DATA ASSIMILATION WITH AN EXTENDED KALMAN FILTER

Pierre Gauthier Philippe Courtier
Atmospheric Environment Service ECMWF
Dorval, Canada Reading, UK
ABSTRACT

Since it produces a forecast of both the model state and its error covariance, the Kalman
filter gives information about the actual accuracy of the analysis and this is what makes it
unique. The extension to the nonlinear case has to face the issue of the closure scheme for
the different statistical moments needed to describe the error structure. One such method
is the extended Kalman filter (EKF) and it relies on a low order closure assumption while
using the tangent linear model to integrate in time the forecast error covariance. In the
present paper, the EKF will be used to assess the impact of simulated radiosonde and
Doppler wind Lidar data on the time evolution of the forecast error covariance. Even
though nc model error has been considered, the results show that, with the radiosonde data
\ alone, there can be a substantial forecast error growth especially in regions where the flow
‘is unstable and no data are available. The error growth is attributed to instability processes
that are embedded within the complex flow configuration around which the nonlinear
model is linearized to obtain the tangent linear model. Wind data from a proposed
satellite-based Doppler Lidar instrument are available in these regions of data voids so that
when they are added, the assimilation is now capable to put a stop to the unlimited error
growth observed in the previous experiment.

1. INTRODUCTION

The Kalman filter supplies a measure of the accuracy of an analysis in the form of its error covariance;
therefore, it allows the impact of different observations. sets to be compared. Using simulated
observations, this can be used to look at different configurations for a proposed satellite instrument or
network of observing stations to find the one that can be expected to be the most beneficial from the
point of view of numerical weather predictionl A study of this type has been carried out recently by
Cohn and Parrish (1991) who looked at the impact of wind profilers data on the analysis and forecast

error by employing a linear Kalman filter.

In the nonlinear case, an extended Kalman filter (EKF) can be used and its basis is similar to the
Kalman filter. The EKF differs from the Kalman filter in that it uses a nonlinear model to make a
forecast and the forecast error covariances are now integrated with the tangent linear model. Moreover,
the EKF is based on a low order closure assumption for the different statistical moments needed to
describe the error structure and it may not be appropriaile in some situations: this has been the object
of some theoretical work by Miller and Ghil (1990). But the EKF brings new features concerning the

time evolution of the forecast error covariances because the nonlinear model is linearized around a
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time and space dependent flow configuration to yield the tangent linear model. Although linear, this

model is complex and it embeds instability processes that are not yet fully understood.

An EKF based on a non-divergent barotropic model has been implemented within the IFS/ARPEGE
system that also includes the tangent linear model. The focus will be on the time evolution of the
forecast error covariance and not on the analysis itself. When assimilating data, several factors
intervene:

¢ the data themselves with their geographical and time distribution, their nature (wind,

geopotential, etc.) and their quality,

+ the method used (optjm‘al interpolation, Kalman filtering, variational method, etc.),

* the model used to perform the assimilation.

In order to focus on the impact of the data themselves, identical twin experiments have been conducted
to allow for a dynamical consistency between the observations and the assimilating model. This also
removes, for the time being, the need to consider model error and none has been included in the
experiments to bé described below. To assess the usefulness of Doppler wind Lidar data from a
satellite based instrument, results are compared between an experiment with simulated radiosonde data
alone and others where the simulated Lidar data are added. This is done for different satellite

configurations.

2. IMPLEMENTATION OF THE EXTENDED KALMAN FILTER
The derivation of the filter's equations can be found in Jazwinski (1970): it follows the same procedure
used in Ghil et al. (1981) for the linear Kalman filter. If X € R" stands for the model state of the

dynamical system

aXx
=00, @1

its integration from time t,_; up to t,, using X, , as initial conditions, can be represented symbolically

by the relation
Xy = T Kyer) - (2.2)
The equations of the EKF are shown to be the following:
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a) Ky = PLH (R +H P H) Y,
£ £
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e) Py = A1 Pea A + Qs

where the following definitions have been used:
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Xy forecast/analysis at time t s

