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1. INTRODUCTION

In designing a numerical weather prediction model, one of the most fundamental aspects is the choice of
discretization technique in each of the spatial dimensions. In the vertical, by far the most popular choice
is the finite difference method; while in the horizontal, both finite-difference and (especié]ly for global
models) spectral methods are widely employed. A third possibility, the finite element method, has been

used rather less widely, though with considerable success.

The aim of this paper is to present the essentials of the finite element method, and to review some of the

applications to numerical weather prediction models.
No attempt is made here to go deeply into the theoretical aspects of the finite element method, nor into the
richness of the technique when applied to a wider class of problems; for these, numerous textbooks are

available. A good place to start is the early volume by Strang and Fix (1973).

2. WHAT IS THE FINITE ELEMENT METHOD?

The essence of the finite element method can be seen by considering various ways of representing a functionf{x)
on an interval a<x<b. In the finite-difference method the function is defined only on a set of gridpoints;
ie., ﬂxj) is defined for a set of % e [, 5], but there is no explicit information about how the function

behaves between the gridpoints. In the spectral method, on the other hand, the function is defined in terms
of a finite set of basis functions:

N
=3 ae® (2.1)

k=
where the basis functions e,(x) are global (e.g., Fourier series, or spherical harmonics for two-dimensional
functions on the surface of a sphere), and the {a,} are the spectral coefficients. Equation (2.1) definesf{x)

everywhere on the interval, and the representation is independent of any set of gridpoints.

In the finite-element method, the function is again represented in terms of a finite set of basis functions:

N

f) =Y agx) : (2.2)
k=0
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but this time the basis functions e, (x) are local, i.e., they are non-zero only on a small sub-interval, As in

the spectral method, the {a,} are the coefficients of the basis functions, and Ax) is defined everywhere; but

as in the finite-difference method, there is an underlying mesh of gridpoints (nodes) involved in the
representation.

To clarify this idea we consider the simple choice of linear finite elements. The interval [a, B] is divided
into subintervals by specifying a set of mesh points, say {xg x;, ..., xy}. The basis function e, (x) is
defined to be 1 at x, decreaéing linearly to zero at x, , and x,,,, and to be zero outside the interval
[%._1» %;,.4]- Thus the defining equations are:

X —xk__l

ex) = » X€[x ;,,x1 (2.3)

X %1

Xy 4—%

k+1

= _.___’xE[xk,xh‘l}
Zpe1 %k

= 0 otherwise

The situation is illustrated in Fig. 1; note that the mesh may be non-uniform.

Suppose now that fix) is given at the set of gridpoints {x.}, as in Fig. 2; how do we determine the
coefficients {a,} of the basis functions, in order to use the representation given by Eq. (2.2)? The answer
is almost obvious: since e,(x) is the only basis function which is non-zero at X, we must have

a, = fix,), Osk<N.
- Between the gridpoints, say between x, and x,, , just two of the basis functions (e, and e, ) are non-zero;
since both are linear, f{x) as defined by Eq. (2.2) is linear on the subinterval [x;, x,,]. Thus the behaviour

of f{x) between gridpoints is determined simply by linear interpolation.
At this point, it may seem that we have gained very little over the simple gridpoint representation of fx).
The benefits of the representation in terms of linear basis functions will become clear in the next section,

when we consider elementary operations with functions.

Finally in this section, we note that finite element basis functions can be even simpler (piecewise constant

on subintervals) or more complicated (piecewise quadratic, piecewise cubic, and so on).
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Figure 1. Linear finite element basis functions.
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Figure 2. Representation of f(x).
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3. SIMPLE OPERATIONS WITH LINEAR FINITE ELEMENTS

In this section we show how to perform three simple 6peraﬁons with linear finite elements in one dimension:

differentiation, multiplication, and taking second derivatives.

(a) Differentiation
Suppose we are given u; = u(x)) at a set of nodes x, (0<i<N), and we wish to differentiate u to find

v = u . We start by expanding & and v in terms of the basis functions e(x), as shown in Section 2:

N N
u@) = 3 ue, v = Y ve®
i=0 i=0

where the coefficients v, (0<i<N) are the unknowns of our problem. The series for u can be differentiated

term by term, so that v = u, becomes

N N
Y ve =Y u,e:(x) 3.1)
i=0 i=0

+ In Eq. (3.1) we use the notation e;(x) to denote the x-derivative of the basis function, to avoid multiple

subscripts. From the definition of the (piecewise linear) basis functions, e;(x) is piecewise constant.

The next step is to apply the Galerkin technique, namely to orthogonalize the error in (3.1) to the basis: i.e.,

set
{v-u,, e )=0 forall k (O<k<N)
where the inner product ( , ) is defined by

Xy

() . 8 ) = [ fwgtods.

