVED FROM LARGE SCALE SIMULATIONS
USING DIRECT MODEL OUTPUT OR STATISTICAL INTERPRETATION

S. Kruizinga
Royal Netherlands Meteorological Institute
De Bilt, The Netherlands

1. INTRODUCTION

Typically a weather forecast for a given location or area consists of a general description of the
weather events to be expected and a set of forecast values for various observable weather parameters at
that location or in the area. Since the start of numerical weather forecasting these forecast values have
been derived from the output of the numerical models either by subjective judgement of the forecaster or
by objective statistical interpretation. In the last twenty years the importance of statistical interpretation
has grown considerably and is nowadays used in many meteorological offices.

In the early days of numerical modelling when only 500 hPa maps were available interpretation
was a necessity for all surface weather parameters. Nowadays the output of numerical models also
contains fields with surface parameters. So it seems that statistical interpretation is only needed for very
specific parameters like visibility etc. In this paper we wish to show that although Direct Model Output
(DMO) for surface parameters already produces high quality forecasts it is still possible to improve these
forecasts by statistical interpretation. ’ |

In this paper we will give a brief resumé of some characteristics of statistical interpretation in
section 2, a very extensive introduction to statistical interpretation and verification is given in Glahn et al.
1991. In the sections 3 and 4 we will compare forecast skills of DMO and statistical interpretation for
two very common weather parameters namely maximum temperature and occurrence of precipitation. In

section 5 our conclusions will be given.

2. CHARACTERISTICS OF STATISTICAL INTERPRETATION

In a statistical interpretation system the forecast value for a specific surface parameter at a given
location is computed by a statistically developed equation. The input values for the parameters are
retrieved from the forecast of a numerical model. The derivation of the statistical forecast equation
requires a time series of observations of the surface parameter in question the "predictand” together with a
concurrent time series of either analyzed or forecast parameters retrieved from the numerical model the
"predictors”. The type of equation used depends strongly on the characteristics of the predictand. The
coefficients of these equations are optimized on the basis of the available time series (the dependent data

set).
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2.1, Statistical Techniques

The most common statistical technique used for developing forecast equations is Multiple Linear
Regression (MLR), Klein et al. (1959). This technique can be used for weather parameters with an almost
normal probability distribution like temperature, wind components and wind velocity.

However, a lot of weather parameters have probability distributions which differ very much from
the normal distribution. Examples are cloudiness with often high probabilities at both extremes or
precipitation amount. In most cases these weather parameters are categorized before forecast equations are
developed. The forecast equations for this type of weather parameters mostly result in a probability for a
given category.

For the development of probabilistic equations several techniques are available. Examples are
Logistic Regression (Brelsford and Jones, 1967), Regression Estimation of Event Probabilities (Miller,
1964) and Multiple Discriminant Analysis (Miller, 1962).

A very general technique is the analogue technique (Kruizinga and Murphy, 1983). In this
technique a forecast map, e.g. 500 hPa height map, is retrieved from the model output and compared with

a set of historical maps. The statistical summary of the weather of the most similar maps is used as

forecast.

2.2,  Perfect Prog and Model Output Statistics
For the derivation of forecast equations a time series of predictors and predictands is needed. In
general two approaches are used for the development of statistical interpretation eqautions, Perfect Prog
(Klein et al. 1959) and Model Output Statistics (Glahn and Lowry, 1972).
- Perfect Prog (PP)
In this approach predictor values which are needed for the development of the equations are
retrieved from the analyses of a numerical model or from observations. In the operational mode
these equations are applied to the forecasts of a numerical model implicitly assuming that the

forecasts are perfect. This type of equation can be applied to any numerical model and any

forecast time
- Model Output Statistics (MOS)
In this case the values for the predictors in the time series are retrieved from forecasts from the

numerical model. The equations are applied to the same model output at the same forecast time.

So for each model and each forecast time a separate equation is needed.

2.3. Applications of Statistical Interpretation

Statistical interpretation can be used for a lot of purposes. Here some of these objectives will be

discussed:
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correction of bias and range of DMO

In many cases DMO has a severe bias or a too large range of values. Simple linear regression or
Kalman filtering (Persson or Simonsen in Glahn et al. 1991) can be used to correct these errors.
The objective in this case is not to improve the forecast skill but to make the application of the

forecasts more direct.

combining several parameters into one forecast
In this case the objective is to improve the forecast skill by combining several output parameters

into one forecast of a surface weather parameter. This is especially useful at medium- and long-

range forecasting:

probabilistic forecasting
Often the end-user wants to know if a certain critical threshold will be passed e.g. will frost occur
or not. In such a case a probabilistic forecast giving the probability that the threshold will be

passed is very useful for risk evaluation by the end-user.