Plfc’a : forecast/analysis error covariance (: E( Xf{’a - X]t() ( le{’a - Xltc)T);
H, forward interpolation of the model State to the observations;

z, vector representing a set of “M” observations available at time ty ;
R, observation error covariance matrix

(including measurement and representativeness error. );

K, : gain matrix;
Qp model error covariance;
}’lk : represents the integration from ty to t,, ; of the tangent linear model

dox = O xm) ox 2.4)

Here, E stands for the statistical expectancy. Within the EKF framework, the time evolution of the
forecast error is governed by the tangent linear model (2.4} that stems from a linearization of (2.1)
around a model trajectory X (t) obtained by integrating the nonlinear model, using the current best
estimate as initial conditions. Although this model is linear, it is linearized around a complex flow

configuration and it embeds instability processes that are usually absent from simpler linear models.

The expression (2.3a) for the gain matrix K, has beeﬁ determined by minimizing a quadratic
measure of the analyéis error‘ | |
T=EX-XHTA X -X))
where A can be any arbitrary positive semi-definite matrix. For instance, by taking A to be identically
zero with the exception of one element of its diagonal, this minimizes also the error variance for each

component of the model state vector.

Several pieces of information are needed for the integration of (2.3). Initial conditions have to be
provided not only for the first-guess Xé but also for its error covariance Pg. The ol}sewation error
covariance R, must also be specified: it depends on the type of observation and is related to the
measurement and forward interpolation errors but also to the natural &ariability of the atmospheric
flow on scales that are not resolved by the assimilating model (representativeness error). Finally, a
knowledge of the model error covariance Qk is also required. This error can be associated with the
discretization error or the absence of some dynamical processes in the numerical model (e.g.,
imperfect parameterization of the sub-grid scale processes). Its determination could be done
adaptively (Dee et al., 1985) by making the innovation vector sequence ( Z, ——Hk(Xli)) uncorrelated
in time. In most studies however (e.g., Cohn and Parrish, 1991; Dee, 1991), the model error covariance

is specified and the form used has to be justified. The work of Phillips (1986) investigates the validity
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of such approximations and a discussion of this question in relation to the Kalman filter is presented in
Cohn and Parrish (1991). It is important to keep in mind that the results may depend crucially on what

is used for the model and observational error (Daley, 1991),

In the limit where the nonlinearities become negligible, the EKF-is optimal and corresponds to the
usual Kalman filter. In the nonlinear case, its optimality has to be verified through a Monte-Carlo
simulation out of which the forecast covariances can be estimated and compared to what the EKF
produces (Veyre, 1991). This is directly related to the validity of the tangent linear approximation that,
has been shown to be a reasonably good one for barotropic models over a 24-hour time interval that

corresponds to what will be used here (Courtier and Talagrand, 1987; Lacarra and Talagrand, 1988).

The assimilation starts with the analysis cycle and then proceeds with the integration of the resulting
analyzed model state and analysis error covariance. The EKF has been implemented within the
framework of the ARPEGE/IFS ‘model of ECMWF and Météo-France. The present paper will only be

concerned with the specifics of the implementation of the EKF for the barotropic vorticit! equation

%%+J(-w,l;+f)=0,

where W, { and f are respectively the stream function,-the relative vorticity and the planetary vorticity
while J(a,b) stands for the Jacobian operator. When implementing the EKEF, it is important to remember
that the linear operétors /"lk; 7 and Hy éppearing in (2.3) are not explicitly known as matrices but
only through their action on some vector X. The calculation of o |
M, =4, P%
is done by performing N integrations of the tangent linear model from t, ; up to t, using successively
the N columns of PkE_l1 as initial conditions and replacing the corresponding column with the result.
Proceeding in this manner, only one NXN matrix is required and the completion of the integation of
Plis obtained from
Py = A, Pi-l’qkT.J = (A M)

This requires N more integrations of the tangent linear model using now the rows of M, as initial
conditions. The cost of integrating the forecast error covariances therefore corresponds to that of 2N
integrations of the tangent linear model. For a barotropic vorticity equation model truncated at T21, a
24-hour integration of the EKF with a one-hour timestep was done in 1100 seconds of CPU time on a

CRAY 2 computer.

