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1. INTRODUCTION

Sub-grid processes play an important role in numerical weather prediction
models and climate models. Development of parametrizations has been a major
research activity for many years and has resulted in considerable reduction of
systematic model errors and improved forecast skill in the medium range.
Direct output from the parametrized sub-grid processes such as surface fluxes,
precipitation, cloudiness and 2 m temperature has become an important forecast
product in the short range and will become an essential ingredient of the data
assimilation cycle.

' However, the development of numerical schemes to solve the parametrized
part of the equations has received relatively 1little attention. The main
reason is that the parametrizations are often thought to be too inaccurate to
Justify sophisticated and generally more expensive numerical methods. So the
accﬁracy of the method 1is generally not considered and the conservative
property and stability of the scheme remain the dominant concerns.
Inaccuracies of the numerical scheme (e.g. truncation errors in time and
space) are often concealed by problems in the parametrization. With the
numerical solver as part of the parametrization it can happen that improved
resolution or a more accurate scheme leads to lower quality of the forecast.
In principle it is better to isolate the parametrization problem from the
numerical technique, but we will see that this is not always possible.

In section 2 of this paper we will give an overview of the ﬁumerical
techniques that are used for the parametrized parts of the equations in the
ECMWF model and describe the general philosophy behind it. The methods are
generally different for different processes. Recent developments in the

numerical treatment of the vertical diffusion will be discussed in section 3.
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It illustrates some of the problems that arise from process splitting, which
is relevant to all the physical processes. In section 4, we will discuss the
diffusion of moisture and heat in the soil. This 1s an example of a scheme
where the accuracy of the numerical method is rather poor, but where numerical

errors are probably still smaller than the parametrization errors.

2. OVERVIEW OF THE NUMERICAL METHODS USED FOR THE PARAMETRIZED PARTS OF THE
EQUATIONS IN THE ECMWF MODEL

The time integration scheme used for the different parametrized sub-grid
processes is based on the following simple ideas:

- The scheme has to be compatible with the time integration of the adiabatic
part of the model. The ECMWF model uses leapfrog time integration combined
with time filtering. The latter is necessary to avoid decoupling between the
even and uneven time steps.

- The tendencies due to different processes are computed separately enabling a
modular software design and the possibility of different methods for
different processes. We will call this procedure "process splitting", when
the increments due to different processes are completely independent. When
function values are incremented with one process and the next process starts
from these intermediate values, we call it the "method of fractional steps".
Both principles are used.

- Explicit schemes are used if possible. In case of stability problems, the

scheme is made as implicit as necessary to guarantee stabllity.

We explain the procedure with the equation for variable ¥, which can be one of

the horizontal wind components U, V, temperature T or specific humidity Q:

— =D_+ P_ , (1)

o
=)
=]

where DW symbolizes the dynamic tendency (including advection) and PW the
tendency due to parametrized processes. The latter can be divided into
radiation R, vertical diffusion VD, gravity wave drag GWD, convection (shallow

and penetrative) C, and large scale precipitation LSP:
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PW = RW + VDW + GWDW + CW + LSPW . (2)

The time integration can be in spectral or grid point space. In the ECMWF
model some terms of the dynamics are computed in the spectral domain, others
are evaluated in grid space. In this section we will 1limit computations to
grid space.

With time discretized as t = nAt, each step of the leapfrog scheme involves
a time integration from n-1 to n+l where the right hand side of the equation
is evaluated at time level n (the semi-implicit treatment of the gravity wave
part and advection of vorticity and moisture has been neglected here). For the
adiabatic part only, the integration from (n-1)At to (n+1)At gives an

increment of

n_ s+l _n-1 _.n
AWD = U v = DW 2 At (3)

~

where Wn+1 is a provisional value at t=(n+l1)At i.e. the value that 1is found
with dynamics only. The scheme is three time level, explicit and second order
accurate. Ideally, one would use the same scheme for the parametrized part of
the equations as well. With such an explicit scheme it is Iirrelevant whether
different terms are evaluated separately or as a single forcing; the
increments due to different terms are independent.

Unfortunately the leapfrog scheme can not be used for the parametrized
processes because most of these processes are diffusive in nature and the
leapfrog scheme is unconditionally unstable for parabolic equations. Therefore
for the tendencies of some of the parametrized processes a forward time scheme
is used (e.g. radiation), for others an implicit (backward) time scheme is

used (e.g. vertical diffusion). The two examples give increments according to

Aw; = gotll gl o Rg“l 2 At (4)

for radiation and

A = gl gl oo™t o (5)

for vertical diffusion, where VD is evaluated with 3°71 i.e. ¥" ' incremented

with the vertical diffusion contribution only. Fractional steps 1instead of

process splitting applied to vertical diffusion would change equation (5) in
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A = P g gy = v 2 e (5a)

The choice of schemes as described above has important implications for the
accuracy of the time stepping. Unlike the scheme for the dynamics, the time
integration of the sub-grid processes 1is first order accurate only.
Furthermore, the effective time step is 2At, twice the value one would have
with a normal two level forward integration with the same number of time
steps. The reason is that the leapfrogging in the dynamics imposes a 24t
integration interval every time step and that midpoint evaluation of the
tendencies is not possible for the parametrized processes because of stability
limitations.