blending recent observations with model results
Typically the forecaster has to make his forecast on the basis of model output that uses initial
conditions of several hours earlier. Forecasts for the first few hours should be based on recent

observations in combination with model output, Unger (1987)

Verification of Statistical Forecasts

The verification of statistical forecasts requires some special care. In contrast to field verification

of numerical models which is mostly based on the comparison of forecast and analyzed maps at a given

time the verification of statistical forecasts and DMO is based on the comparison of time series of

forecasts and observations at a given site or small area. The verification results are strongly dependent on

the "climate" of the observations in the verification period. Especially when two forecast systems are

compared it is neccessary to verify both forecast systems on the same period and to filter out all days on

which one of the forecasts is missing.
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3. VERIFICATION RESULTS OF DMO AND MOS FOR TEMPERATURE

In this section we will compare the skill of the operational MOS forecast (based on the ECMWF
model) for the daytime (06-18 GMT) maximum temperature at De. Bilt with the skill of the 12 GMT two

meter temperature T2M retrieved from the ECMWF model output at the nearest gridpoint. Both forecasts
will be verified against the observed 12 GMT temperature (T12) as well as the observed daytime
maximum temperature at De Bilt (Tx).

The MOS forecast uses different equations, based on linear regression, for different seasons. In
winter (December to February) the main predictors are the 1000 hPa temperature at 12 GMT, the average
fnaximum temperature of the analogues of the 500 hPa field (Kruizinga and Murphy, 1983), the east-west
component of the 1000 hPa wind and the height of the 1000 hPa level. In summer (June to August) the
850 hPa temperature replaces the east-west component of the 1000 hPa wind. In both seasons the 1000
hPa temperature is the most important predictor at lead times up to about 96 hours. Thereafter the
analogue temperature becomes very important. In figure 1 the yearly skill of the MOS maximum
temperature forecast over the period 1981 upto 1991 inclusive is plotted. The MOS equations used in the
period that will be verified were implemented in 1987, before that year mixed MOS/PP equations were
used (Lemcke and Kruizinga, 1988).
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Maximum temperature, skill over climatology

Fig. 1 Yearly skill scores for MOS maximum temperature forecasts for the years 1981 to 1991.
Lead time in days, day 1 is based on +48 hours and so on.
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'The T2M DMO forecasts were retrieved from the MARS system at ECMWF on a Gaussian N80
grid. During winter 1991 and summer 1991 this was the basic grid of the ECMWF T106 model. In figure
2 some gridpoints in the neighboorhood of De Bilt are depicted as well as the location of De Bilt. The
distance between De Bilt and the nearest gridpoint is about 35 km.

3.1.  Verification score

Usually for parameters like maximum temperature the verification score used is Mean Absolute
Error (MAE) or Root Mean Square Error (RMSE). Both these scores are consistent scores (Daan, 1984)
but both scores are influenced by the bias of the forecasts as well as by differences in the standard
deviation of forecast and observation. For this study we preferred the correlation coefficient as
verification score. This score is not a consistent score for final forecasts but giVes in our opinion a better
measure for the applicability of the forecast parameter to an experienced forecaster. The use of this

scoring rule made it possible to verify both forecasts, MOS and T2M, against both observed weather

parameters, Tx and T12.

Fig. 2 Gridpoints of N80 Gaussian grid near to De Bilt. Open dots are sea points, filled dots
are land points.
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Results

The verification period covered one year of data, 1 December 1990 to 30 November 1991. In

order to remove the seasonal change in all parameters the climatological normal of the maximum

temperature was subtracted from all elements. Moreover, because the MOS-system uses four seasonal

equations the data set was split into four seasonal datasets. In figure 3 the correlation coefficients (CC)
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Fig. 3

Correlation coefficients of MOS and T2M with Tx and T12 respectively as function of

lead time for winter and summer.
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Fig. 4

gives the standard deviation of climatology.

Lead Time

Mean and standard deviation of forecast errors T2M-Tx and MOS-Tx. The dotted line

obtained are depicted versus lead time. All these correlations were computed for those cases in which
both forecasts for the appropiate lead time were available. (There were no missing observations).

In figure 3 the panels on the left show the winter correlations with temperature at 12 GMT (T12)
and daytime maximum temperature Tx respectively. In the panels on the right the summer correlations

are depicted. Although one would expect T2M to correlate better with T12 than with Tx this is not the
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case. Furthermore it is clear that T2M and MOS are of equal quality in winter whereas MOS outperforms
DMO in summer. The latter holds also for spring and autumn, results of these seasons are not shown.