The forward interpolation H, summarizes all operations necessary to go from the model state X, to

the observations. In the present case, the assimilation of an observation of a single wind component
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would require that H, includes all the operations needed to go from the spectral components of the
vorticity to the model wind interpolated at the observation point (see Gauthier et al., 1992). The
assimilation of observations of the geopotential requires that the model state be related to it through
the nonlinear balance equation '
ap = V((L+nVATL) - 2 valL. VAL, | (2.6)
where A stands for the LapIacian operator. At mid-latitudes, the planetary vorticity T being usually
more important than the relative vorticity {, (2.6) can be approximated by linearizing -around a state of
rest to give the linear balance equation S
. o' = AT [V.evalD)]. 2.7)

which has been used for sake of simplicity and H,_is linear.

In the experiments that will be presented, Pé has been initialized by assuming the first-guess error
correlation ‘dn the stream function to be homogeneous and isotropic. This point is discussed at length
in Appendix B of Gauthier er al. (1992) where it is also shown that under these conditions, Pg is
diagonal. The aim here was to choose something reasonable although the correct form could be
obtained by integrating the EKF over a sufﬁciently long time so that the forecast error covariance
converges to the asymptotic form that it would reach for a stationary observation network (Daley,
1991). But this would require a good knowledge of the model error which was not considered in our

experiments.

3. ASSIMILATION OF A SIMULATED RADIOSONDE NETWORK

All the experiments will use synthetic data and are of the identical twin type (Daley, 1991).
Consequently, no model error is taken into account and, as pointed out in Cohn and Parrish (1991),
this can imply that there is no global error growth and it usually produces overly optimistic results.
The observations have been simulated according to the radiosonde network for measurements of wind
and geopotential at 500 mb associated with the 633 TEMP stations and wind only for the 135 PILOT
stations: all reporting stations on 14 July 1990, 0 h UTC have been considered. As can be seen from
Fig.1, this observation network covers the continents of the Northern hemisphere rather well but gives
only a weak COVBrage of the oceanic regions with important data voids especially in the Southern
hemisphere. Synthetic observations were generated from a 24-hour integration of the barotropic
vorticity equation spectrally truncated at T21: the initial conditions X(t) used were those of 14 July
1990 at Oh UTC. At the location of each station, values of u, v and ¢ have been generated every 6
hours for 24 hours according to what would be provided by the station; the network has been assumed
to be the same for each synoptic time. In reality, the radiosonde network has a periodicity of 12 hours

and not 6 hours, but the choice made here can be justified by the fact that various other sources of
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Figure 1.
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information such as the new emerging ACAR have not been considered here. No noise was added to
the interpolated model state but observational error is introduced at the assimilation stage: it has been
assumed to be uncorrelated with standard deviations of 2.24 ms™! and 11.2 m respectively on wind and

geopotential height observations: these are operational estimates of the error made by radiosondes.

Assimilation with the EKF was then accomplished by initializing the first-guess error covariance Pg
to be homogeneous and isotropic and the correlation length was set to 1200 km while the uniform
variance corresponds to that of a geopotential error level of 21 m (standard deviation) at mid-latitudes.
The focus will not be on the analysis itself but on the time evolution of the covariances that can be
influenced by the nature and distribution of observations (through the interpolation Hl'(), their error
structure (through R, ) and the initial assumptions made on Pf). Moreover, the first-guess is taken to
correspond to Xg thereby implying that X; = Xf( at all times because the 6bservations correspond to
an exact model state. By proceeding in this manner, only (2.3-a,c,e) are active in the EKF equations,

the tangent linear model that is therefore a linearization around the true trajectory.