%o

It is easily seen that this is equivalent simply to muliiplying both sides of (3.1) by e,(*) and integrating

from x, 10 x,:
Xy N Xy N
[ 3 veed= [ T, ugie s, (3.2)
xo i-O xo i-O

Since everything is well-behaved we can exchange the order of the integration and the summation.
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Moreover, since v, and u, are coefficients of basis functions, they are not functions of x, and so we can

take them outside the integrals. Hence (3.2) becomes:

N N
Y v [ e@emwd =Y u [ e@emdr. (3.3)
i-O x“ i=0 xo

The integrands remaining in (3.3) depend only on the mesh, not on the functions # and v. It is easily seen

that for example e, (x)e,(x) is zero everywhere unless § = k or § = k+1; in fact it is a simple exercise to

~ show that:
Xy
h
[ e@edx = % for i = k-1
%o ’
= M forji=%Fk
3
h
= —~ for i = k+1
6
= 0 otherwise,
where
by = X%
Similarly,
%, 1
[ el@e s = ~ fori = k-1
%o
= 1 for i = kel
2

= 0 otherwise.

The outcome is most easily expressed in matrix/vector notation: let

= (Ug Uy s Up)"

- (Vo, Vl, soey VN)Tg

<

then using the above results Eq. (3.3) becomes
By=Pu (3.4
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where P is tridiagonal; P, is also tridiagonal, but with zeros on the diagonal itself. The matrix P is

diagonally dominant, and the usual algorithm for solving tridiagonal systems can safely be used.

It is very instructive to consider (3.4) in the case of a uniform mesh; at interior points, we have just

1 :
%(Vk-1+4vk+vk+1) = ﬂ(uhl _uk-l) (3.5

where A is the gridlength,

If we perform a Taylor series analysis of (3.5), we find that on a uniform mesh we have 4th-order accuracy.
General finite-element theory tells us that we only have a right to expect 2nd-order accuracy in the
derivative if the basis functions are linear; here we have an example of "superconvergence" in which the

(second-order) errors happen to cancel by symmetry.

Notice also that the manipulations leading to (3.4) automatically yield the appropriate equations for
determining v = _ at the boundary points x, and x,,, in contrast to the finite-difference case (especially

for fourth-order schemes) where in effect we have to "invent" additional values beyond the boundary.

The right-hand side of (3.5) is of course just the usual second-order finite-difference approximation to
v = u_, which is known to be too "smooth" (Fourier analysis shows that the derivative is underestimated,
the degree of underestimation depending on the number of gridpoints per wavelength). The left-hand side
of (3.5) - i.e., the matrix P - is itself a three-point smoothing filter. To solve (3.4) we multiply the right-

hand side by the inverse of P, which is thus a "de-smoothing" or "sharpening" operation. This simple

argument provides some insight into the superiority of linear finite elements over second-order finite

differences.

In finite element parlance, P is often called the "mass matrix".

(b) Multiplication

Suppose now we are given u, = u(x) and v, = v(x) at a set of nodes x, (0<i<N), and we wish to find the
product w = uv. Again we expand # and v in terms of the basis functions e,(x), and similarly let

N

wx) = Y we.
i=0
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Applying the Galerkin technique as before,

*n N N N
[ z: we e ndx = [ (E ue ) ) ( z Ve x) Jexdx (3.6)
X b ¥ =0

and we obtain a matrix problem

Pw=r

where P is the same tridiagonal matrix as in the previous sub-section. The right-hand side can also be

expanded in a similar way; it is easily seen for example that the integral is zero unless both i and j are

equal to k-1, k or k+1. In practice it is more efficient (much more efficient in 2 or 3 dimensions) to
evaluate the integral by numerical quadrature. The right-hand side of (3.6) is a piecewise cubic, and can
be evaluated exactly by using an appropriate integration formula. In fact we have a choice between
. Gaussian quadrature and using Simpson’s formula; Staniforth and Beaudoin (1986) show that the second
alternative is twice as efficient as the first (and that in a three-dimensional problem, Simpson quadrature is

an order of magnitude more efficient than a straightforward term-by-term evaluation).

Notice that in deriving (3.6) we orthogonalized the error to the basis, so that the result w(x) is an alias-free

representation of the product uv, just as in the case of the spectral method. The product is fourth-order

accurate on a uniform mesh (Culien and Morton, 1980).

