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Summary. The general method of adjoint equations, which allow an economical numerical
determination of the gradient of one output parameter of a numerical model with respect to all input
parameters, is presented. A number of meteorological applications of the method are discussed.

1. INTRODUCTION

A numerical model of the atmospheric circulation, like any numerical algorithm, can be
formally described as a process which, starting from the values asssigned to a number of input
parameters, computes the corresponding values taken by a number of output parameters. In
the case of an atmospheric model, the input parameters are the parameters which define the
geometrical and physical conditions of the integration, the spatial and temporal discretization,
the initial state from which the model is to be integrated, the lateral boundary conditions whose
specification may be required in the course of the temporal integration and, more generally, all
parameters whose numerical values must be specified before the integration of the model can
be started. What the output parameters exactly are is somewhat conventional, but they
basically consist of the history of the flow produced by the integration of the model, together
with the various "diagnostic" quantities which one may be led to compute for a given
integration. For the most powerful present numerical models of the atmospheric circulation,
such as those which are used for operational forecasting in large meteorological centres, the
number of input parameters is typically 106 - 107. As for the number of output parameters, if
one chooses to consider as output the sequence of model states produced by the integration of
a model over a period of 5 to 10 days, typical of present operational numerical weather
forecasting, one obtains values of up to 10 - 1010, '

In this general context, many problems that one may be led to consider can be described, in
one form or another, as problems of sensitivity of output parameters with respect to input
parameters. Such problems can arise in many different types of situations, such as for instance
the following.

a) Situations in which one actually wants to determine the physical response of the
atmospheric system to variations in one or several of the input parameters. A typical example
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is encountered in the study of the climatic greenhouse effect, in which one will want to
determine the impact, on the various parameters which define the "climate", of the increase of
the atmospheric content in various gases.

b) Situations in which one wants to determine the uncertainty on the output parameters
resulting from the uncertainty on the input parameters. A typical example is encountered in
numerical weather forecasting, where one major problem is at present to determine the
uncertainty in the forecast resulting from the uncertainty in the initial conditions.

¢) Situations in which one wants to determine what, in the input parameters of the model, was
at the origin of some a posteriori observed feature in the output parameters. A typical example
is the following : a numerical weather forecast has been erroneous in some respect, for
instance by failing to predict the rapid deepening of a depression, and one wants to determine
what, in the initial state of the forecast, or in the various physical parameters of the model, was
the "cause" of that error.

d) Situations in which one wants to determine the values of the input parameters for which the
output parameters satisfy a prescribed condition. This leads to solving so-called optimization
problems, intended at determining the values of the input parameters which "optimize" some
property of the output parameters. A typical example is variational assimilation of
observations, in which one wants to determine the state of the model, at the initial time of the
assimilation period, such that the corresponding solution is close, in some appropriate sense,
to the observations available over the assimilation period.

In order to solve such sensitivity problems, one might think of using standard analytical
methods, based on classical diffferential calculus. However, it is now well established that the
atmospheric flow, as well as the numerical models used for simulating it, are "chaotic"
systems, for which classical analytical methods are of very limited use. If a numerical model is
available, one can, at least in principle, solve sensitivity problems of the different types
mentioned above by empirical modification of the input parameters. This is what is done, for
instance, when studying the greenhouse problem with numerical models of the atmospheric
circulation. A typical procedure is the following : a model is integrated with different values
of, say, the atmospheric content of carbon dioxide, and the "climates" produced by the
different integrations are compared. Similarly, problems such as the examples mentioned
under headings ¢) and d) above could in principle be solved by empirically modifying the
values of the input parameters in order to determine those values which would lead to an
accurate forecast of the deepening depression (case c) or to a close fit of the model to the
observations (case d). It is clear however that, in these two cases, the numerical cost of this
approach would in practice be totally prohibitive.
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In order to get some more insight into the problem, let us denote U the vector made up of the
input parameters. The components of U, in number n, will be denoted u; (i = 1, ..., n).
Similarly, let us denote V, with components v; (j = 1..., m), the vector of output parameters
(values quoted above are n = 100 - 107 and m = 109 - 1010). The output vector V is a uniquely

defined function of the input vector, which we will denote
V=G) (1.1)

