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Summary. This pa,per dlscusses the extension of the dJss1pa.t1ve
advection schemes, often referred to in meteorologmal literature as
Crowley-type schemes, on advection equations with arbitrary forcing
and/or source terms included. Since such equations constitute a prototype .
of evolution equations for fluids, the considerations herein are relevant to
a variety of atmospheric applications. The thesis of this paper is that no

~ matter how accurate the advection scheme employed, the entire evolution
equation is approximated to, at most, O(At), which is a consequence
of disregarding forcing terms in the denva.tmn of Crowley-type schemes.
The consequences of this truncation error may be quite severe depending
upon the particular problem at hand. The remedy discussed is simple
and easy to implement in any numerical model using forward-in-time
differencing. Theoretical considerations are illustrated with idealized
tests and simple examples of flows of densﬂ;y stra.t1ﬁed ﬂmd past two-
dimensional mountains. - ’

1. INTRODUCTION

Prognostic equations for fluids may be written in a compact form

8¢ +Vo(v¢ﬁ)—Rﬂ(¢) p=1,..N (1)

where ¥ = (3!, ,1/JN ) is a vector of N variables describing the state. of the fluid, v
is the velocity vector, and RP combines all forcings and/or sources. Although in many"
applications v is identical with, say; (¥1,%2,%3), in general, v is a function of the
fluid variables. Finite-difference discretization of (1) fall into two conceptually distinct -
categories. In the first category, all terms in (1) are independently approximated. to a
desired order of accuracy; this leads, for instance, to a class of centered-in-time-and-
space algorithﬁns. The elementary example of such a discretization is a popular, second-
order-accurate leap-frog scheme, which for the evolutlon ofa ﬂmd va.nable ¢p #(z,1)

in one spatial dimension takes the s1mple form

4o+l _ gn—1 n o (ug)®

1 The National Center for Atmospheric Research is sponsored by the Na.tmna.l Sc1ence‘
Foundation
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where n and 7 have their usual meaning of a temporal and spatial position on a discrete,

regular grid with the tempdra.l and spatial increments At and AX), respectively.

In the second category of discretization, the temporal derivativesin (1) are approximated
with forward-in-time differences; and the truncation errors proportional to temporal
derivatives of 1® are appropriately compensated by exploiting information contained
in system (1). This approach leads to a class of Lax-Wendroff approximations [see
Section 12.7 in Richtmyer and Morton (1967), and Section 5.E.5 in Roache (1972) for
discussions]. The elementary example of such an approximation is the second-order-
accurate transport algorithm, often referreﬂ to as the Crowley (1968), or Leith (1965),
advection scheme. For a constant one-dimensional flow U and vanishing forcings, the

Lax-Wendroff algorithm may be written as

'¢?+1 -7 | ?+1 - ¢?—1 1.9 ¢?+1 —2¢7 + ‘l’?-l —
ar TV 7eax VAT ax =0 (3)
wherein the last term on the Lh.s of (3) compensates the first-order truncation error
2
%At%# inherent in the forward-in-time discretization of (1). As the complete Lax-
Wendroff algorithms for fluids were designed to deal with the conservation laws

%%+Vo [F(¥)] =0, | (4)

they are not particularly attractive for atmospheric applications where Coriolis
forces, phase-change processes, coordinate transformations, and various microphysical
or chemical sinks and sources cause departures of governing equations from the
conservation-law form. This and the considerable complexity of the Lax-Wendroff

schemes?

are perhaps responsible for their marginal popularity in the atmospheric
community. Nonetheless, the leading philosophy of the Lax-Wendroff approach shines

through many approximations to atmospheric problems.

