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‘We present a simple scheme by which parameterized covariance models can be tuned to the
data they describe. The method is appropriate when the number of tunable parameters is
much less than the number of measurements n. The computational cost is roughly O(n?)
per parameter. We work out examples that provide some insight into the reliability of the
parameter estimates, and briefly discuss potential applications of the method in the context
of statistical data assimilation. These include the design of adaptive filtering schemes, and
validation of covariance models used for the prediction of forecast error statistics.

1. INTRODUCTION

The primary purpose of meteorologlcal data a,smmﬂa,tlon is to provide the initial values for a numer-
ical weather prediction model, in such a way that it will lead to optxmal predlctlons Modern data.
assimilation methods attempt to achieve this by combining information from observational systems

with information about atmospheric processes which is implicit in the model equations.

Which approach should be used in solving the d&ta assimilation problem is still a subjeycf of some
debate. The idea behind the so-called variational method is to determine a model hindcast which is
closest to the available observational data in a least-squares sense, and then to use that hindcast to
generate initial values for a prediction (Talagrand and Cburtiér, 1987). The variational method is
conceptually equivalent to least-squares fitting of a pa,rametenzed function to a set of measurements.
The spemal difficulties that arise in applying it to the meteorologlcal data asmmllatlon problem are
strictly technical. Due to the large number of parameters (namely, the entire field of lnl'tl‘al‘ values) a
gradient-based optimization algorithm must be used in order to solve the least-squares problem. The
required gradients (sensitivities of the least-squares criterion with respect to the unknown parameters)

can be obtained efficiently by using the adjoint of the prediction model.

Statistical data assimilation methods, on the other hand, are based on a probabilistic approach.

Uncertainties are associated with measurements as well as with the prediction model itself. If these

191



uncertainties can be quantified, then it is possible to produce an estimate of the atmospheric state
which is as accurate as possible in a statistical sensé. This can then be used to initialize a prediction
(Cohn, 1982; Ghil et al., 1981). The statistical approach is conceptually no more complex than the
variational approach. However, when attempting to apply it to the meteorological data assimilation
problem one is faced with an obstacle of a more fundamental nature. Very little is known about
statistical properties of the uncertainties, particularly those associated with the prediction model.
Yet a complete specification of these properties is required in order to implement a statistical data

assimilation scheme.

Dismissing the problems associated with implementing either of the two approaches for the moment,
it makes little sense to argue that one of them is conceptually superior to the other. The crucial
difference between the two lies in the criterion upon which they are based. The statistical approach
aims at optimal accuracy; the variational approach emphasizes optimal dynamical balancing. There

is a growing consensus that future data assimilation methods should combine both of these features.

Regardless of the data assimilation method being used, it will be useful to compute estimates of the
accuracy of model predictions. This is why forecast error evolution in prediction models is an important
subject in itself, and should not be regarded merely as a necessary step toward the development of

sophisticated statistical data assimilation methods.

Considering the extent of our present understanding of model error, it is safe to say that the study of
forecast error evolution is still at an early stage of development. Given a statistical description of model
error, techniques are available by which the forecast error covariance evolution can be approximately
'computed. However, the available data on model error are insufficient to implement these techniques
in an operational context, and therefore they have so. far been used as theoretical devices in idealized
studies only. It is a mistake to think that the high cost of computation is the primary impediment
to forecast error covariance prediction in practice, since no amount of computing power can produce

meaningful results if the required input data (i.e., model error statistics) are largely unavailable.

Thus there is a need for simple conceptual models that describe the gross features of forecast error
evolution, and for schemes that allow these models to be tested against the available data. The
fundamental problem remains the specification of model error statisfics, and it must be accepted
that, at best, any specification will be crude. The total number of parameters required to coﬁpletely

describe model error statistics is simply too large, relative to the amount of observational data at our
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disposal. In practice this means that one will have to rely on idealized representations of model error
statistics, typically based on strong assumptions about underlying probability distributions. Possibly
such representations depend on a small number of free parameters, which one could then attempt to

estimate on the basis of actual measurements.