(c) Second derivatives
Finally, suppose we are given u, = u(x) at the nodes x, (O<i<N), and we wish to obtain the second
derivative v = u_. If we let
N
V@) - T ve)

i=0

and proceed exactly as in Section 2(a), we obtain the following analogue of Eq. (3.2):

XN u v N
) Y, veiReads = f 2 ug; (e )ds. | 3.7)
0

Clearly we are in trouble here, since ei” (x) is zero everywhere. The trick is to rewrite the ﬁght—hand side
of (3.7) as
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and then integrate by parts. We obtain

xN N . xN
[ X vemends = [ ug® ] x‘: - [ weix (3.8)
x, =0 *o

Now we can use the expansion of « in terms of the basis functions to replace », in the integration:

JfN N . IN N
[ Y veetnds = [ ug L = [ X weieinar,
xo i-O xo i-O
and thus
N * 5. N %
Y v [ eede = [ug®) ]x: - Y [ e@eidr. (3.9)
i=0 Xy i=0 A v

The left-hand side of (3.9), in matrix/vector notation, is just the familiar Py again. The first term on the

right-hand side is zero except at the boundary points. The second term on the right-hand side contains the
casily-evaluated integrals

[ elmeinas = -71-1- for i =k-1

k-1
%o

1 1 ,
= (—+—=)fori =k
b, By

-l for i = k+1
by

where again h, = x,,,-x,. Thus (3.9) has the form

Pv=P.u

where P and P _ are both tridiagonal.
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On a uniform grid at interior points, (3.9) becomes

1 1

-E(v,‘_1+4v,‘+vm) = -’?(uk_l—2u,‘+um) (3.10)
and again the right-hand side is just the usual second-order finite difference approximation. Unlike the case

of taking a first derivative, however, inverting the mass matrix does not provide fourth-order accuracy, the

accuracy remains second-order.
There is a way round this problem, provided we are willing to bend the rules of the Galerkin technique.
If we replace the left-hand side of (3.10) by
1
'E(vk—l+ 10v,+v;.1),

in effect using a different "mass matrix", then we recover fourth-order accuracy on a uniform grid, with no

extra computational work.

4, EFFICIENCY, ACCURACY AND CONSERVATION
(a) Efficiency

In the one-dimensional examples of the previous section, there was only one way 1o divide the domain into

subintervals. As soon as we move to higher-dimensional problems, there is a choice. For example, in two
dimensions we might choose to subdivide the domain into triangles (especially if the boundary of the
domain is irregular) or into rectangles. In either case, linear finite-element basis functions can be defined
on the subdivisions. Staniforth (1987) has powerfully argued the case for using a rectangular mesh if the
geometry of the problem allows it.

The fundamental reason is the cost of inverting the mass matrix P. On a rectangular mesh, the linear

finite-element basis functions are separable:

ey(%y) = & (x)ey)
where e, is the basis function centered at the mesh point (k]). As a result, the two-dimensional mass
matrix can be inveried simply by solving a set of tridiagonal systems in the x-direction, followed by a set
of tridiagonal systems in the y-direction (or vice versa). Another way of looking at this is that the two-

dimensional mass matrix is just a tensor product (E"@I:’), where P* and P? are the mass matrices

associated with the one-dimensional sets of basis functions {e,(x)} and {e,3)}. This tensor product

algorithm for inverting the two-dimensional mass matrix was first demonstrated by Staniforth and Mitchell

(1977).
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On a triangular mesh the separability of the basis functions is lost, and inverting the mass matrix is much
more difficult. If the mesh is completely regular then a reasonably efficient FFT-based direct method could
be used, but generally it is necessary to resort to iterative methods or approximate inverses (Cullen, 1974b).
In engineering applications of the finite element method, the mass matrix is sometimes simply approximated
by the identity matrix to circumvent this problem ("mass lumping"), but as we have seen in Section 3 this

can seriously compromise the accuracy of the solution.

Staniforth (1987) also points out several other efficiency "tricks" which exist for linear finite elements on
rectangles, but which do not camry over to triangular meshes. In three dimensions, the arguments for
trilinear basis functions on "bricks" rather than on tetrahedra are even stronger.

{b) Accuracy

So far we have considered only methods based on /inear finite elements. Is it worth using higher-order

elements? In several respects, the answer seems 10 be no. Quadratic elements can be less accurate than

linear elements (no superconvergence properties), so the extra expense is not likely to be justified. Cubic

elements do have superconvergence properties and can provide a high order of accuracy, but they are much

more expensive to compute with than linear elements; also, the additional degrees of freedom can result in
computational modes (noise) being excited. Staniforth (1987) puts it succinctly: "the law of diminishing

returns seems to apply".

(c) Conservation

Finite-difference schemes for nonlinear problems are often designed to conserve quadratic invariants of the
original partial differential equations. In general, such conservation properties are not maintained in simple
linear finite element schemes. They can be recovered for example by spatial staggering of the elements,
or by choosing different orders of elenient for different variables (Lee et al., 1980; Cliffe, 1981;
Girard, 1983; Steppeler, 1987b). The extent to which the extra computation is worthwhile seems to be

rather debatable, and in any case is certain to be problem-dependent.