In the absence of forcings, system (1) reduces to a decoupled set of the advection
transport equations, which may be approximated separately using an advection

algorithm of desired properties. The literature on advection schemes is enormous (see

? See Houghton and Kasahara (1968) for an example of the Lax-Wendroff approximation
to shallow water equations.
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Rood, 1987, for a recent review). Among a variety of approaches, the forward-in-
time schemes (sometimes referred to for brevity as dissipative schemes) have a long
tradition in the meteorological literature. The elementary approximations of Leith
(1965), Crowley (1968), and Tremback et al. (1987), as well as more specialized
approaches of Smolarkiewicz (1983), Takacs (1985), and Bott (1989), may all be viewed
as derivatives of a general Lax-Wendroff concept regardless of their diverse means of
derivation.? Under certain circumstances all these algorithms may be reduced to either
the simple scheme in (3) or some slight modification of (3). The dissipative advection
schemes have important advantages: They offer arbitrary accuracy for uniform flows
(Tremback et al., 1987), do not contain computational modes, require less storege
than.mulﬁple-time-'level algorithms, and are easy to modify and code. In order to
implement such a.pproxlma.tmns for the evaluation of a general system (1), however,

several difficulties must be overcome.

The elementary dissipative advection schemes were customarily derived for uniform one-
dimensional-flows. Their extension to multidimensional problems is often resolved by
means of the alternate-direction (time-split) approach. However, in order to maintain
the second-order accuracy of tlxe time-split solufione one must ensure that the sCheme
employed in every alternation is fully second-order-accurate (Strang, 1968). This
requu‘ement is not necessarily satisfied by elementary advection schemes whose leading
O(At) truncation error depends on the partial (temporal and spatial) derivatives of
the advecting velocity (Crowley, 1968); Athyis deﬁeiency of the elementary schemes may
lead to weak instabilities in essentially inhomogeneous flows (Petschek and Libersky,
1975' Smolarkiewicz, 1982). In incompressible, steady flows, the second-order-accurate
dissipative approximations are a.cl:ueved by employing the philosophy of the Lax-
Wendroﬂ' approach directly to a » multidimensional advection problem (Dukow1cz and
Ramshaw, 1979; Smolarkiewicz, 1982, 1984; Gresho et al., 1984). These concepts may
be further extended onto compressible (Smolarkiewicz, 1984) and time—dependeht flow

fields (Smolarkiewicz, 1985; Smolarkiewicz and Clark, 1986).

Prowliding dissipative transport algorithms capable of approximating an arbitrary
advection problem to at least second-order accuracy, one might anticipate that adequate

approximation to the general system (1) easily follows. A common approach, which

3 See Bleck (1984a) for a discussion of various derivations of the Lax-Wendroff scheme.
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draws from the first category of a.pproxima.tions [recall the discussion following (1)], is
to apply a suitable dissipative advection scheme to the Lh.s of (1) and to approximate
the r.h.s of (1) to a desired order of accuracy. Unfortunately (as will be shown in
the following section), such an approximation is only O(At) accurate, which is a
consequence of disregarding forcing/source terms in the derivation of the dissipative
advection schemes. Thus, the second-order-accurate, forward-in-time integration of (1)
requires more effort than a direct application of a second-order-accurate dissipative

advection scheme.

The next section derives the explicit form of the first-order truncation error terms due
to the forward-in-time discretization of (1), and discusses their consequences and means
of compensation. Section 3 illustrates the theoretical considerations with idealized tests
and examples of applications to a problem of density stratified fluid flow past a two-

dimensional mountain.

2. SECOND-ORDER DISSIPATIVE DIFFERENCING OF EQ (1)

In order to design a second-order dissipative approximation to (1), it is convenient to

consider a single equation
9¢

Bt ‘+ Vo(vg)=R. : ' (5)

The temporal discretization of (5) is assumed as

n+l __ un _ :
¢ o~ ¢ +Vo (vn+1/2¢n) — Rn+1/2 . (6)

Although the discretization in (6) contains certain elements of time-centering, it
is essentially forward-in-time insofar as the advective transport of ¢ is concerned.*