For given U, the local sensitivities of the output parameters with respect to the input
parameters are then given by the jacobian matrix G'(U), made up of the partial derivatives
ovj/du; at point U. One integration of the model, started from the unperturbed input vector U,
followed by a second integration, started from an input vector in which one component, say
u1, has been perturbed by an amount Auy, gives, for all j's, the sensitivities dvy/du; under the
approximate form of finite-difference ratios Avj/Au;. One column of the jacobian matrix can
therefore be obtained at the cost of two integrations of the model. More generally, p columns
of the jacobian can be obtained at the cost of p + 1 integrations of the model (one unperturbed
integration, followed by p appropriately perturbed integrations). This "direct perturbation"
method for determining sensitivities is practically useful as long as the number of input
parameters with respect to which one is interested in determining sensitivities is small (in
present meteorological practice, "small" would mean a few units, or at the very most a few
tens of units). This approach is for instance perfectly appropriate for studying the climatic
impact of the increase of the atmospheric carbon dioxide content.

Now, in many cases, such as for instance in the examples c) and d) above, one will not be
interested in the sensitivities of a large number of output parameters with respect to one, or a
small number, of the input parameters, but rather in the sensitivities of one, or a small
number, of the output parameters with respect to a large number of input parameters. For
instance, in example d), one will be interested, in order to determine the initial state which
produces the best fit of the model to the observations, in knowing the sensitivities of one
output parameter (the fit of the model to the observations) with respect to all parameters
defining the initial state of the model. It is in this kind of situations that the adjoint method. to
which these notes are devoted, is particularly useful. Just as one integration of the model,
followed by one perturbed integration, produces the partial derivatives of all output parameters
with respect to one input parameter, one integration of the model, followed by one integration
of the so-called adjoint equations of the model (whose cost is of the same order as one
integration of the model), produces the partial derivatives of one output parameter with respect
to all input parameters. These partial derivatives make up the gradient vector of the output
parameter under consideration with respect to the input parameters. The direct perturbation
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method produces columns of the jacobian, while the adjoint method produces rows of the
jacobian, which clearly shows the "transpose”, or "adjoint", aspect of the method. The adjoint
method provides a very efficient way for solving many sensitivity or optimization problems. It
has stimulated, in the last six years or so, a great interest in numerical modeling of the
atmospheric (and also oceanic) circulation, and is the object of many works of various kinds.

The general principle of the adjoint method is presented in detail in Section 2, in both cases of
a finite algebraic process, which is in principle sufficient for any numerical application
(subsection 2.1), and of differential equations, which leads to instructive insights (subsection
2.3). A number of meteorological applications of the adjoint method, especially to variational
assimilation of observations, are presented and briefly discussed in Section 3.

2. THE PRINCIPLE OF THE ADJOINT METHOD

Many different approaches can be followed for presenting the principle of the adjoint method
and, depending on one's background and experience, one may prefer one or another of these
approaches. We will follow here the approach already followed in Talagrand (1989), which
seems to require least effort for readers who, like specialists in numerical modeling of the
atmosphere, have much experience with large dimension numerical models, but have
otherwise little or no experience in fields like optimal control or automatic differentiation, in
which the adjoint method has so far been mostly used.

2.1  The finite-dimensional algebraic case
Using the same notations as in the Introduction, let us consider a perturbation dU, with

components duj (i = 1, ..., n), on the input vector U. To first-order with respect to 6U, the
corresponding perturbation 8v; on the output parameter vj will be equal to

n

ov:
dvj = 2——‘—,’- du; j=1,...,m

U (2.1
or, in matrix notation
8V = G'8U 2.2)

where 8V is the output perturbation vector and G' is, as before, the jacobian of (1.1), taken at
point U . Eq. (2.2) will be called the linear tangent equation to eq. (1.1), taken at point U.