In this paper we present a simple scheme by which parameterized covariance models can be tuned to
the data they describe. The method is based on a parameter estimation technique designed for time
series analysis by Burg et al., (1982), and is appropriate when the number of tunable parameters is
much less than the number of measurements n. The computational cost of the method is roughly

O(n®) per parameter.

We describe the method in Section 2, and work out some examples in Section 3. For a simple
analytical example we show that the standard deviation of a parameter estimate, obtained on the
basis of » measurement data, is proportional to n~3. We briefly discuss possible applications of the

method in the context of statistical data assimilation in Section 4.

2. SINGLE-SAMPLE ESTIMATION OF COVARIANCE PARAMETERS

Let v denote a vector of jointly distributed random variables, whose covariance we wish to estimate. If
the dimension of v is n, say, then nx(n—1) parameters are required to completely specify its covariance.
The availability of measurements of v will determine how many of these covariance parameters can
actually be estimated, and how feliqbly this can be done. In general it can be said that, independently
of the estimation scheme being used, the number of measurements must be much larger than the

number of parameters being estimated.

Particularly in real-time situations where the number of available observations of v may be O(n) or
less, it will be necessary to supplement the measurements with a theoretical model for the covariance
of v. Assumptions must be made about the probability distribution of » which result in a prescription
for the covariance that depends on a few (& n) parameters only. These parameters can then be

estimated on the basis of the available measurements, even if they consist of only one sample of v.
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2.1  Maximum likelihood parameter estimation

Suppose that the elements of v are jointly distributed with

Ev] = o » : (1)
E[vsT] = P(a) | (2)

where a is a vector of unknown parameters with
dim @ < dim v : (3)

and E[-] denotes the expectation operator. The parameterized n x 7 matrix P(a) represe‘nts\ our

covariance model for v.

We propose to estimate the unknown parameters e on the basis of a single vector-sample of v — that
is, one measurement of each element of v. Thls can be done by maximizing the conditional probablhty

density function p(v|a) of v given «, which is assumed to be Gaussian:
plele) = (27) F(det P Fexp [ o7 P0)] . | @

Thinking of P(a) as a family of candidate covariance matrices, parameterized by «, maximizing the
conditional density function (4) is a way of picking the most plausible member P(cyy,;) on the basis

of one sample of v.

The maximum-likelihood parameter estimate of « is given by

Qn = argmo%xp(v[a) o . S (5)
= arg mojln fla) ~ ‘ (6)

with |
fla) = log det P(a) +vTP Y (a)w - _ (7)

equal to the negative of the logarithm of the Gaussian density function (4).

Notice that f(a) is a scalar function of V variables (N = dim &) whose definition depends on the n
random elements of v. Once v is measured, this function can be minimized using a standard opti-

mization technique. Depending on the choice of technique, f(a) will have to be evaluated repeatedly
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for different values of . It may be worthwhile to employ a gradient-based optimization algorithm, in

which case the gradient of f with respect to o will have to be evaluated as well.

Evaluating f(a) or its gradient will be expensive when n is large. However, in many cases the special
structure of P(a) and its derivatives with respect to @ can be exploited in order to simplify the
computations. We show here how Cholesky factorizations might be used to arrive at an efficient

optimization scheme.

2.2  Evaluation of f

For a given value of a, let

Pa) = GGT - (8)
s = Gl 9)
where G is the lower triangular Cholesky factor of P (Golub and Van Loan, 1983). Then it is easy to

show that

F(e) = log [T g2 + Isll2 | (10)

i=1

where the g;; are the diagonal elements of G. The total operation count for this algorithm is %"3 +

3n? +0(n) flops.