Given the fact that a number of sub-grid processes have short time scales
compared to the time step, it is probably difficult to develop a stable second
order time stepping scheme. On the other hand it is not very satisfactory to
lose accuracy with double time steps by doing the same time path twice with a
first order scheme. A solution would be to divide the 2At increment in two
increments with one At interval for the sub-grid processes. So we define the

increment for the parametrized physics for one At as

AWn+1/2 - §n+1_

n_ .n
P v o= PW At , : (6)

and find the increment for a double time step by adding the increments for two
n+1l

single time steps. The expression for ¥ is
n+tl n-1 _ ,.n n-1/2 n+i/2
- v = AWD + A@P + AWP . (7)

From the point of view of processing time, equation (7) is not more expensive
than the double time step scheme. The disadvantage of equation (7} is that the
increments have to be stored for one time step. In the framework of the ECMWF
model this would mean that the grid point work filles need 4 extra three
dimensional grid point fields to carry the increments of the parametrized
physics from one time step to the next. To limit the size of the work files,
the ECMWF model integrates the sub-grid processes over 2At instead of wusing
hequatioh (7). This may be something to reconsider when work files limitations
become less restrictive. Development of the new time stepping scheme for the

adiabatic equations (two time level semi- Lagrangian), which is envisaged for




BELJAARS, A.C.M. NUMERICAL SCHEMES FOR PARAMETRIZATIONS

the ECMWF model, will alleviate this problem as well.

We now describe the numerical aépects of the different processes 1in the

order they are dealt within the model.
2.1 Radiation

The radiation tendency can be expressed as a radiative flux divergence:
-g%=-g—p—§% (8)
where g is the gravitational acceleration, Cp the specific heat at constant
pressure, F the radiative flux and p the pressure. The radiation scheme
computes the radiative fluxes at half levels from the moisture and temperature
profile at time step (n-1). The temperature increment for level j due to

radiation is now derived from simple finite differencing in the vertical

n-1 _ _n-1
(at ), = 2at £ JE I (9)
J P pj+1/z pj-1/z

The index j refers to the full model levels and j+i/2 and j-i/2 to the half
levels (see Fig. 1). The half levels are prescribed and the full levels are in
the middle between the half levels. The model variables U, V, T and q are
defined on the full levels. By having the fluxes staggered with respect to the
levels where T is defined, internal energy is automatically conserved.

The radiation is probably the simplest of the parametrized processes with
regérd to numerical stability and accuracy as the radiative fluxes rather act
as a nearly constant forcing than as a diffusive process. In clear sky
situations the radiative fluxes depend only weakly on the temperature and
moisture profiles; the fluxes are much more determined by the net fluxes at
the lower and upper boundary of the atmosphere. The clear sky radiative flux
divergence over the entire atmosphere is of the order of 100 W/mz, which gives
us a time scale of the order of 10 days for a temperature change of 10 K. This
long time scale compared to the time step of the model (at = 15 minutes at
T106) makes it possible to use an explicit scheme without running into
stability problems. To save time in the rather expensive radiation
computations, the full radiation code is called every 3 hours only to evaluate
the emissivities and absorption coefficients. The fluxes are adjusted every

time step to account for the change in solar angle.
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The behaviour of the radiation becomes more radical when cloud layers
develop, particularly at low levels. A stratocumulus layer can generate a flux
divergence of nearly 100 W/m2 over a sharp interface. The model can not
resolve such interfaces but will smear the divergence over one model layer of
e.g. 20 hPa when it occurs very close to the surface. The resulting cooling of
this layer is about 2 K per hour or 1 K increment for a single radiation step
over 2At. The real atmosphere is probably very close to a steady state because
other processes compensate for the strongly localized radiative cooling. It is
clear from this example that the kind of situations where large compensating
tendencies occur in different processes is extremely sensitive to time

truncation errors. We will discuss this problem in more detail in section 3.

2.2 Vertical diffusion

Vertical diffusion is formulated in terms of dry static energy, specific
humidity, and the two horizontal wind components. The tendency due to subgrid
turbulence is

av dFy,

LA " (10)

where FQ is the turbulent flux parametrized as

_ av

and KW is the exchange coefficient for quantity ¥ and p air density. The

finite difference scheme reads

~n+1 n-1
AV, =V, =¥, " =
( J°VD J J
an+1 an+l zn+1 n+1
24t g R R LS B S Yi-1 (12)
pj+1/2 - pj_l/2 Jtirs2 Zj+1 - zj J-1r2 zj - zj_1 s
Nn+1= ~n+1 1

¥ @ Y+ (1-) ¥

Parameter a determines the implicitness of the scheme; for «=0 the scheme Iis
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explicit, for «a=0.5 we have the Crank Nicholson scheme and for a=1 we have the
implicit backward scheme. In the operational ECMWF model a=1.5 to avoid
non-linear instability from the K-coefficients. The exchange coefficients
depend on the loéal wind shear and on the local stability expressed by a
Richardson number dependence; they are evaluated at time level n-1. The
resulting algebraic set of equations forms a tridiagonal matrix which can be

solved very efficiently.

