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Abstract: Using a 3-level quasi-geostophic model two skill forecast experiments are performed for
Western-Europe. The skill predictor we propose in this paper is the maximal forecast error which can
occur for Western-Europe. This maximal error is determined with adjoint techniques. One experiment
is within the context of the 3-level model. By modifying the method, we also investigate the skill in
predicting the quality of the ECMWF forecast for Western-Europe. Both experiments evidently show

the skill of this predictor to select accurate forecasts, upto a forecast period of 72 hours.

1 Introduction.

Over the last two decades research in atmospheric physics has contributed substantially
to the improvement of the performance of numerical weather prediction (NWP) models.
In recent years it has become more and more difficult to make progress in this. For the
state-of-the-art NWP models the deterministic intrinsic growth of small initial errors,
is almost as large as the growth of forecast errors (Lorenz, 1982). This is an indication
that further improvement of the average skill of NWP models no longer automatically
results from model improvements. Yet, the observed variability in skill is quite large.
This variability may partly be explained as a purely statistical effect. A particular
forecast must be considered as an arbitrary member of a probabilistic distribution. It
may also reflect a temporal and regional variability in atmospheric predictability. If
the variability in the predictability of the atmosphere is substantial it is useful for the
forecaster to have an a priori measure of the quality of the forecasts.

Various methods for predicting the forecast skill have been developed. Epstein
(1969) proposed a stochastic-dynamic model for determining the probabilistic distri-
bution of an atmospheric variable. The drawback of this approach is that it involves a
large amount of computation. In Monte Carlo forecasting, introduced by Leith (1974),
a small ensemble of randomly chosen initial states is integrated with the forecast model.
The occurrence of each initial state is considered to be equally likely. The spread be-
tween the ensemble members is a measure of the atmospheric predictability. However,
the complexity of the current forecast models greatly obstructs the operational use of
the Monte Carlo technique. Further it is not obvious that the randomly chosen initial
states form a representative sample.

A more feasible way of ensemble forecasting is lagged average forecasting (Hoffman
and Kalnay, 1983). Here the forecast ensemble consists of the latest operational fore-
cast together with forecasts based on previous analyses but with the same verification
time. By weighting the members statistically the lagged average forecast is obtained.
This procedure yields in general a more accurate forecast and because all these fore-
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casts are already available, there are almost no additional computational costs. Dalcher
et al. (1985) found that the skill of using the spread as a predictor of quality of the
operational forecast was only minimal. This could be due to the large verification area,
so that regional differences in skill are not taken into account. In Kalnay and Dalcher
(1986) ensemble forecasting was performed for smaller areas. They were quite well
able to predict the anomaly correlation between the forecast and the corresponding
ECMWF analysis. It should be noted that the period which they considered only cov-
ered one month. When the verification area was enlarged to the Northern Hemisphere
a deterioration of the forecast skill was observed.

Instead of using a predictor based on ensemble forecasting, Chen (1988) proposes to
use the persistence of the model atmosphere during the integration as a skill predictor.
It appears that for the medium range, the correlation between this simple predictor and
the forecast quality is significant for regional as well as for hemispheric verifications.

Motivated by the above results, Leslie and Holland (1990) developed a technique
using three different predictors. Two of these, the stastistical regression scheme given
by Bennet and Leslie (1981) and modified by Glowacki (1988) and further the per-
sistence predictor introduced by Chen (1989), utilize model output of the Australian
region limited area model. The third predictor is based on the spread between forecasts
of different weather centres. In predicting the skill of the 36h forecasts, they were able
to obtain a high correlation between the predictor and the forecast error.