By choosing the initial estimate of Pg to correspond to what is found for the operational analysis
error level, the time evolution of the fbrecast error covariance should not be very different from what
would be obtained by linearizing around the current best estimate instead of the true solution because
the tangent linear model has been veriﬂed fo givé an accurate representation of the forecast error over
a 24-hour time interval (Courtier and Talagrand, 1987; Lacarra and Talagrand, 1988): this holds for
the large scales resolved by thé T21 barotropic model used here. This would cease to be true however
if the assimilation was made over periods of time exceeding the limit of validity of the tangent linear
model. As a result, the assimilatioh deviates from a strjct implementation of the extended Kalman filter

but the time evolution of the forecast error covariance should not be significantly different.

Fig.2 shows the analysis error variance at t = 0, 12 and 24 hours. At t=0, it is as it would be if
optimal interpolation was used but when the time dimension comes into play, the variance is now
governed by the tangent linear model that captures the dynamics of error growth and propagation of
information. This is clearly illustrated by Fig.2-b,c showing that the region west of South America
experiences a significant increase in the error level which can be attributed to three factors. First of all,
a more important error growth rate is hinted at by the local vorticity gradient that points towards local
barotropic instability in the area: this can be seen on Fig.3a where the vorticity and the error variance
over that region have been plotted at the end of the assimilation time interval. The maximum variance
in that area is about 4 times the initial constant level and the error has therefore doubled in 24 hours.

Secondly, this area being totally devoid of any observations, nothing acts to bring the error level down.
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Figure 2. Analysis error variance resulting from an 'assimi‘latjon with the EKF. a) t = 0 hrs, b) 12 hrs,
c) 24 hrs. Units used are 1x10™"2 2 with contour levels of 1 unit and the characteristic

length of the first-guess error is 1200 km.
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Figure 2c. Analysis error variance resulting from an assimilation with the EKF at t = 24 hrs. Units
used are 1x107'? 2 with contour levels of 1 unit and the characteristic length of the first-

guess error is 1200 km.
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A) ERROR VARIANCE AND VORTICITY FIELD
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Figure 3.

(dashed), b) the geopotential field (dashed). The domain is a close-up over the region West

of South America.

180



Finally, the geopotential (shown on Fig.3b) indicates that the circulation tends to skirt the area and

propagation of information from the outside is therefore impaired.

Without the time integration of the forecast error covariances, one has only to solve (2-3a,c) to
update the analysis error covariances according to information brought in by new observations.
Proceeding in this way is “an improvement over optimal interpolation in that the analysis error
covariance is updated and that no data selectibn algorithm is involved. The resulﬁng analysis error
variance is represented at the final time on Fig..4...A comparison with the variance field of Fig.2-c
obtained with the EKF shows that this “improved” dpﬁmal ‘iﬁtérpolation is not giving a good estimate
of the accuracy of the analysis. The conclusion is ‘then that the EKF brings important and new
information about the actual accuracy of the analysis which is seen to be quite different from the pic-
ture obtained from optimal interpolation that uses an i-ncorreci estimate of the forecast error
covariance. The reason for this is that the EKF takes into account the dynamics of error growth and
propagation of information by integrating in time the forecast error with the tangent linear model. The
latter being obtained from a linearization of the model’s equations around a complex time dependent
flow configuration, its dynamics embeds instability processes: this leads to error growth (even in the
absence of model error) that depends on the local flow cdnﬁguration, Propagaﬁon of informatioh is
also more accurate and the presence of areas of closed circulations would tend to block information
from entering in those regions. These mechanisms are seen to be quite differenf from those in an
operational data assimilation cycle where error growth is taken into account usually by inéreasing the
uniform error variance linearly in time which increases it globally regardless of me'particularities due

to local instabilities, lack of observations, etc. .