2.3 Gravity wave drag

From the numerical point of view gravity wave drag is very similar to the
vertical diffusion and requires an implicit treatment for stability reasons.
The implicitness factor a is 1. In practice the gravity wave scheme is a
little less critical from the stability point of view than the vertical

diffusion scheme probably because it is more linear and only locally active.

2.4 Deep and shallow convection

Deep and shallow convection are currently parametrized by a mass flux scheme,
in which the vertical transport is assumed to take place in up- and downdrafts
which occupy only a small fraction of the grid square and by induced

subsidence in the remaining fraction of the grid square (Tiedtke 1989):

v _ d _
ﬁ— = g -a;)— [ Mu\pu + Md‘l/d (Mu+Md)‘Il ] + 8 ’ (13)
where Mu and Md are the upward and downward mass fluxes respectively, Wu v are

the values of ¥ (U, V, s and q} in the up and down drafts, and 5 is a source
term for the equations of dry static energy and gspecific  humidity,
representing: condensation/sublimation, evaporation of cloud water detrained
into the the unsaturated environment and evéporation of rain/snow and melting
of snow. If we assume that the parametrization scheme prescribes Mu and

Wu v’ the time stepping scheme is as follows:

1
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_zn+l . n-1 _
(A\I/J.)C = \I/J. {\I/j +(A\PJ)D+(A\I/J.)RD+(A\IIJ)VD +(A\I/J.)GWD} =
2At g
— M T +M T ), - (MU +M ¥ ).
pj”/2 pj—1/2 uu dd’j+ise uu dd’ j-12
(Mu+Md)j+1/2wj ) (Mu+Md)j~1/2Wj—1 ¥ Sj (14)

There are a few things to note here:

- Central differences are used in the vertical to specify flux divergence, but
the values of Mu, Md and Wu, Wd are calculated using upstream methods. The
mass flux Mu+Md acts as downward advection and causes 1instabilities when
central differencing is used. Therefore upwind differencing is applied.

- The scheme is conservative because successive levels share the same fluxes
at half levels.

- The closure which prescribes the cloud base mass flux is constructed in such
a way that the moisture profile below cloud base remains unchanged, i.e. a
balance between moisture convergence, surface fluxes and convection
tendencies below cloud base. To ensure that ‘a quasi-steady state is
generated, the tendencies of some other processes are passed to the mass
fiux parametrization. In the ECMWF model the convection scheme starts {rom
the profiles at (t-1) incremented with radiation, vertical diffusion and
gravity wave effects. This can be interpreted as a method of fractional
steps.

- Input for convective calculations must (i) not be supersaturated (otherwise
adjustment as for large SQale precipitation) and (ii) be dry convectively
stable as vertical advection would destabilize the atmosphere further.

— The mass flux is limited according the stability criterion: Mu < pAz/2At.

- It has proved to be necessary with longer time steps in the high resolution
model (T213L31) to modify equation (14) for the momentum components to a
partially implicit scheme whereby updated values of ¥ are wused wherever

possible as the column values are solved from top to bottom.
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2.5 Large scale precipitation

The largé scale precipitation is parametrized as an instantaneous
adjustment that removes all moisture above 100 % relative humidity. If for the
specifiedﬁspecific humidity and temperature super saturation @ occurs, the
‘temperatﬁre and moisture are adjusted such that the relative humidity is 100 %
and that internal energy is conserved. It is essential that the output fields
of T and g are realistic, and are not supersaturated. Therefore the T and ¢
adjustment is done as the last process after all increments have been added to

the variables at time level n-1. So we start from

wo_ n-1 n n ' n n. .
Tj— Tj + (AT )D+ (AT )R + (AT )VD + (AT )C - (15)
~  n-1 n n v n n ’

qj— qj + (AT )D+ (Aq )R + (Aq )VD’+ (Aq )C : : ~(16)

The adjustment to the new values Tnfl and qn+1 is such that

n+l _ n+1 - : Co :
qj = qsat(Tj ) and (17)
~ n+l n+l ~
. = (C /L) (T, - T.), (18)
: qJ 'qJ P J J ' : S . :

where L -is the latent heat of vaporization. This set of equations is solved by

linearizing the saturated specific humidity function

o . ' C, da_, y~1 | L

n :
- (AT gp (€ /L) : . . | (20)

.
(ATj]LSP

it

n
(qu)LSP
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3. THE ORDER OF THE PROCESSES IN THE TIME INTEGRATION

From the overview in section 2 it has become clear that the order of the
processes in the process splitting is relevant. The reason for having to wuse
implicit schemes is that we apply a relatively long time step to a process
with a short time scale. In the extreme case of a process that leads to an
instantaneous adjustment, it means that the implicit ~scheme brings the
profiles into equilibrium, but without taking the other tendencies into
account it can be the wrong equilibrium. Examples are:

- The vertical diffusion of momentum tends to come into equilibrium with the
Coriolis term and the pressure gradient term to generate the well known
Ekman profile. Without having the dynamic tendencies in the implicit
computation of the diffusion, the diffusion scheme will relax towards the
wrong equilibrium for long time steps.