In this paper we employ adjoint equations to define a possible skill predictor. The
concept of adjoint equations was probably first introduced in the meteorological lit-
erature by Marchuk (1967), but received serious attention only after the article by
Talagrand and Courtier (1987). In Molteni et al. (1991), modes are determined with
adjoint techniques that have maximal growth of energy within a certain forecast pe-
riod. Since the tangent equations are involved in deriving the adjoint equations, the
applicability of this concept is essentially limited to a forecast period of three days.
These modes, computed with a 3-level quasi-geostrophic model as described in Mar-
shall and Molteni (1991), are used to form an ensemble of initial states. This ensemble
is integrated with the ECMWF model and the spread is considered as a measure for the
skill of the unperturbed forecast. Some case studies for the medium range, beyond the
regime where error growth is linear, justify a closer look at this approach, see Molteni
et al. (1991).

Along these lines we investigated the possibility to obtain a priori know-
ledge of the skill of the operational ECMWF forecast model for a small area, using
the same quasi-geostrophic model. In Barkmeijer (1991), we studied a method which
yields the initial error field that has the largest growth in RMS sense for a pre-chosen
area and forecast period. This growth showed a large variability depending on the
verification area and flow pattern. For that reason it was suggested that this concept
could be employed as a possible skill predictor for the short range. The idea is simply
to use this predictor of maximal forecast error to distinguish a substantial subset of
the accurate forecasts. When the predictor has a small value, the error must be small.
For large values nothing definite can be concluded. In this case it is crucial to what
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~extent the initial error projects onto the rapidly growing error mode. In section 2 we
give an outline of the techniques we use. The validation of the method as a possible
skill predictor is discussed in section 3. Finally, in section 4 we give some concluding
remarks.

2 The method.

Suppose that the dynamics of the atmosphere is described by the following dynamical
system:

d
a—t-a::F(x),:cE'H (1)

Let u be a solution of eq. (1) on the time interval [0,¢]. In this section we are
concerned with the growth of initial errors of u(0) for a pre-chosen area and forecast
time .

The time evolution of errors to the reference orbit u is given by

d v
-CEE:F(U—I—E)—F(U) (2)
If we assume that the errors remain small during the forecast time, eq. (2) reduces
to
d DF (3)
€= (u)e

Usually this equation is referred to as the tangent linear equation. The linear
operator DF'(u) is obtained by differentiating F' along the reference orbit u. There
exists a linear operator R : H — H such that for solutions € of eq. (3) we can write:

e(t) = R(0,t)e(0) (4)

The operator R is called the resolvent of eq. (3). In the following we are interested
in the initial error £(0), of some fixed norm, which yields the largest possible RMS
error in the stream function field for a small area at time ¢. It is our intention to relate
this maximal error to the skill of the forecast model. For simplicity we first consider
the case when the area is reduced to a single grid point p. In the following we denote
by &(t)), the value of £(t) in p.

One can choose an inner product <,> on H and a linear operatmLp :H — H
such that, see Barkmeijer (1991):

< Lye(t),e(t) >= (e(1)),) (5)
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Using eq. (3) we also have
< Lye(t),e(t) >
=< L,R(0,t)e(0), R(0,%)e(0) >

=< R*(0,t)L,R(0,t)e(0),(0) > (6)

The linear operator R*(0,t) is the adjoint of R = R(0,t). Further one can show
that R*(0,t) = S(¢,0), where S is the resolvent of the adjoint equation related to eq.

(3):
e = —DF(u)*. | (7)

We conclude from egs. (5) and (6) that of all initial errors €(0) with some fixed
norm < €(0),e(0) >, the error proportional to the eigenvector of R*L, R with the largest
eigenvalue, results in the maximal absolute value of €(¢) in p. The inner product <, >
we use is given by:

<,y >=/.7:-yd3, (8)

where the integration is over the entire sphere.

The above can easily be generalized to a larger area V. Suppose V consists of K
grid points p;, t =1, .., K. Let £ be the operator given by:

L= iLm. (9)
We have )
< R*LRe(0),e(0) >
=K, < R*L,,Re(0),¢(0) >

= Zg;l(s(t)hz.‘ )2'

It 1s easy to show that R*LR is a positive self-adjoint operator. We determined the
eigenvectors and eigenvalues of R*LR with the Lanczos algorithm, see Parlett (1980).
This algorithm makes it possible to compute the eigenvalues of a linear operator without
knowing its explicit form. By choosing €(0) proportional to the eigenvector of R*LR
with the largest eigenvalue AZ_., we obtain the largest possible RMS of ¢(t) in V.