Let now V — J(V) be a scalar-valued function of the output vector V. The partial derivative
of J with respect to the input parameter u;j is given by the chain rule
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(2.3)

which shows that the gradient vector of the partial derivatives of ] with respect to the input
parameters, which we will denote Vy;7, is linked to the gradient vector Vy/J of the partial
derivatives of ] with respect to the output parameters by the jacobian matrix G'. But while the
summation is performed in eq. (2.1) on the input index i, it is performed in eq. (2.3) on the
output index j. The matrix form of eq. (2.3) accordingly reads

Vi] = G* Vy] @4)
where G'* denotes the transpose of the jacobian G'.

Comparison between eqs (2.2) and (2.4) is instructive. The direct jacobian G' transforms a
perturbation on the input into the first-order corresponding perturbation on the output, while
the transpose jacobian G'* transforms the gradienf of a function with respect to the output
into the gradient of the same function with respect to the input. It is worth noting that eq.
(2.4) is valid for any function 7J. The principle of the adjoint method (at this stage, we call it
"adjoint” in anticipation to what will be presented in subsection 2.2) is to compute the
gradient V], not through direct explicit perturbation of the input parameters, but through
use of eq. (2.4). If J is a "simple” enough function of the output vector V (and ] will always
be a simple function of some appropriately chosen "output vector", be that J itself), V] can
be determined analytically and introduced as input of the computations represented by (2.4).
The important point is that these computations can be performed without having to explicitly
determine the complete matrix G'™. This fact, which may not seem a priori obvious, becomes
clear if one realizes that the cost of one adjoint computation (2.4) must be the same as the cost
of one tangent linear computation (2.2). The latter does not require the explicit determination
of the jacobian G', but can be performed by formally differentiating each step of the
computations represented by the basic equation (1.1), and then numerically implementing the
corresponding linear computations. To illustrate how the adjoint computations can be
implemented in a similar stepwise fashion, let us assume that the basic model (1.1) involves
at some stage a computation of the form

T= —\/ (X2 + y2) (25)

The corresponding linear perturbation computation will read
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As for the corresponding adjoint computation, let us assume that we know the partial
derivative d]/dr of J with respect to r (i.e. with respect to the output of the particular simple

process represented by eq. 2.5). The derivatives of J with respect to the inputs x and y are

given by the chain rule
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It is seen that the matrix which appears on the right-hand side of this expression is the
transpose of the matrix appearing on the right-hand side of (2.6).

The essence of the adjoint method is simply to systematically perform computations of the
form (2.7) for all the steps of the basic computations (1.1). Because of their very nature, the
adjoint computations, which proceed from the gradient of 7} with respect to the output vector V
to the gradient of J with respect to the input vector U, must be performed in reversed order of
the basic computations (1.1). In particular, if, as it is the case dynamical models of the
atmospheric circulation, the direct model involves some form of temporal integration into the
future, the corresponding adjoint model will involve some form of backward integration into
the past. More precisely, let us decompose the model computations G into a number of
successive steps, viz.,

G= GM() ..... G20G1 (28)

Each of these steps can for in instance be an elementary model timestep, which can itself be
decomposed into more elementary steps, down to the individual executable coding statements.
The chain rule shows that the jacobian G' will be the matrix product of the jacobians of the
successive steps, viz.,

An elementary result of matrix algebra is that the transpose of a product of matrices is the
product of the transposes of the factor matrices, taken in reversed order

G* = G1'™* G2'™*..... Gm'™ (2.9)
which again shows the reversed character of the adjoint computations. In particular, eq. (2.9)
suggests a systematic approach for developing the adjoint of a given code : successively
develop the adjoints of the various components of the basic code (for instance FORTRAN
subroutines), and then connect the elementary adjoints in reversed order.