- The stratocumulus topped boundary layer cools from the top and the cooling
is concentrated in a very shallow layer. In discretized form the cooling
will be in a single layer. The vertical diffusion redistributes this cooling
over the mixed layer almost instantaneously. Without feeding the radiative
tendencies into the vertical diffusion scheme, the profiles cannot adjust

and noisy profiles will be generated for long time steps.

In general it can be stated that the time evolution of the fields 1is much
slower than due to a single physical process only, i.e. when tendencies for a
single process are large, they are often compensated by other processes. With
large time steps it is therefore important to balance the different processes
within one time step. In principle one would have to order the processes
according to their time scale, the slow processes first (explicit time
integration) and after that the fast processes (implicit) acting on the fields
that are already incremented by the other processes. With more than one
implicit process there is no real solution to the ordering problem. It may be
beneficial to compute the tendencies of some processes twice, just to ensure

that all the processes come into equilibrium within one time step.

10
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4. RECENT DEVELOPMENTS WITH VERTICAL DIFFUSION

4.1 Vertical resolution

To investigate the effect of vertical resolution on the boundary layer
structure that is produced by the model we integrate the simple Ekman
equations over a 9 hour interval with different boundary conditions for the
heat flux at the surface to generaté typical day and night time boundary
layers. The idea 1s that after a few hours with constant forcing, the boundary
layer reaches a quasi-steady stéte. The remaining time evolution, which is the
result of inertial oscillation, is weak and cancels out when two similar runs

are compared. The Ekman equations are

aF.

ou _ U o “au

Bt - TV regm. Ry = Ky : (e
aF

av VoL av

Bt = fUU) regmme By =Kyeg oo (22)
aF

80  _ e _ 36

3t = + g ap > Fe - KH P 3z » (23)

where KM and KH are the exchange coefficients for momentum and heat as
specified by the parametrization (see Louis 1979 and Louis et al., 1982), f is
the Coriolis parameter (107%™ for these model experiments)} and 6 is the
potential temperature. The vertical discretization makes use of model
variables at full levels and fluxes at half levels (see Fig. 1).

The increments from one double time step are evaluated in the following way

F .. - F,..
DR ot Sy ¥ PSS VL2 VS N e VRN SOV ek SRS O (24)
J J . - P G
je1s2 j-1r2
n+1 n-1 FVj+1/2‘ FVj—1/2 n-1
V. -V, = 20t g - f(U - Uy, (25)
J J . - P, G
je1s2 j-1s2

11
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The vertical grid structure near the surface in the ECMWF 19-level model.
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F . - F_.
er_1+1 _ 9? 1 _ o0t g 9J+1/2_ Bj-1s2 ’ (26)
J J pj+1/2 pj—1/2
= 0 B ¢ (1-0) P, where ¥ = U,V or 6, (27)
n+1 Fn+1
F _ n-1 \I/j+1 \I/j (28)
Yj+1rs2 Uj+1/2 zj+1 - zj>

Note that in this stand aldne vérsion of the vertical diffusion code the
leapfrog scheme has been replaced by an explicit forward scheme for the
Coriolis term. The time integration step is defined as 2At for comparison with
the operational ECMWF model. The centered difference approximation for the
fluxes is applied to all model levels except in the surface layer, where a
linear approximation of the profiles would be too inaccurate. The finite

difference formulation of the fluxes in the surface layer relies on

Fy = =P Ky —g%— , ‘ (29)
integrated analytically between the surface and the height of the lowest model
level, assuming that FW is constant and accounting for the specific
z~dependence in KW (proportional to 2z in the neutral case). Instead of
equation (28) we have now the surface layer similarity profiles (logarithmic
form plus stability correction)

21 jﬁ) -1
v ¥ L

Fo=-pku, (\Pl—ws)[ln(z)—F( , (30)

where u, is the friction velocity, F@ the stability correction function and L
the Obukhov length. This expression can be seen as a finite difference

formulation of the surface layer. The equivalent form of (28) is

F - -c (¥ i (31)
s

13
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z, z, -1

where C = p k u, ( ln(—E—-) - Pl ] , evaluated at n-1.
o

The interesting aspect of finite difference form (31) 1is that it 1is exact
provided that the fluxes are constant between the surface and the lowest model
layer in spite of the logarithmic singularity in the wind and temperature
profiles. The accuracy of the constant flux approximation for the surface
layer can be assessed by considering that the flux has a nearly linear height
dependency varying from the surface value to zero at the top of the boundary
layér. The boundary layer height is of the order of 1000 m for the wunstable
boundary layer (day time over land) and of the order 100 m for the stable
boundary layer. With the lowest model level at 32 m (ECMWF 19-level hodel),
the constant flux approximation is fairly accurate for the unstable boundary
layer, but can be questioned for the stable boundary layer.