The results may also depénd on what is used to initialize the forecast error covariance. For instance,
the correlation length used in the experiments reported above was 1200 km which means that
observations had an impact over a very large region. To assess the impact of this particular choice, the
experimenfwas repeated using 400 km as the charaéteristic scale of the initial first guess forecast
errors. The results show that the error level is considerably higher even at the initial time. This is a
direct consequence of the reduced characteristic scale: by keeping thé geopotential error field (and
hence the streamfunction) to be the same as in the previous experiments (21 m), the corresponding
vorticity error is' increased because it is obtained by differentiating the streamfunction twice thereby
making the characteristic scale to appear at the denominator. However, the general features of the
variance field are very similar to those reported earlier (Fig.3), in particular the regions of intense error
growth are still present. Fig.5 shows the time evolution of the analysis érror variance averaged over the

globe when the inital characteristic length is respectively 400 and 1200 km; to emphasize the impact
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of having a denser observation network, the contributions to the global mean coming from the
Northern and Southern hemispheres have also been plotted. This clearly shows the analysis to be
poorer in the Southern Hemisphere in both cases and the global reduction in analysis error is done

mostly in the Northern Hemisphere.

This last result leads to the obvious conclusion that if the data coverage were more uniform, it is to
be expected that few differences should exist between the Southern and Northern hemispheres. This is
investigated in the next section where wind observations coming from a simulated satellite based Lidar

system are added to the radiosonde network.

4. IMPACT OF THE WIND LIDAR DATA

In recent years, both NASA and the European Space Agency have proposed to launch a satellite based
Doppler Lidar instrument that would provide a fairly global coverage of radial wind measurements
along the line of sight (Curran, 1989; Betout, Burridge and Werner, 1989). Fig.6 shows the data
coverage associated with polar orbits at altitudes of 400 km (Fig.6a) and 800 km (Fig.6b). This
particular choice is dictated by the fact that below 400km, the orbit is unstable while at 800 km, the
Lidar instrument is becoming less accurate. In both cases, the conical scan has-‘a 45° aperture. The
main feature emerging from Fig.6 is that when orbiting at 400 km, there are significantly larger data
gaps than those created when on an 800 km orbit. Since the Lidar instrument provides a measurement
over a volume of air that is very small when compared with the reéolution of the model, the
observation error must therefore include, on top of the measurement error, wind fluctuations on the
unresolved scales: here, these fluctuations have been estimated to correspond to the radiosonde wind
error. Finally, the measurement error made by the instrument has been estilhated to be of 1 ms™ fora

400 km orbit and 4.3ms™! when orbiting at 800 km due to a deterioration in the signal-to-noise ratio.

The Doppler wind Lidar data used here consist of a single wind component measured along the
direction of the line-of-sight: the orbitography simulator provided the location of the measurement
and the direction of the line-of-sight that were used in the simulation and assimilation of the data. In
all the following experiments, the methodology is the same as in the previous section but now, Doppler
wind Lidar data have been simulated and added on top of the same radiosonde data used in the
preceding sécti’on (the same initial conditions situation were used to simulate the data). The Lidar data
are inserted at every hour while the radiosonde network comes in at every six hours as before. In the
first experiment, the satellite is on a polar orbit at an altitude of 400 km and the Lidar shots have a 1

1on the

Hz firing frequency (3,600 wind measurements per hour): an observation error of 2.45 ms’
radial wind component has been considered. Over a 24 hour period, the volume of data corresponds to