Two additional properties of the adjoint method clearly appear on eqs (2.2,4,6, and 7).

a) The numerical cost of one adjoint computation (2.4) is the same as the cost of one linear
tangent computation (2.2). The equations governing fluid motions, on which numerical
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models of the atmospheric circulation are built, contain both linear and quadratic terms, and
can be symbolically written as

dX _ LX + N(X,X)

dt (2.10)

where LX represents the linear terms, and N(X,X) the quadratic terms. Differentiation,
analogous to (2.2), will lead to

d—gt}i = LoX + N(OX,X) + N(X, 8X)

While linear terms are unaltered by differentiation, each quadratic term gives rise to two
terms. In consequence, the cost of one adjoint computation will be comprised between once
and twice the cost of one basic computation (1.1). More generally, it can be shown (see, e.g.,
Morgenstern, 1984) that, for any numerical algorithm, the total operation count of the adjoint
computation can be reduced to at most 4 times the total operation count of the direct
computation, this ratio being reduced to 2 if one considers only multiplications and divisions.

b) The adjoint computation (2.7) requires the preliminary knowledge of the partial derivatives
or/ox = x/r and dr/dy = y/r. The same will be true whenever the basic computations will be
nonlinear. The jacobian G' and its transpose G'* will in such a case depend on the particular
value of the input vector for which one wants to determine the gradient Vy;]. This means that,
before the adjoint computation (2.4) can be implemented, a direct computation (1.1) must
have been performed and that all computed intermediary values (or at least all values used in
nonlinear computations) either must have been stored in memory in order to be available for
the adjoint computations, or will have to be recomputed in the course of the adjoint
computation. The corresponding storage requirements may of course be enormous, and that is
the price to be paid for the gain in computing time provided by the adjoint method.

2.2 The general notion of an adjoint operator

Rather than using the notion of a transpose matrix, it is much more convenient to use the
more general notion of an adjoint operator. Let us consider two (possibly infinite-
dimensional) linear spaces E and ¥, on which inner products, denoted < , >, have been
defined. Given a continuous linear operator L of E into ¥, there exists a unique continuous
linear operator L™ of ¥ into E such that, for any two vectors U and V belonging to E and F
respectively, the following equality between inner products holds
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<LU,V> = <U,L*V> (2.11)

L* is called the adjoint of L. If E and F have finite dimensions n and m respectively, and are
described by coordinates along orthogonal unitary vectors (U = (y;),i=1,...,n ; V= (v
j=1,...,m;L= (lij), i=1,..,n,j=1,..,m), so thatinner products take the familiar
form <U,U> = Zi u; u'j, eq. (2.11) reduces to a change in the order of summation indices

Z[Zlijui]vj = Zui [Zlij"j]

which shows that the matrix representing L is the transpose of the matrix representing L.

In inner product notation, the first-order variation &) resulting from a perturbation 8V of V

can be written
8] = <VyJ,8V> @.12)

We can note that this relationship, which generalizes the finite-dimension relationship
5] = Zj(a] /avj) dv; , characterizes the gradient, in the sense that, if the first-order variation
9] of a scalar function J of some vector V can be written as the inner product of 8V with
some vector, then that vector is necessarily equal to Vv/].

With this more general system of notations, the relationship (2.4) between gradients can be
established as follows. Through uses of eq. (2.2) and of the "adjointness" relationship (2.11),
(2.12) becomes

8 = <VyJ ,G'dU> = <G™ Vy],8U > (2.13)

The last equality, which expresses &J as the inner product of dU by the vector G'* Vv],
shows that the gradient Vy;] is equal to the latter vector, which is what is stated by eq. (2.4).

Use of equations such that (2.11-12) has two distinct advantages : it avoids cumbersome
manipulation of indices, and covers the case of infinite-dimensional function spaces, as will
be shown in the following subsection. In addition, the general definition (2.11) of an adjoint
operator is sometimes very useful, even at the coding level, for developing the adjoint of a
numerical model.
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2.3 The case of differential equations

In subsection 2.1, we have presented the adjoint method in the case of a process consisting of
a finite number of algebraic operations. This of course is in principle sufficient for any
numerical application. Now, numerical models of the atmospheric circulation are based on
physical principles which can be expressed as partial differential equations verified by fields
defined on a space-time continuum, and reference is often made to these partial differential
equations, even in the context of numerical simulation of the atmospheric flow. The principle
of the adjoint method extends to differential equations, either ordinary or partial, as we will
now illustrate on a simple example. The nonlinear advective diffusive equation