Because the stable boundary layer is shallow and therefore most 1likely to
show discretization errors, we compare two integrations: one with the
operational 19-level resolution and one with a much higher resolution (the
distribution of layers can be seen from the figures). A constant downward
surface heat flux of 20 W/m® is imposed as boundary condition. Because the
ECMWF closure scheme (Louis et al. 1982) tends to overestimate the depth of
the stable boundary layer, the results of an alternative scheme (Beljaars and
Holtslag, 1991) are also shown. The stress profiles and the wind profiles are
shown in the Figs. 2 and 3 for the two closure schemes. The effect of the
resolution is relatively small. Even the extremely shallow stable boundary
layer of Fig. 3 is fairly well reproduced. This is quite remarkable since the
boundary layer is resolved by two or three levels only. The high performance
of the scheme 1is partially due to the use of an exact surface layer
formulation as finite difference between the surface and the lowest model
level. Another effect was recently pointed out by Delage (1988). He shows that
neglecting flux divergence in the surface layer compensates for neglecting the
effect of the asymptotic mixing length in the surface layer.

To investigate the effect of vertical resolution over the entire stability
range, 9-hour integrations have been made with different surface heat fluxes
and a constant geostrophic wind of 10 m/s. The friction velocity and the

ageostrophic angle of the surface wind are plotted in Fig. 4.

14
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Fig. 3 Stress profiles (a) and wind profiles (b) after 9 hours of integration of the Ekman equations with a constant
heatflux of 20 W/mé. Closure according to Beljaars and Holtslag (1991) combined with high resolution (dashed)
and the ECMWF 19-level resolution (solid). ' :
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Fig. 4 Friction velocity (a) and ageostrophic angle (b) as function of heat flux at the surface after 9 hours of integration
of the Ekman equations. Two closure schemes are applied (closure A: Louis et al., 1982; closure B: Beljaars and
Holtslag, 1991) combined with high resolution (dashed) and the ECMWF 19-level resolution (solid).
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The main conclusion we draw here is that the boundary layer structure is
reproduced remarkably well with poor resolution. In the very shallow stable
boundary layer, some of the ageostrophic wind component near the surface is
lost, as to be expected, but changes in the parametrization have larger
effects than improved resolution. The situation is slightly different when we
look at the top of the day time boundary layer (mixed layer), which is usually
capped by an inversion. The sharpness of the simulated Iinversion obviously
depends on the resolution. This is illustrated in Fig. '5, which shows a
potential temperature profile simulated with a resolution of about 600 m near
the inversion, compared with a profile simulated with 200 m resolution. The
temperature profiles are quite different, although the vertically integrated
" difference equals zero (the numerical scheme conserves energy). How important
it is to represent the capping inversion realistically is not clear at this
moment. It is to be expected however, that vertical resolution becomes
increasingly relevant in the case of boundary layer clouds. Boundary layer
clouds are shallow (a few hundreds of meters deep) and capped by a sharp

inversion.

4.2 Time truncation

In the previous section the time step 2At was chosen relatively small (450
s) to minimize effects of time truncation errors. In the operational T106L19
model the double time step is 1800 s and in the 1low horizontal resolution
model (T42L19) 2At is 3600 s. To investigate the effect of the time step, the
one column version of the model is integrated over 9 hours with different time
steps and two different methods. The first method 1is the one described in
section 4.1, where the dynamic terms are integrated simultaneously with the
diffusion terms. We will call it the ‘"method of fractional steps" because
equation (25) and (26) can be applied in two steps: (i) increase the n-1 winds
with the dynamic terms and then (ii) apply the vertical diffusion from the
provisional profiles (however, the K-coefficients are still evaluated at n-1).
The second method uses "process splitting", it does not contain the terms
2Atf(U~UG) and 2Atf(V—VG) in equation (25) and (26) but adds these terms

separately to find the full increment of one time step. The geostrophic wind

18
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is set to a constant value of 10 m/s in the x-direction and neutral
stratification is considered only. Three different roughness lengths are used:
1 m, 0.1 m and 0.0001 m.

Since the boundary layer is very close to a steady state after 9 hours, we
expect small time truncation errors. However, the ‘"process splitting"
introduces truncation errors; by splitting the equations into two parts we
replace the steady state problem by two time dependent problems. A comparison
of the friction velocity and the wind at the lowest model level 1is given in
Fig. 6. The surface wind is the most affected; it increases with the length of
the time step when process splitting is applied particularly for high values
of the surface roughness length.