The value of Anq; which is proportional to the RMS can be considered as an upper
bound to error growth provided that the error remains in the linear regime. Usually
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many eigenvectors of R*LR contribute to the initial error in the analysis resulting in
a smaller final error in V.

In the next section we investigate whether small values of A, imply an accurate
forecast for the area V.

3 Numerical experiments.

The model we use for skill forecasting is a 3-level quasi geostrophic model truncated
at wavenumber 21. For a complete description of the model we refer to Marshall and
Molteni (1991). The levels of this model are at 200hPa, 500hPa and 800hPa. In the
sequel we simply denote this model by T21. We perform two experiments to which we
refer as the T21-experiment and the ECMWF-experiment.

In the T21-experiment we perform skill forecasts for T21 using the tangent linear
model of T21 and its adjoint. In case that the internal error growth of T21 resembles
that of the ECMWF forecast model for short range, T21 may also inform about the
skill of the ECMWF model. In the ECMWF experiment we validate this idea using
the forecast orbit of the ECMWF model. We first discuss the T21-experiment.

(a) T21 experiment

For each day in December and January of the years 1989-90 and 1990-91, we re-
trieved the analyis at 12 GMT from the ECMWTF archives. Starting with these analy-
ses, the forward T21 orbit is determined for a forecast time of 48h. This, together with
the adjoint model, enables us to compute A,,,, for the error in the stream function
at 500 hPa in an area located between 11°W and 11°E and between 40°N and 60°N.
In the following this area is called Western-Europe. Usually three iterations with the
Lanczos algorithm, see Parlett (1980), suffice to determine A.;. In numerical costs
this corresponds with running the forecast model 9 times. Each iteration more gives
the succesive eigenvalue in magnitude.

In fig. 1, the RMS forecast error of the streamfunction at 500 hPa for Western-
Europe is plotted against Ap,,.. The forecast error is obtained by verifying the T21
+48h forecast with the corresponding ECMWF analysis. The figure clearly shows the
variability in A, during this period. Sometimes days differ in their value of A4 by
a factor of at least two. So by choosing a particular initial error, some flow patterns
enable a much larger error growth over Western-Europe than others do. The set of
points seems to form a wedge which agrees with the interpretation of A, as an upper
limit on error growth. Usually the analysis error will also project substantially on
modes with a slower growth rate than the mode related to the largest eigenvalue. So
when Ap.. 1s small we expect a clustering of points at small values of the RMS error,
while for increasing A, an increasing range of forecast errors must occur. These
expected features show up prominently in fig. 1. It is not clear yet whether or not the
cases of small A,,,, are related to particular types of flow patterns.
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FIGURE 1. For December and January of 1989-90 and 1990-91, the RMS (m?/s) of
the forecast error for Western-Europe is plotted against A,.,. The T21 model is used
as a forecast model with forecast period 48h.

In order to quantify the relation between A, and the RMS error over Western-
Europe, we choose a RMS value of 9.6 10m?/s as a distinction between good and bad
forecasts. For this RMS value the set of days with an accurate forecast consists of
G = 101 days. This set is called the good set. Suppose the number of days with A,,q;
less than some pre-chosen value A is equal to M(A), G(X) of which belong to the good
set. In case A4 indeed informs about the good set then the chance of selecting a
member of the good set from the subset for which A,,,, is smaller than A should exceed

G/124

In fig. 2 we give for different values of A the pair (G(A\)/M()),G(A)/G). The
first coordinate gives the chance that a selected day indeed belongs to the good set,
while the second coordinate denotes the fraction of the good set that is selected if
we make the restriction to cases for which A,,,; is smaller than A. It is obvious that
G(A)/M(X) — G/124 for large values of A. The predictability to select a good fore-
cast considerably exceeds the climatological chance, which is 81% for a RMS equal to
9.6 10°m?/s, for all four values of A. It appears that \,,,, indeed contains information

with respect to the growth of errors.
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FIGURE 2. Horizontally the percentage of days with A, < A is given that belongs
to the good set, i.e. the set of days with RMS < 9.6 10°m?/s. The percentage of the
good set already selected is shown vertically. The dashed line denotes the fraction of
the good set in the complete set. The numbers refer to various values of A.