2
du 0,2 du
— + =—(L)-v— =0
ot  ox 2 ox2 2.14)

where t is time and x is a one-dimensional spatial coordinate, describes the variations of a one-
dimensional velocity field u(x,t) under the action of a viscosity force defined by the positive
coefficient v. Because of the irreversible character of the viscosity term, integration of (2.14)
leads to a well-posed problem only for integration into the future. The flow will be assumed to
be defined over the rectangular space-time domain D = {x,t;x1<x<xp, t1St<tp } with
boundary I'. Appropriate initial and boundary conditions for the integration of (2.14) are then
values of u at the initial time t; for all x; < x < xo, and at later times t; <t <t along both
lateral boundaries x = x; and x= x,. We will call input boundary , and denote I';, that part of
T consisting of the three segments (t = t;, X] SX<Xp), (] St<ty, X =Xx1), (i1 St x =
Xp). Under these conditions, integration of eq. (2.14) is a process whose input U is the field u
along I';, while its output V is the field u over the entire domain D. V is a uniquely defined,
smoothly varying, function of U, of type (1.1).

In order to fix ideas, we now assume that "observations" of u(x,t), denoted G(x,t), are
available over the whole domain D and that we want to solve an assimilation type problem,
i.e. to determine a solution of (2.14) which is close to the observations. To this end, we define
a scalar function 7, viz.,

J = %f (u- 0% dx dt

D ’ (2.15)

which, for any field u defined over D, and in particular for any solution of (2.14), measures
the "distance" or "misfit", between that solution and the observations. We then want to
determine the input U to (2.14) such that the corresponding output minimize J. To this end,
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we must be able to relate the variations of U to the corresponding variations of J. Let us
assume that we have been able to find a field W = w(x,t), defined along the input boundary I,
such that for any variation 6U = du(x,t), (x,t) € I';, of the input, the corresponding first-order
variation of 7] reads

39 =jw5u ds '
¥ (2.16)

where the integral extends over the input boundary. The integral is the inner product, in the L2
sense, of the field W by the input perturbation 8U. W is the gradient, in the L2 sense, of the
scalar function J with respect to the input U. This gradient explicitly links the variations of U
to the corresponding variations of J. For example, a perturbation 8U which is everywhere of
the same sign as w will result in an increase of ], while a perturbation which is everywhere of
the opposite sign will result in a decrease in J. And, for a given amplitude (in the L2 sense) of
dU, the variation of J will be largest if 6u is proportional to w, i. e. if it "directed" along the
gradient W.

We now proceed to demonstrate how, for a given solution u of (2.14), the adjoint method can
be used to determine the gradient of ] with respect to U. Let us consider a perturbation 6U of
the input. The corresponding first-order perturbation 8V = du(x,t), (x,t) € D, on the output
will verify the tangent linear equation to (2.14), viz.,.

2

%Sti+éa—(u8u)—va ou =0
X ox2 2.17)

while the corresponding first-order variation of ] will be equal to

8] =I(u-m8udxdt
b (2.18)

We now consider a field d'u(x,t) defined over the entire domain D, but not otherwise specified
at this stage. We multiply eq. (2.17) by 8'u, integrate over D, and subtract the result from the
right-hand side of eq. (2.18). This leads to the following expression for &)

2

odu , 0 d" du_
3] = [(u-’lDSu-[——at— + a—X(uSu) -V ) 1 8'u] dxdt

D (2.19)
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Our purpose is to transform this expression into an expression of the form (2.16). This may a
priori seem to be doubly difficult because a) the integral in (2.19) is taken over the whole
domain D, while the integral in (2.16) is taken only over the input boundary, and because b)
even if the perturbation du effectively appears as a factor of a product in the first term of the
integrand in (2.19), it appears only through its derivatives in the second term. Taking care first
of this second difficulty, we observe that the derivative symbols in front of du can be
eliminated and transferred to &'u by performing appropriate integrations by parts. One
integration by parts will have to be performed for eliminating first-order derivative symbols,
and two integrations for eliminating the second-order derivative symbol of the viscosity term.
Performing these integrations by parts and rearranging terms lead to