The problem of time truncation errors was recently raised by the wave
modelling group at ECMWF because they found that surface stress fields over
the oceans had systematically lower values than expected from the near surface
wind fields. As can be seen from Fig. 6, the time truncation errors (with
process splitting as in the ECMWF model) result in increased surface winds
without affecting the surface stress very much. Only with the very recent U,V
Eulerian version and the semi-Lagrangian version of the ECMWF model it has
been possible to apply the method of fractional steps. The previous vorticity
and divergence formulation did not have the full dynamic tendencies in
grid-point space. To investigate the effect of the time step length, the
global ECMWF model has been integrated over a 6 hour interval with 2At equal
to 120 s and 1800 s (time step for the operational T106L19 model) and two
schemes: process splitting and fractional steps. The experiments with 120 s
can be used as a reference because they have very small time truncation errors
and the difference between the two schemes (not shown) turns out to be
extremely small. After six hours the large scale fields are still very similar
and the boundary layer has come into equilibrium with the dynamic forcing
after a short time.

The time truncation errors of the wind vectors (1800 s minus 120 s
integration) at the lowest model level are shown as relative errors “in the
Figs. 7 and 8 for the process splitting scheme and the fractional step method
respectively. The relative vectors have been calculated by taking the vector
difference and rotating the reference vector Northward and scaling it to 100%.

A Nortward pointing relative error vector means that the error results in too
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Fig. 7 Relative wind srrors at the lowest modal level due to time truncation for the integration with process splitting. The

integration (2At=120 s) after rotating and scaling the vectors until the reference vector points North and has a length

" error vectors are computed by taking the difference between the 1800 s time step integration and the reference
of 100 %.
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large wind speeds; the Westward tilt over the Northern Hemisphere and the East
tilt over the Southern hemisphere mean that the ageostrophic angle is too
large (boundary layer wind veers with height at the Northern hemisphere and
backs with height at the Southern hemisphere). Errors in the surface stress
are shown inAFig. 9 and 10 for the two schemes. These results are consistent
with the one dimensional experiments, although we find a great deal of scatter
which is probably related to time dependencies in the real atmosphere.

The inconsistency between surface winds and surface stresses is most
clearly shown by the scatter plots of the drag coefficient for the Southern
Hemisphere over ocean (Fig. 11). The solid line indicates the drag coefficient
that is imposed by the parametrization according to the Charnock relation and
the individual points have been derived from model winds and stresses at grid
points over sea. We see that systematic errors occur with the process
splitting, particularly at large wind speeds. The method of fractional steps

eliminates the systematic error and slightly reduces the scatter.

4.3 Stability

The vertical diffusion introduces relatively short time scales in the model
and it is therefore not a surprise that an implicit treatment is necessary for
stability reasons. The problem is even more complicated because the diffusion
coefficients are a function of the local wind shear and the local Richardson
number. For simplicity the diffusion coefficients are usually evaluated
explicitly (for time level n-1; see equation 28). This can introduce a
non-linear instability particularly in stable situations when the exchange
coefficients vary strongly with the Richardson number.

Girard and Delage (1990) address the stability aspects of the numerical
solution of the coupled set of one dimensional diffusion equations with fairly

realistic exchange coefficients.

au _ a8 au 80 _ 38 80
at ~ 8z KM az °’ 8t T 8z KH 8z . (32)

As closure they use
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K= Ky ez|gg (1 +b [RiDD,

Ri = %; 86/8z2 o (33)

(8U/8z)%+ (8V/8z)°

One way of stabilizing the numerical solution is by linearizing the equations
in U and 6 and treating all linear terms implicitly. The drawback is that the
equations for U, 8 are coupled now, and instead of solving two tridiagonal
problems we have to solve a single band matrix with a width of 6. In a real
atmospheric model with equations for U, V, 6 and q this would imply a band
matrix with 12 diagonals. Another disadvantage is that through the
complication of the algebra, the flexibility in closure is lost.

A simple stable scheme can be constructed by using the implicitness factor
o« (see eq. 27). This idea was introduced in the ECMWF model when stability
problems became evident with the increase of horizontal resolution from T63 to
T106 (Jarraud et al. 1985). The exchange coefficients are evaluated at time
level n-1, but for the linear part'df the diffusion term we use a weighted
average between time level n-1 and n+l (see eq. 28). With wa=1, we would have a
fully implicit scheme, but duevto non-linear effects this scheme is not always
stable. In the ECMWF T106L19 ﬁodel coefficient o is 1.5. Girard and Delage go
up to values of 4 which is very detrimental to the time truncation errors, but
they propose to let it depend on local bonditions. Dependent on a local
stability criterion they select values between 0.5 and 4, which implies second
order accuracy where the stability criterion allows it and very poor accuracy
where the stability requirements are very restrictive.

A stability analysis for a variety of numerical schemes applied to a one
layer non-linear model was published by Kalnay and Kanamitsu (1988). They also
investigate the "explicit coefficient extrapolated ¥" scheme with variable «.

Their simple non-linear equation reads

av

_ P
= -y v, o _ | (34)
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vy .-V
n+l n-1 _ P 3
- e AR N - B9

where double time steps are used for consistency with the previous equations.

The amplification factor is

1 - q(P+1-a)
1 + qo

, where q = 2At K WP, (36)

which is smaller then 1 and larger than -1 for g(P+1-2a) < 2. So we see that
dependent on the degree of non-linearity as expressed by exponent: P we can
select o to satisfy the stability criterion. In the one column calculations
with the ECMWF 19 level resolution in section 4.1, a value of 1.5 was used for
«, but it had to be increased to 2 for the high resolufion integrations.