2.3 Evaluation of the gradient of f.

In the Appendix it is shown that

= trace [A(P_1 - P"'l'v'uTP‘l) g&li] _ (11)

oa;

where z2- P denotes the matrix obtained by differentiating each element of P(a) with respect to o,
the i** element of «. Computation of (11) costs O(Nn3) ﬂops.. Efficient algorithms will employ matrix

factorizations. For example, if each %P is positive definite, then it admits a Cholesky factorization

orP
da;

= GiG,’T (12)
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Then, as shown iﬁ the Appendix,
of -1 2 _ -1 2 — o
5 = GG - (GGl | (13)

where ||.||7 denotes the Frobenius norm. The operation count for computing the gradient of f in this

way is N (2n3/3 + 2n? + O(n)).

3. EXAMPLES

We will work out two simple examples of single-sample covariance estimation. The first can be solved
analytically, while the second requires some computation. The main purpose of these examples is to

gain insight into the reliability of the estimator.

3.1  An analytical example

Suppose
P(a) = aPy v (14)

with Pg known. We wish to estimate the coefficient « on the basis of a single vector of measurements

v. In this case we can solve the optimization problem analytically, since -

f(e) = logdet(aPy)+ vT(aPy)™ 1o SR S (15)
= nloga + logdet Py + —évTPglv - (18)
so that
df =n 1 - : ’

The maximum likelihood estimate of « is therefore given by

Oy = l'vTP[?l'u (18)
n
1

= ~lip, (19)
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Clearly this solution insures that the scaling of P is consistent with that which is observed.

It is useful to work out this example in some more detail. An important issue in connection with
parameter estimation is the reliability of the estimates as a function of, for example, the number of
measurements employed. Particularly when a parameter estimate is based on a single sample only,

this issue needs to be addressed.

Suppose that v is indeed normally distributed, with

E[v] = o (20)
E[voT] = aPy (21)

for some @. Using the Cholesky decomposition

Po = GoGT (22)
let

s=Gy'v | o (23)

Then s is normally distributed with

E[s] = o " - (29)
E[ssT] = aI ' | (25)

Formula (18) can be rewritten as

Oyl =

S|+
»
[

r | (26)

This shows that the estimate a,,; is a sum of squares of independent, normally distributed random
variables. Therefore a,,; is itself a random variable with a gamma distribution. It is easy to show

that, in fact,
non '
~T [ —. = 27
Al (262’ 2> ( )
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and therefore
Ela] = a (28)
Ellogu —al] = ay/— (29)

Thus, the maximum-likelihood estimate is unbiased, and its standard deviation is proportional to
n~%. Based on this simple example one might conjecture about the number of measurements that are
required in order to obtain reasonably reliable single-sample parameter estimates in more complicated

situations.

3.2 A numerical example

Suppose now that the covariance can be described by two parameters, as follows:

P(e) = (pij) = (0i0ipij) (30)
where

o; = l4+m sing:r—ll ‘ (31)

pi = exp(—aa|2)) (32)

The parameter oy relates to the variances of the elements of v, while a3 is a correlation-length
parameter. Given a vector of measurements v, the two unknown parameters can be estimated by

optimizing (7) with P(a) given by (30-32).
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Fig. 1 Scatter diagram of parameter estimates
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The resulting estimates will of course be random, since they depend on the measurements. In order to
illustrate the performance of the estimator, we have used a random number generator to repeatedly
generate measurement samples v, and we then computed the maximum-likelihood parameter estimates
based on each single sample. In Figure 1 we show the results in a scatter diagram. Each point in
the diagram corresponds to one estimate based on one sample. The coordinates of each point are the

two estimated parameter values. The true parameter values, used to generate the measurements, are

ap = 0.25, ay = 2.

' ,In the experiments shown in Figure 1, the number of measurement points — that is, the length of the
vector v — was taken to be n = 128. Clearly the spread of the parameter estimates around their true
values depends on n. In order to investigate this dependence, the experiments should be repeated for
other values of n. In this particular example, the relative standard deviations of the estimates were

computed on the basis on 100 experiments, and found to be equal to 29% for oy, 13% for .