a8u 9du 9 du
[ +u +V

9= St Vg

D

+u-1] 8udxdt

+j [ 8'u(x,t)) du(x,t;) - d'ux,tp) du(x,ty)] dx

X1 —— I e e

1

+j [u(x1,t) 8'u(x1,t) du(x,t) - ulxa,t) 8'u(xa,t) dulxy,t)] dt

1

v [ 2R G0 Bute) - L () Buleg.] i
t ox ox

1

_v f 9 (1.0 8u(xe,0) - 2% (xot) Sulxa,0)] dt
ox ox
u . (2.20)

where the last four integrals are boundary terms along I" which have appeared because of the
integrations by parts. Eq. (2.20) may seem to be still much more complicated than eq. (2.19),
thereby raising doubts in the reader's mind as to the wisdom of the whole undertaking, but
most terms in (2.20) will presently be eliminated by imposing appropriate conditions on the
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field 8'u, which is still at this stage totally unspecified. We can first observe that the first term
on the rhs of (2.20), which is an integral over D, becomes zero if &'u is chosen such as to

verify the following inhomogeneous linear partial differential equation

a5u 9su  9°8u
+u +V +u-u=0
ot ox ox2

(2.21)

This almost entirely takes care of the first of the two difficulties mentioned above, since the
expression for 8 now reduces to boundary integrals. If we want to obtain for 67 an
expression of the form (2.16), we see that we must eliminate from the rhs of (2.20) term
number 1, which is an integral over that part of the boundary I" which does not belong to I,
and term number 2, which contains a derivative in du. These two terms can be eliminated by
imposing to 8'u to be zero at the final time t, and along the two lateral boundaries x = x; and x
= X9. We will call output boundary, and denote I'j, that part of I consisting of the three
segments (t = ty, X; <X <Xx9), (t St=<ty, X = X1), (1] St=<ty, X = xp). The condition
imposed on &'u therefore reads

d'u=0 along T, (2.22)

This condition happens to also eliminate term number 3 in eq. (2.20), and there remains

) =j o'u(x,tq) du(x,t;) dx

X1

ox
1 (2.23)

7]
+v f 22 51,0 Butxs,) - 22 ) Bz, 0]
t
which is of the form (2.16), and defines the gradient of ] with respect to the input U. This
gradient is equal to 8'u(x,t) at the initial time t;, and to v d'u/0x (resp. -v d'u/dx) along the
boundary x = xj (resp. x = X5), where 8'u is the solution of (2.21) verifying the "final" and

lateral boundary conditions expressed by (2.22). Eq. (2.21) is the adjoint equation of (2.14)
for the particular solution u. Integrating it amounts to performing a computation of form (2.4),
the gradient Vy] being here the term u - i, which originates in the differentiation of the
integrand in (2.15). Changing J to another expression would modify only that term, without
other modification to either (2.21) or (2.22). The "adjoint" character of the derivations
performed above must be clear : the transformation from (2.19) to (2.23) is essentially
equivalent to the transformation from the second to the third members of eq. (2.13). In the
case of eqs (2.19-23), this transformation is essentially performed through integrations by
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parts, which carry derivatives from one factor of the inner product to the other. This is
absolutely general, and adjoints of differential equations are always obtained by performing
integrations by parts.

It has been mentioned that, because of the presence of the viscosity term, eq. (2.14) leads to a
well-posed problem only for integration into the future. In the adjoint equation (2.21), the
viscosity term has changed sign, so that eq. (2.21) leads to a well-posed problem only for
integration into the past (mathematically, this is due to the fact that the time-derivative in eq.
(2.14) is first-order, while the space derivative in the viscosity term is second-order, leading to
one more change of sign for the viscosity term in the integrations by parts). There can
therefore be no difficulty in the adjoint integration because of the presence of an irreversible
term in the basic equation (2.14). The fact that a dissipative term, like the viscosity term in
(2.14), must remain dissipative in the adjoint integration can be easily understood. In a purely
dissipative integration, any solution will tend to an asymptotic state of rest, and the final state
of the integration will become less and less sensitive to the initial state as the length of the
integration period increases, with the consequence that the gradient of a given output with
respect to the initial state will tend to zero. Conversely, the result of an adjoint integration,
which is the gradient of the output with respect to the initial state, must tend to zero as the
length of the adjoint integration period increases, which means that there must be some form
of dissipation in the adjoint integration. More generally, whenever a basic equation leads to a
well-posed problem only for integration into the future, the corresponding adjoint equation
will lead to a well-posed problem only for integration into the past.