Expanding (8) into the second-order Taylor sum about ¢t = nAt gives

Z¢ + At—f +Vo[(v+ At )¢] R+ Ateﬂ + O(Atz) ) (7

t ot? ot

4 Taking v and R at n + 1/2 time-level in (6) will lead to cancellation of the truncation
error terms that depend on temporal derivatives of the advecting velocity and forcing;
in applications, such a temporal staggering may be achieved by means of either
interpolation or extrapolation, dependmg upon the particular problem at hand (see
Section 3 for examples).
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which is the continuous equation implied by the discretization in (6), ie., ¢
approximated by (6) satisfies (7) rather than (5) (see W&rmmg and Hyett, 1974, for
discussion). Taking 3—(7) results in

a2¢ _ aR
2 o voZarvdh) = o, ®)
Since (7) implies
Y Vo) + R+ O, )

(8) may be rewritten as

8¢

OR
"EF y + O(At) . (10)

= Vo[~ gt v(voVe)+vh(Vov)~vE] + 5

Equation (10) evaluates _aait? by exploiting (7), or equivalently (9), which are viewed
- as continuous equations solved exactly by the algorithm in (6). Relationships similar
to (10) were sometimes derived in the literature for problems with vanishing forcings
by taking Ba_t(s) and reusing (5) instead of (9). Insofar as the second-order-accurate
schemes are concerned, both procedures are equivalent; a rigorous exploitation of (7)

instead of (5) becomes essential while designing higher—order-accura.te methods.

Implementation of (10) in (7), and regrouping the terms that do not cancel, leads finally
to

Zf+Vo(v¢) R—Vo[—;—Atv(voV¢)+%Atv¢(Vov)]+Vo(%Ath)+O(At2), (11)

wherein all O(At) errors due to the forward-in-time differencing in (6) are already
expressed by spatial derivatives. Consequently, an O(At?) scheme for (5) may be
achieved by subtracting from the r.h.s of (6) forward-in-time approximations (or
backward-in-time approximations, whichever is more convenient in a.n{app]ication) of

the remaining truncation error terms.

The forcmg-mdependent trunca,t1on error terms in (11), as well as their consequences

and means of compensation, are already familiar: In a simple one-dimensional case

of a uniform flow U with R = 0 in (5), the only remaining error term in (11)

is —4t UZ%:—:%; assuming centered-in-space discretization and subtracting this term
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from the r.h.s of (6) results in the classic Lax-Wendroff advection scheme (3). The
extensions on multidimensional incompressible flows (V o v = 0) were discussed in
Dukowicz and Ramshaw (1979), Smolarkiewicz (1982), and Gresho et al. (1984),°
whereas compensation of the errors ~ Vov has been addressed in Smolarkiewicz (1984).
The remaining, forcing-dependent, first-order error term %Atv o (vR), to the author’s
knowledge, has thus far eluded attention. Consequences of this error may be quite
serious. In order to acquire some insight, consider an incompressible ﬂow in (5) and
a fully second-order advection scheme for spatial discretization in (6). The continuous

“energy” equation implied by the discretization is then

2

a
B;ﬁ +voV¢® =2¢0R+ Atgv o VR + O(AL?) . (12)

The first-order error term on the r.h.s of (12) has the sense of a spurious source or sink
of #%; in any case, it may be destructive for the stability of computations (an excessive

sink can lead to negative “energy” and imaginary solutions).