4. APPLICATION TO STATISTICAL DATA ASSIMILATION

The central problem in statistical data assimilation is to adequately represent the error covariance
associated with a model forecast. The forecast error is affected by errors in the initial data that
are used for the forecast (forecast error propagation), and by the accumulation of errors due to the

discrepancy between the forecast model and the actual atmosphere (model error forcing).

How to compute the propagation of a known error covariance function is conceptually well-understood.
The cost of such a computation, however, is very large unless substantial approximations are intro-
duced. More importantly, data on model error forcing are lacking in practice, so that extremely costly

computations of forecast error covariances are actually not justifiable except for research purposes.

Any practical statistical data assimilation scheme will therefore have to rely on a multitude of as-
sumptions about the nature of model errors in order to compensate for the lack of data. Once such
assumptions are made, it is natural to attempt to simplify the computation of forecast error covariance
propagation as well (Dee, 1991). The resulting scheme will, at best, provide rough represéntations of

the actual error statistics for a given forecast.

The estimation method outlined in the Section 2 can be used to validate such approximate representa-

tions of forecast error statistics against available measurement data. If a statistical data assimilation
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scheme is based on a description of forecast error which contains unknown parameters (e.g., vari-
ance characteristics, correlation length scales), then these parameters can be tuned by matching the

theoretically predicted covariance with observations.

4.1 Relation between measurements and forecast error covariance

Let a:i denote the model forecast at time k, then

P{ = E[(x) - of)(zx - 2])"] - (33)
is the forecast error covariance. Suppé’se that measurements y, at time k are of the form

Y= kak + e} , (34)

where H is a known matrix and ef is a vector of random measurement errors. The forecast-minus-

observed residual is defined by
Vy = Yp— Hka:,’: (35)
= Hi(m -z))+ e} | . (36)

Its covariance is given by

E[vkvf] _ H.PLHT + R, | | | (37)
where

Ry = Ele3(e3)7] ~ | . o | (38)

In deriving (37) cross-correlations among forecast errors and measurement errors are neglected, i.e.,

it is assumed that
E[H(zx — f)(e})T] =0 - - : , (39)

Equation (37) relates measurement information, represented by vy, to the forecast error covariance
matrix P,’;. If a statistical data assimilation scheme is based on a parameterized model for P,’; , then

the parameters can be tuned by yusing the estimation procedure outlined in the Section 2.

200



4.2 . Application to Kalman filtering

Forecast error covariance evolution is computed by the (extended) Kalman filter according to
Pl =A(kk-1)P]_AT(,k-1)+Q, = : (40)

where A(k,k — 1) denotes the tangent linear model operator associated with a forecast (or some
approximation of it) and Q) represents model error covariance. If Q, contains unknown parameters,

say Q; = Q(a), then (37) becomes
Elvwo]) = Hy [A(k,k — 1)P]_, AT(k,k— 1) + Q(e)| HY + Ry | : (41)

This equation is a speéiﬁc instance of (2), and so the estimation procedure outlined in Section 2 can

be used to tune the parameters c.

Combining the Kalman filter with on-line estimation of covariance parameters makes the filter adap-
tive. We believe that the simple adaptive scheme proposed here will be more effective in an operational
context than the method described in Dee (1983) and Dee et al. (1985). The present scheme does
not rely on assumptions about error dynamics, and can'therefofe be expected to be more robust.
Particularly when model error statistics are dependent on prevailing atmospheric conditions, as can

be expected, the idea of single-sample parameter estimation appears attractive.

A numerical example of this approach to adaptive Kalman filtering was reported for a linear one-

dimensional shallow water system in Dee (1990).

4.3 Some practical remarks

We emphasize that it should at all times be kept in mind that predicted forecast error covariances
are subject to many approximations. This is true whether covariance evolution is computed by means
of an extended Kalman filter, or by another method such as Optimal Interpolation (OI). It is there-
fore perfectly permissible to introduce further approximations into the parameter estimation scheme

described in this paper as well.