In any practical situation, one would have at one's disposal a discretized model of the basic
equation (2.14). In order to obtain the discretized adjoint model, one could start from the non-
discretized adjoint equation (2.21), and discretize it. However, it may not be obvious which
discretization of (2.21) is the exact adjoint of the original discretization of (2.14). One could
also perform on the direct discretized model the same manipulations which have been
performed above on (2.14) and (2.17). This has been done in Talagrand (1989) for a
particular discretization of (2.14) (and for periodic boundary conditions in the spatial
coordinate x). But experience strongly suggests that the most efficient way for developing the
discretized adjoint is to actually start from the computer code, and to write the adjoint
instruction per instruction, along the lines suggested by eqs (2.7-9). This is a lengthy and
tedious, but very straightforward task. All this is not to mean that determining the exact
expression of the non-discretized adjoint equation is without practical interest. It helps in
understanding the significance of the adjoint method, and it can be very useful for identifying
and establishing properties of the adjoint equation, as has just been shown for instance on the
particular question of the effect of irreversible terms. |
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3. METEOROLOGICAL APPLICATIONS

3.1  Variational assimilation

The use of the adjoint method in the general context of numerical modeling of the atmospheric
(and oceanic) circulation was first advocated by the Soviet mathematician Marchuk and his
collaborators (see, e.g., Marchuk, 1974, and, for a more recent reference, Marchuk and
Skiba, 1990). Later, Cacuci and collaborators (see, e.g., Hall et al.,1982, or Cacuci and Hall,
1984) stressed the potential utility of the adjoint method for direct sensitivity studies. It is
however to the problem of yariational assimilation of observations that the adjoint method has
been mostly used so far in meteorology. The principle of variational assimilation, which has
been described in detail in Talagrand (1989), has been illustrated in subsection 2.3 : one wants
to minimize a scalar function which measures the "distance" between a model solution and the
available observations. This function will typically be of the form (2.15), i.e. will be an
integral of squared model-minus-observations differences. One particular choice, consistent
with the theory of least-square linear statistical estimation, is to weight the squared differences
with coefficients which are inversely proportional to the statistical variances of the
corresponding observational errors. In order to minimize the "distance-function" (often called
a "cost-function"), an iterative minimization algorithm is implemented on the model input,
usually limited in this particular type of application to the initial (and possibly lateral boundary)
conditions whose specification uniquely defines a model solution. The minimization algorithm
proceeds by successive approximations, each iteration consisting in the computation of the
local gradient of the distance-function with respect to the input, followed by a descent step
leading to a better approximation of the minimizing input. Classical minimization algorithms
are the conjugate gradient or quasi-Newton algorithms (see, €. g., Gill et al., 1982, or Navon
and Legler, 1987). In variational assimilation, the adjoint model is only used as a (very
efficient) numerical tool for numerically computing the gradient of the distance-function with
respect to the model input. In principle, this gradient could also be determined by other
methods, for instance by direct perturbation, as has indeed been done by Hgffiman (1986). But
the corresponding numerical cost, as already mentioned, would be totally prohibitive in any
practical situation.

Variational assimilation, with use of the adjoint of the assimilating model, was first advocated
by Penenko and Obraztsov (1976), who demonstrated the method on a small dimension linear
model. Later, a number of authors applied the same approach to both meteorological (see,
e.g., Le Dimet, 1980, Lewis and Derber, 1985, Le Dimet and Talagrand, 1986, Talagrand and
Courtier, 1987, Courtier and Talagrand, 1987, 1990, Lorenc, 1988, and references in these
various papers) and oceanographical models (see, €. g., Schréter and Wunsch, 1986,
Wunsch, 1987, Thacker, 1988, Thacker and Long, 1988). The most recent meteorological
results have been obtained with medium resolution primitive equation models, for which the
dimension of the input vector with respect to which the minimization is performed reaches
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values of up to 10°. See, e.g., Courtier et al. (1990), Navon et al. (1990), Chao and Chang
(1990), Thépaut and Courtier (1991). The models used so far contained no physics, or only
very simplified physics.