The étability problems with the vertical diffusion scheme are very much
connected to the closure scheme. The reason for the instability 1is the
dependence of the exchange coefficients on the gradients of wind and
temperature. The instability occurs because oscillations are allowed 1in the
profile of exchange coefficients. It may therefore be worth considering the
scheme proposed by Troen and Mahrt'(1986) and further developed by Holtslag et
al.(1990), in which the profile of exchange coefficients is prescribed as a
similarity function throughout the boundary layer. Preliminary tests in the
ECMWF model have shown that this scheme is much more robust and remains stable

with a=1.

4.4 Noise

Recently it was discovered that in the operational T106L19 model the
surface fluxes of heat, moisture were sometimes noisy. When the noise
occurred, all the physic tendencies became noisy, particularly in the boundary
layer. An example is shown in Fig. 12a for the South Pacific. The period of
the noise is 4At (which implies 2 time steps for the physics) and this
suggests a stability problem of the type described in the previous section.

Increasing o to a value of 3 to stabilize the vertical diffusion scheme was
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initially tried. The noise pattern changed slightly (see Fig. 12b) but kept
the same amplitude. Only a reduction of the time step from 15 minutes to 3
minutes eliminated the problem (Fig. 12c).

If the noise of Fig. 12 was related to the stability of the scheme, it
should have responded to an increase of o in accordance with the analysis‘ of
Girard and Delage (1990) and Kalnay and Kanamitsu (1988). In reality the noise
turns out to be due to an interaction of “process splitting noise" and the
exchange coefficients in the vertical diffusion scheme. The vertical diffusion
scheme does not produce the noise on its own, but interacts with other terms
of the full equations.

To investigate the problem a little further the one column version of the
vertical diffusion (see 4.1) has been applied on the situation with noise in
the surface fluxes. The only modification is that extra tendencies were .added
to the 6-equation at the thréé loweét model 1évels.' These tendencies were’
taken from the operational‘model with special diagnostics and are mainly due
to advection. The tendencies are -2.94, 2.50 and -2.94 K/day for the three
lowest model levels respectively. The mixed layer covers only three layers and
has a depth of about 400 m. Fig. 13 shows that the simple one column model
reproduces the oscillatory behavior of the surface heat flux. This is only the
case if the extra (dynamics) tendencies are present in the equation for 6  and
when process splitting is applied.AWith‘the method of fracﬁional steps; the
noise disappears (see Fig. 13); 'The reason for the oscillations can be
understood from the seqﬁence of tempe{éﬁufé“pfofilés,in Fig.J14, éovérihg thé
time span af fﬁo time integrétion steps. The profiles of exchange coefficients
and heat fluxes that correspond to these two time steps are shown in Fig. 15.
In a convective boundary layer the vertical differences in potential
temperature are extremely small; often less than 0.1 K between successive
levels. This uniformity is created by the diffusion scheme Dbecause the
exchange coefflcients are very large in unstable situations. When after the
diffusion step, another process causes differences in increments of e.g. 0.05
K between two levels, the layer between these two 1levels can change from
slightly unstable to slightly stable. The diffusion coefficient for this
layer, computed for the next time step, can become extremely small. In this
way one layer can switch between stable and unstable every time step. When the

method of fractional steps is used, the diffusion tends to smooth the noise
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created by the other terms in the same time step, so the input to the
computation of the exchange coefficients will always be smooth.

The method of fractional steps works also better in the full three
dimensional model as shown in Fig. 16a. Not all the oscillations  have
disappeared, because only the dynamics and the radiation tendencies are passed
to the diffusion scheme. The convection and large scale precipitation cause
also noise that interacts with the diffusion coefficients. This is mainly
caused by the evaporation of precipitation in the lower layers.

From the examples shown here it is clear that the noise characteristics of
the diffusion scheme are strongly related to the 1local closure. The
alternative closure, that prescribes the profile of diffusion coefficlents as
similarity profile, is much more robust, also 1if combined with process

splitting (see Fig. 16b).

5. SOIL PROCESSES

In the ECMWF model the surface boundary condition for temperature and- the
resistance for evaporation over 1land is provided by the 1land surface
parametrization scheme (see Fig. 17). It consists of a three layer soil model
with prognostic equations for temperature and soil moisture at the upper two
layers and prescribed climate fields for the bottom layer. The climate fields
are fixed per month. In this paper we limit the discussion to the temperature
problem as the equations for moisture are very similar. The temperature in the

soil is described by the diffusion equation

2
8T _ . 8T
Cegt = k1= (37)
oz
or
at _ _a -
CS W = —62 H y ‘ where H KTBT/BZ. (38)