86,400 single wind component observations that must be added to the 10,845 scalar observations of
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the radiosonde network. Fig.7a summarizes the results from an experiment in which P(f) was
initialized with a forecast error scale of 400 km. A comparison with Fig.5 shows that the Lidar data
have a very beneficial impact on the qu,ali_ty of the analysis. After 24 hours, the data coverage being
then nearly uniform, the quality of the fanelysli:e;in ﬂ1e Southern Hemisphere is now comparable to that
of the Northern Hemisphere. Tfﬁskexpeﬂment; were fepeaied for an 800 km orbit and Fig.7b shows the
mean error variance. Although a qualitatively snmlar r‘er'rior';rfeduction is observed, the increase in the
measurement error has a detrimental Cffe(;,"t]’ft;hat fever,coqes the beneficial effect of having a more
global data coverage. For instance, the mean etfor vanance o at the end of the assimilation period is
found to be o2 = 0.45x 1071?52 for the 1;400 ki;n;orb,it: whlle it goes up to 0.81x 10712572 for a
satellite orbiting at 800 km. Both cases ,co.g&erge -te:'~gin err;ét level that is lower than the variance of
1.915%x 10712 §2 obtained wifh the .readiosol:idek da';ékfalyone. Fig.8 shows the corresponding analysis
error variance field at t= 24 hrs for the 400 km ",‘o'rbhit’ (Fig.8a) and the 800 km one (Fig.8b). By
providing measurements in regions where none are available from the radiosonde network, the Lidar
data can put a stop to the unlimited error growth observed in the previous experiments. The impact of
the non global data coverage of the 400 km altitude orbit is now clearly visible in the tropical belt as
an alternation of high and low values in ;tk_;e vpr,,ticity error variance field. Finally, it is also worth
noticing that in both cases, the er-ro'f vanance is>‘11i‘gher in the equatorié] region: this is a consequence
of having a higher number of lear measurementq m the ~polar regions. This would suggest that shot
management schemes should be deswned so as 10 provxde a more uniform coverage by reducing the

number on shots in the polar regions and mcreasmg 1t in the equatorial region.

5. CONCLUSION

The most striking feature of the results ;obtained‘wim ;vttle“tangent linear model is the impact of
instability processes on the dynamics of ,error_"‘grow,th,, which Vis most pronounced in regions of data
voids. In these regions, forecast errors ;mey"exceed ;by far those predicted by optimal interpolation.
The results that were presented here point to the 'fac"tbthat local error growth is related to the presence
of strong vorticity gradients that are characteristic of shear flow instabilities. This suggests that if the
EKF was based on a more complex model, other types of instabilities (e.g., baroclinic instability) are
likely to lead also to error growth. In experiments with a linear Kalman filter where the linear flow
does not support any instability mechanism, error growth stems from an external' model error fofcing
(Dee, 1991). In the present study, no model error was considered to emphasize that error growth could
occur even in its absence. But it must be kept in mind that a consequence of having no model error is

that it usually produces overly optimistic results.
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Figure 7. Time evolution of the global mean analysis error variance for an assimilation using the
Lidar data coming from a satellite on a polar orbit at an altitude of a) 400 km, b) 800 km.
The characteristic length of the first-guess error has been set to 1200 km.
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Figure 8.  Analysis error variance field at t = 24 hrs for an assimilation using Lidar data obtained
from a satellite at an altitude of a) 400 km, b) 800 km. In both cases, a characteristic
length of the first-guess error of 1200 km has been used.
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Although the methodology adopted here is cdrrect for a study of the large scale part of a flow over
a 24-hour period, the impact of having chosen the true state for the initial estimate of the atmospheric
state could be questioned if the assimilation was to be carried out over a period that exceeds that over
which the tangent linear model is valid. This limit of validity is determined by comparing the error
obtained with the full nonlinear model against the one prediéted by the tangent linear model when the
initial error is of an amplitude corresponding to the estimate used for the initial error covariance. For
longer time periods, the evolution of the forecast error covariance should be determined by integrating
the EKF with an initial estimate of the model state that contains an error level consistent with the initial

assumption made on its error covariance.

Finally, the EKF is a very useful tool to perform Observation Systems Simulation Experiments
(OSSEs) since it provides not only an analysis but also information on its accuracy. In this paper, a
“mini-OSSE” was conducted to make a preliminary assessment of the impact of data coming from a
proposed satellite based Doppler wind Lidar instrument. Our results have shown that the availability of
a global coverage of wind observations is able to put a stop to the unlimited error growth that was ob-
served when only radiosonde data were used. The impact is even more important in the Southern
Hemisphere that is poorly covered by the radiosonde network. Two scenarios have been investigated
for 400 and 800 km orbits respectively. It was concluded that, due to a loss in the measurement

accuracy, the 800 km gives a less accurate analysis even though the data coverage was more global.
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