In a typical application, the distance-function is estimated over a 24-hour period, and results
obtained so far show first that the adjoint method works successfully in the sense that it is
capable of determining the gradient of the distance function with respect to the model initial
conditions. Repeated tests have shown that the gradient is determined to computer accuracy. In
addition, the minimization process is capable of effectively determining the model solution
which minimizes the distance-function. With standard minimization algorithms, such as quasi-
Newton algorithms, ten to fifteen iterations are typically necessary for reaching the minimum.
In addition, in all experiments performed so far, the minimum appears to be unique, and no
problem has been encountered which could be due to the existence of sccondary minima. As
for the physical properties of the minimizing solution, it appears that, if the function to be
minimized is only a measure of the misfit to the observations, as would for instance be the
function defined by eq. (2.15), the minimizing solution is contaminated by irrealistic gravity
wave noise. The minimization solution becomes physically acceptable only if an appropriate
penalty term, measuring the deviation of the model solution from geostrophic balance, is
included in the distance function. This point is discussed in detail in Courtier and Talagrand
(1990). Finally, the quality of the forecasts produced from the results of variational
assimilation seems to be as good as one can expect from the models used so far. As far as the
meteorological quality of the results is concerned, variational assimilation seems so far to be
fully successful.

It goes beyond the scope of these notes to discuss in detail the respective qualities and defects
of variational assimilation and of the alternative approach to assimilation of observations,
namely sequential assimilation, which is used in present operational numerical weather
forecasting. Indeed, a detailed and accurate comparison between those two approaches, in
terms of both numerical cost and intrinsic quality of the results, remains to be made. As
concerns a possible operational implementation of variational assimilation, the main difficulty
seems to be its numerical cost. Even though the use of the adjoint method allows to implement
variational assimilation on models on which it would be totally unthinkable to implement it
with other methods, ten to fifteen iterations of the minimization process (remember one
iteration consists of one forward model integration followed by one adjoint integration) go
beyond what could be performed in present operational practice. Progress in numerical
methods and computing power may of course drastically change the situation in the future.
Another possible difficulty may be due to the presence of "threshold” processes in models. :

such processes may be responsible for the existence of secondary minima in the distance-
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function (see, €. g., Douady and Talagrand, 1990). This is a problem which still has to be
studied in detail. |

A problem which in many respects is similar to the problem of assimilation of observations is
the problem of inversion of satellite radiances (indeed, it can be considered as being one aspect
of assimilation of observations). A variational approach to that problem, with explicit use of
the adjoint of the radiative transfer equation, has been studied by Eyre (1989a, b) and Thépaut
and Moll (1990). The results obtained by these authors clearly show the efficiency of the
variational approach.

3.2 Direct sensitivity studies

If variational assimilation has so far been the meteorological application of the adjoint method
which has stimulated most interest, it nevertheless is costly in that it requires the
implementation of a large dimension iterative minimization process. A much simpler class of
possible applications is provided by direct sensitivity studies, in which one simply wants to
determine, for its own sake, the sensitivity of one output parameter of the model with respect
to a number of input parameters (see for instance example c¢) in the Introduction). A very
convincing example was given early by Courtier (1987), who discovered the detrimental
influence of a diurnal thermal wave on an initialization process from the spatial structure of the
gradient of an appropriately defined diagnostic quantity with respect to the geopotential field
before the initialization. Other sensitivity studies have been performed recently by Marchuk
and Skiba, (1990) and Errico and Vukicevic (1991). Adjoint equations have also been used for
studying various aspects of the general problem of the prediction of forecast error by Urban
(1985), Lacarra and Talagrand (1988) and Veyre (1990).
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