In these equations, H stands for the heat flux, CS for the soil heat capacity

and K for the thermal conductivity. The discretized forms for TS and Td are
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n+1 n-1 n+1

n+1l
cls " Ts o af g od s o (39)
s 20t D T 0.5(D +D ) o)
s s d
Tn+1_ Tn—l Tn+1_ Tn+1 Tn+1_ Tn+1
c.d4 d4 __1f p e d g d 5 (40)
s 2At D T 0.5(D,+D ) T 0.5(D _+D,)
d d "¢ s d

where H2+1 is the soil heat flux at the surface from the atmospheric model
(sensible plus latent heat flux plus net radiation). Since H0 depends on the
surface temperature in the atmospheric model, it has to be treated implicitly.
This is done by linearizing HO with respect to TS

n+l n-1 dHo

_ n+l .n-1
Ho B Ho * dTS (Ts Ts )

(41)
The derivative of HO with respect to TS is computed in the boundary Ilayer
scheme for later use in the land surface scheme.

The numerical solution of the diffusion equation can not be expected to be
accurate for all time scales with the resolution specified in Fig. 17. The
choice of the number of layers ahd their thickness is very much inspired by
the physical processes that need to be simulated. The depth of the surface
layer has been chosen in accordance with the penetration depth of the diurnal
temperature wave, the deep layer reflects changes on a time scale of the order
of 10 days and the climate layer gives the seasonal variations. To
investigate the accuracy of the numerical scheme we consider a sinusoidal
boundary condition for the heat flux at the surface with frequency w

represented in complex form by

T =T e + T , (42)
resulting in the analytical solution

T =T elwt e—(1+1)z/D £ T (43)

o C

2K 1/2
iwt  (1+i) [t
o T o D y where D—{ -C——z) } . (44)
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The accuracy of the three layer model is illustrated in Fig.18 where amplitude
and phase errors are given of the surface temperature TS and the deep layer
temperature Td. These errors are obtained by solving the vertically
discretized equations analytically, so the errors are due to vertical
discretization only (see Warrilow et al. 1986). The amplitude ratio 1is the
amplitude from the discretized problem divided by the exact solution. For the
purpose of medium range forécasting one would like to have accurate results in
the time range of a few hours to 10 days. The scheme gives reasonable results
for the diurnal cycle, but performs best for time scales of 5 to 10 days. For
short time scales (e.g. less than half a day) the errors are quite large. This
is probably not so important for the surface temperature because the diurnal
cycle determines the dominant time scale. For soil moisture however, the time

scale imposed by precipitation can be much shorter.

6. CONCLUDING REMARKS

Recent research has shown that diabatic processes are important for medium
range forecasting. Improvements were obtained by better representation of
different sub-grid processes, but 1little attention has been paid to the
numerical aspects of the parametrizations. In this paper an overview of the
numerics of parametrized processes has been given. Although the arguments and
material, presented in this paper, have been derived from the ECMWF model,
they probably apply to many other models as well. ,

One of the important numerical aspects of the ECMWF model is the leapfrog
scheme, which implies that the total time path is integrated twice with double
time steps. This scheme is second order accurate for the dynamics. Most
parametrized processes however are parabolic in nature rather than hyperbolic
and therefore the leapfrog scheme is not suitable. Forward or backward schemes
are used instead, implying that the schemes for the parametrized processes are
first order accurate only. Replacement of the leapfrog scheme with a two time
level scheme would be more satisfactory. ,

A second.aépect, that has been éddressed, is the process splitting

procedure versus fractional steps. The conclusion is that, with time steps
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temperature at z=0.245 m and are relative to the analytical solution.
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long compared to the time scale of a process, it is beneficial to update the
n-1 fields with the slower processes before treating the fast process
implicitly. This principle has been illustrated with the vertical diffusion
scheme. When the n-1 fields are updated with the dynamic tendencies before
applying the diffusion, systematic errors in the surface wind aré reduced and
some of the noise problems disappear. The general idea is that with longer
time steps it becomes more and more relevant to keep an accurate balance
between processes within a single time steps. The general recipe is to order
the processes according to their time scale: first the slow (explicit)
processes then the faster processes (implicit) with updated n-1 fields and
finélly the adjustment processes.

With the availability of more and more computer power the scales that can
be resolved by atmospheric models are becoming smaller. Consequently there is
a danger that some processes are partially resolved as well as parametrized.
This is already seen for orographic gravity waves (lee waves) whose scales are
increasingly resolved by high resolution forecast models (e.g. T213). With
further increasing resolution this will also be the case for convection, and
it may already be so for slantwise convection. It 1is obvious that the
parametrization problem becomes more complicated when there is no clear
separation of scales. This will be a major topic. of research in future
fine-mesh models.

Another important topic of research with complicated numerical ‘aspects will
be cloud parametrization. Stratocumulus clouds for instance can be shallow (a
few hundred meters deep) and have sharp upper and lower boundaries associated
with a strong inversion, radiative flux divergence and turbulent fluxes.
Higher vertical resolution is obviously needed, but will probably never be
sufficient to resolve these processes in a satisfactory way. It will therefore
be necessary to pay special attention to the numerical schemes that are

associated with cloud processes.
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