In figure 4 the mean and the standard deviation of the forecast error (forecast minus observed) for
both forecasts MOS and T2M versus Tx only are given. In winter the mean error of T2M is in agreement
with the mean difference between T12 and Tx, MOS shows a small bias of about 0,5 degrees. In summer
both biasses are low. The results for the standard deviation confirm the results found with the correlation

coefficient.

4. VERIFICATION RESULTS FOR PRECIPITATION

In this second experiment we will compare the precipitation forecasts of the model with the MOS

probability forecasts. Again the precipitation forecasts were retrieved from the MARS system at ECMWF
at the N80 Gaussgrid. At the gridpoint nearest to De Bilt the large scale precipitation and the convéctive
precipitation were retrieved and added. The amount accumulated between +12 and +36 hours was used as
day 1 (or +24) precipitation forecast RR, the accumulated amount between +36 and +60 was used as day
2 (or +48) forecast and so on. The observation used to verify this forecast was the precipitation amount
observed in De Bilt between 00 GMT and 24 GMT.

The probability forecasts were taken from the operational statistical forecast system of the Dutch
weather service. The forecast probability POP24 refers to the period 18 GMT to 18 GMT the next day
and it is verified against the observed rainfall over the same period. For POP24 one logistic regression
equation is used for the whole year and the most important predictor is the number of analogues with

precipitation (Lemcke and Kruizinga, 1988).
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Probability of precipitation (18-18 UTC), skill over climatology
Fig. 5 Yearly skill scores of MOS POP24 forecast for the period 1983 to 1991.
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4.1. Verification score

It is not possible to compare and verify the two forecasts directly. First we have to transform both
forecasts to a common type of forecast. Therefore both forecasts were transformed to a yes/no forecast
(whether precipitation will occur or not). The observations were also converted to yes/no by selecting yes
if the observed precipitation was .3 mm or more. For the transformation of RR (the model precipitation)
the same decision rule was used. The POP24 was transformed to yes/no by chosing yes if the probability
is higher than 50 percent.

The verification of yes/no forecasts requires special scores. In this case we choose the Hanssen-
Kuipers skill score PI (Hanssen and Kuipers, 1965). This score is computed from the two by two

contingency table in the following way:

Forecast
No Yes Total
Observation | No N0O NO1 Not
Yes N10 N11 N1t
Total NtO Nt1 Nit
PI = _l\@ + .N_ll -
NOt NIt

4.2, Verification results

In the Netherlands the probability of precipitation in 24 hours (POP24) shows only a moderate
seasonal change, ranging from 38 to 59 procent. Furthermore the MQS equation is valid throughout the
Whole year. Therefore we do not show seasonal verification results but only for the complete period from
1 December 1990 upto 30 November 1991 inclusive. This means that since ECMWF changed model
resolution that the DMO data from 17 September 1991 onwards are interpolated (to a N80 Gaussian grid)
data from the T213 model of ECMWF, before that date the data come from the T106 model on the N80
Gaussian grid.

In figure 6 the bias and the PI of both transformed forecasts are depicted. The DMO slightly
overforecasts the occurrence of precipitation except at the 72 hour forecast. The MOS system
overforecasts the occurrence of precipitation at short lead times and underforecasts at longer ranges. The

panel with the PI shows a high skill for DMO at a lead time of 24 hours. For longer lead times the MOS
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system has an equal or higher skill than the
DMO output. It should be emphasized that the
verification shown here only refers to a part of
the information given by both the types of
forecasts. In the case of POP24 the
probabilities give additional information for
risk evaluation. In the case of DMO additional

information is contained in the amounts given.

5. Conclusion

Current forecasting practices require
forecast values for a wide range of weather
parameters. For some of the parameters these
forecast values can be derived directly from
the numerical model (DMOQO) others have to be
computed with the help of a statistical inter-
pretation scheme. For other parameters - only
the last option is possible. In this paper it has
been shown that for commonly used para-
meters available in DMO, statistical inter-
pretation still can improve the overall skill of
the forecast. From these results we conclude
that in a local weather office two programmes

should run in parallel:
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Fig. 6 Bias and Performance Index of MOS
and DMO versus lead time.

- a DMO programme: In this programme forecast values are retrieved from a numerical model with

high quality interpolation schemes. The resulting forecasts are routinely verified versus observational

data at station sites. From these results the skill of DMOQ forecasts at non station sites can be

estimated.

- a statistical interpretation programme: In this programme forecast values for DMO parameters, for

non-DMO  parameters and probabilistic forecasts are computed with statistical interpretation

equations. Again the resulting forecasts are verified against the observational data. However, these

results are strictly local but can support the need for statistical interpretation at more stations.

Forecasters must have access to both types of objective weather forecasts and should be informed on the

skill of both types of weather forecasts on a regular basis.
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