S. APPLICATIONS

The first application of finite element methods to a meteorological problem seems to have been that of
Wang et al. (1972), who integrated the one-dimensional shallow-water equations using Hermite cubic basis
functions. They concluded that the finite element method requires less computational work than a

fourth-order finite difference scheme, for a given level of accuracy.

Cullen (1974b), following some initial experiments in Cartesian geometry (Cullen 1973, 1974a), applied the
finite element method to the shallow-water equations on a sphere. He used a grid based on an icosahedron
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whose faces were subdivided into triangles, over which linear finite elements were defined. Tests with
Rossby-Haurwitz waves suggested that the finite element method was competitive with finite-difference
methods.

Cullen’s finite element scheme in the horizontal was later coupled with the vertical finite difference scheme
of the UK Meteorological Office’s S-level general circulation model. Results were reported by Carson and
Cullen (1977) and Cullen and Hall (1979). In general these results continued to suggest that finite elements
were competitive with finite differences, though perhaps not worth the additional effort.

Meanwhile, Staniforth and Mitchell (1977) applied linear finite elements on rectangles to the problem of
- the shallow-water equations on a polar stereographic projection. An important aspect of this work, besides
recognizing the computational efficiency of the rectangular mesh, was the use of the vorticity/divergence
form of the equations rather than the u-v form, and they concluded that their scheme gave significantly
better results than a fourth-order finite difference scheme. The following year, Staniforth and Mitchell
(1978) generalized their scheme to a non-uniform grid, with uniform high resolution only over the "area of
interest” (see Fig. 3), and demonstrated that this gave an efficient configuration for short-range numerical

weather prediction.

The first use of finite elements for vertical discretization was due to Staniforth and Daley (1977), who
‘developed a fully Galerkin three-dimensional hemispheric model by coupling linear finite elements in the
vertical with a spectral discretization in the horizontal, with encouraging results. Later, Staniforth and Daley
(1979) produced the first model which used linear finite elements in all three dimensions, coupling the
vertical discretization of Staniforth and Daley (1977) with the horizontal discretization of Staniforth and
Mitchell (1977, 1978) on a polar stereographic projection with non-uniform resolution. They concluded that

for short-range forecasts their model was competitive with a hemispheric spectral model.

Béland and Beaudoin (1985) extended the ﬁiﬁte—element/spectral model of Staniforth and Daley (1977) to
a global domain, and modified the vertical discretization to eliminate some noise problems. Staniforth and
Temperton (1986) adapted the shallow-water model of Staniforth and Mitchell (1978) to use a semi-
Lagrangian treament of advection, demonstrating that this technique could be coupled with a finite element

discretization.

Finite-clement discretizations in the vertical were also tested in the ECMWF global spectral model (Burridge
et al., 1986; Steppeler, 1987a). Although the results were in many ways encouraging, noise problems in

the vertical prevented operational implementation.
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Figure 3. Variable-resolution mesh for a finite-element regional model.
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Two models incorporating finite element discretization schemes are currently operaﬁbnal in Canada.
Tanguay et al. (1989) adapted the model of Staniforth and Daley (1979), based on three-dimensional linear
finite elements on a polar stereographic projection, to use a semi-Lagrangian treatment of advection; this
model is used for short-range forecasts. Data assimilation and medium-range forecasts are provided by a
global spectral model with finite elements in the vertical and a semi-Lagrangian integration scheme, as
described by Ritchie (1991).

A recent Canadian development is the concept of "pseudo-staggeﬁng", in which the error is orthogonalized
to a set of test functions which are constant over grid cells. In the shallow-water equations, this permits
a return to the w—-v formulation (rather than vorticity/divergence), without the usual problems of energy
propagating in the wrong direction for small horizontal scales. Semi-Lagrangian advection schemes and
variable resolution are easily incorporated. The technique is demonstrated f(;r Caﬁesiml geometry
(stereographic projection) by Cété, Gravel and Staniforth (1990), and for spherical geometry (global model)
by C6té and Staniforth (1990). | | | o -

6.  SUMMARY D o

In this brief survey, we have seen that finite-element methods are a viable alternative to finite-difference
schemes, and that linear finite elements (on rectangles or "bricks" for 2- or 3-dimensional problems) have
many advantages. SRR

In the future, finite-clement discretizations in the horizontal may seriously challenge the spectral technique
for very high-resolution global models, when (and if) the computational work in the spectral method
becomes overwhelmed by the contribution of the north-south Legendre transforms. " '
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