(b) ECMWF-experiment

In the ECMWF-experiment we are interested to what extent the method remains
useful in performing skill forecasts for the operational ECMWF model. Because the
T21 forecast orbit deviates too much from the ECMWF forecast orbit after 24h, we
have to include some dynamics of the ECMWF model. To that end we use ECMWF

forecasts every twelve hour and interpolate these with T21, see fig. 3.

+24h FC
T21 K Iﬁf—_——/

+12N

T21
AN

FIGURE 3. Forecast orbit for which A.,,, is determined in the ECMWF experiment.
With AN and FC we denote ECMWF data.
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More precisely, starting with an analysis from the same set as is used in the T21
experiment, T21 is integrated for 12h. Then in the final time step the obtained field is
replaced by the +12h ECMWF forecast. With this field as new initial field, we again
integrate T21 for 12h replacing in the final time step the field by the +24h ECMWF
forecast. This procedure is repeated until we reach the forecast time. With respect
to this orbit we again determine A, for Western-Europe as in the T21 experiment.
The result is shown in fig. 4. The clustering for low A, is less apparent than in fig.
1. A shorter interpolation period, thus keeping a better track of the ECMWTF forecast
orbit, may improve upon this point.
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FIGURE 4. Same as fig. 1 but now for the ECMWTF forecast orbit interpolated
with the T21 model.

In fig. 5, we present for various forecast periods the skill in selecting the good set
for Western-Europe as we did in fig. 2 for 48h. For all forecast periods of 48h, 72h
and 96h, we choose a fixed RMS value of 3.6 10°m?/s to distinguish between good and
bad forecasts. Again there is an improvement over climatology for all five values of
A except at a forecast period of 96h. The gain over climatology is approximately 10
to 15 %, which is not much different from the result of the T21 experiment. When
the forecast period is 96h, the chance to select from the good set rapidly drops to the
climatological predictability. One of the main reasons probably is that the assumption
of linear error growth is not valid anymore. Also the width of the error distributions
becomes broader at larger forecast times, leading to a more substantial sampling error
in the results at 96h.
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FIGURE 5. Same as fig. 2 for the ECMWF experiment. The forecast period is 48h,
72h or 96h.

4 Final remarks.

We have performed two numerical experiments with a 3-level quasi-geostrophic model
to study the feasability of a possible skill predictor. This predictor A, is the maximal
error in RMS sense, as given by the largest eigenvalue of a linear operator, which can
occur in the forecast for the stream function at 500 hPa over Western-Europe.

First we tested this idea wholly within the context of the 3-level model. Results
show that for low values of A, we have a substantial inprovement over climatology in
predicting that a particular forecast will have a small error. Motivated by this, we in-
vestigated whether A,,.., as computed with the 3-level model using adjoint techniques,
can also be employed to distiguish with a better than climatological chance a subset of
the ECMWF forecasts with a small error. The results indicate that this is indeed the
case and so the approach may be promising if one is interested in skill forecasts with
relatively small investments.

We point out that in this study all information contained in the initial error co-
variance matrix is neglected. So we assumed that the analysis error does not have a
prevailed direction in phase space. As a consequence of this, nothing can be concluded
from a forecast with a large value of A,.,. It is quite possible that for days with
large A4z, the analysis error does not project onto the rapidly growing error modes.
Furthermore we did not include in this paper the occurence of model errors either.
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