For example, it may not be worthwhile to expend a great deal of computing power in order to obtain

parameter estimates for which the maximum-likelihood function (7) is optimized ezactly. Reducing
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the value of the objective function (7) is equivalent to improving the consistency between predicted
covariance and measurements, and it may be sufficient to simply evaluate the function for a few

parameter values and then to choose the ‘best’ ones.

Similarly, only a subset of all available measurement data could be employed for the purpose of
covariance tuning. Using more than, say, 10? data per parameter does not make much sense if the
accuracy of the underlying covariance model is dubious to begin with. For example, if the assumed
shape of a correlation function is erroneous, then a perfect tuning of the correlation length scale to

the data will not help improve matters very much.

If more data are available than required in order to produce reasonably accurate parameter estimates,
then it is possible to cross-validate the underlying covariance model. This is done by dividing the
data into batches, and then producing parameter estimates based on each batch separately. If the
covariance model is valid, then parameter estimates obtained from different batches of data should

be consistent. Such an approach could be used, for example, to test hypotheses about model error

statistics.

If used properly, single-sample estimation of covariance parameters provides a simple way of improving
covariance predictions, by rendering them more responsive to prevailing atmosphéric conditions. The
analytical example worked out in the previous section, for example, could serve immediately to improve
operational OI schemes. After all, such schemes explicitly provide a certain representation Py of
forecast error covariance at a particular instance. In the example it was shown that a relatively simple
calculation will ensure that t-he average variance implied by this representation becomes consistent
with measurements. More involved computations would allow OI parameters, such as average error

growth rates and correlation scales, to be tuned continuously on the basis of real-time measurements.
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5. APPENDIX

5.1  Derivation of the gradient of f

We first show that

d _,dP L | o
Elog det P = trace [P E] (42)

Expanding the determinant of P in terms of cofactors of the jth;,column, we have
det P = Zpijpij _ (43)

where P;; denotes the cofactor associated with the element p;; of P. Equation (43) shows that the
partial derivative of the determinant of a matrix with respect to the i;'* element of that matrix is

equal to the ijt* cofactor. Applying the chain rule for differentiation we get

d (det P) dps; o
= 2 Pij% | (45)
> [E Pij%} | - ()
= > [(Pz‘j)T%g“] } (47)
= trace [(Pij)Tz_f] (48)

where (P;;) denotes the matrix whose elements are the cofactors of P. Substituting the familiar

formula

1

P = o p(P)T o (49)

for the inverse of a matrix, we obtain

d ~ _,dP |
o det P = (det P) trace [P %-] (50)
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which proves (42). This gives us the derivative of the first term of f, see Eq. (7).

For the derivative of the second term we use

dP1 AP,
i = PP 6D

which follows readily by taking the derivative of PP~! = I. Then we obtain
d apP

Tp-1 T p-1 -1
—v P = - -
7o v v P T P v (52)
dP
= t _ TP—-l — p-1 ]
race |07 P ET Pl (53)
__,dP
= t __P——l TP—l_:l
race [ vV . (54)
where we repeatedly used traceAB = trace BA. Combining (42) and (54) proves (11).
5.2 Computation of the gradient of f
We substitute the Cholesky decompositions of P and B%TP’ as well as (9) into (11):
of _ T -1 T _ T—1 T '
o = trace (6776 - 6 Tss"G™!) G.GT | . (55)
= trace [(G_IG,')T(G—IGZ')] —~ trace [(G_lGi)TssT(G"lGi)] (56)
= IG7GilE - (G G713 (57)

where we used some well-known properties of the trace operator. The operation count for a Cholesky
factorization is n3/6 flops. Comput'ation of (G™1G;) costs n®/2 flops. Computation of the first term
of (57) therefore costs 213 /3 + n? flops. Computing the second term of (57) costs an additional n?+n
flops.
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