The compensation of the %Atv o (vR) error in (11) may be achieved in many ways
depending upon the particular problem of interest and spatial discretization employed.
A simple .a.nd efficient manner is to subi‘:vra.ct_ from the r.h.s of (6) the donor cell
(alias upwind,A upstream) approximation to the error terni. The resulting second-order-

accurate dissipative algorithm for (5) can then be compactly written as

. At
$rHl = ¢p — ATTy(¢",a™+1/2) + RPVVPAL ATi( 5 R",a") (13)

where AZZ is an advective-flux-divergence operator from a selected (at least second-
order-accurate) dissipative advection scheme, AT is the same operator but from the
first-order-accurate donor cell scheme, @ is a vector of local Courant numbers, and
i denotes the position on a grid. The choice of the donor cell approximation for
compensation of the error term is not accidental; it follows a general guideline that
maintaining the dissipativeness of the entire approximations one order higher than that

of the approximation benefits computational stability (see Section 5.4 in Richtmyer and

5 Note this important aspect: even if a fully multidimensional advection scheme achieves
second-order accuracy, its alternate-direction (time-split) counterpart does not, since
V ov # 0 in alternations.
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Morton, 1967). Conversely, choosing a centered-in-space approximation to the error

term might destabilize the solution: Consider, for instance,

Rn+1/2 (Rn+1 + Rn) ’ ' | (14)

for approximation of the time-centered forcing term in (11), and note that the last two

terms of the resulting algorithm

- . i mpijan . AL At . At L. .
= 47— ATG(E, a0 + R+ SR - ARG EeT) (19)

combme 1nto the donor cell advectlon of —Q-R whlch is stable for appropriately
bounded @. Choosing mstead the centered—m— space appromma.tmn would result in an

unconditionally unstable Euler advectxon scheme

Equation (15) exposes another important aspect of the approxlmahon adopted.
Rewntmg (15) '

= o — ATL (9", @) + S RIT + (R - AT(BMe™) - (16)

and assuming an 'incomrpressi'blel flow in (5),° one can observé easilj that the last
expression on the r.h.s of (16) represents the product of & —f and the first-order-accurate
approximation to the forcing evaluated at the departure point of the trajectory arriving
at the grid point (i,n 4+ 1). Consequently, the last three terms on the r.h.s of (15)
combine into the second-order-accurate trapezoidal-rule integral of forces along a parcel
trajectory. Since the first two terms on the r.h.s of (15) approximate ¢ at the departure
point, the algorithm in (15) approximates with second-order accuracy the Eulerian

evolution equation (5) as well as its Lagrangian counterpart

dp
£ =k. (17)

& Although the arguments herein rely heavily on the incompressibility assumption, &
more elaborated discussion employing the mass continuity equation would lead to a
similar conclusion with ¢ and R replaced in (17), respectively, by ¢p~! and Rp~,

where p is a fluid density.
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3. COMPUTATIONAL EXAMPLES

3.1  Solid body rotation test with a linear source

In order to illustrate the theoretical considerations of the preceding section, we consider
first the traditional problem of a rotating cone; such a test has often been used to
document properties of advection schemes (see, for example, Smolarkiewicz, 1982, 1984).
For the sake of simplicity we assume R = -—%gb in (5). Such a source function may be
viewed as a prototype of a linear chemical reaction. The characteristic time scale of the
source is assumed to be 7 = 10~2T, where T is the revolution period.. The radius of the
cone’s base is equal to 15 grid intervals of the uniform mesh consisting of 101 x 101 grid
points; and the initial height of the cone is H exp(100), where H is the true height of
the cone after one revolution. The analytic solution after one revolution of the cone is
shown in Fig. 1a; the reference spikes in the upper right and lower left corners are equal
to H and 0.5H, respectively. -Figure 1b shows the corresponding numerical solution
(628 time steps with the maximum Courant number equal to unity) obtained with (13),
where the AZT operator employs the basic, second-order-accurate, multidimensional,
positive definite advection transport algorithm (MPDATA) of Smolarkiewicz (1984),
and R"*+1/2 is approximated with the trapezoidal (implicit) rule (14). Figure lc shows
a similar solution in which compensation of the source-dependent error term has been
disregarded. Comparing the two figures clearly shows that the error due to coupling
the advection with sources is noticeable — its neglect results in an underestimated

amplitude and a phase shift of the solution.

The simple example employed demonstrates that compensation of the forcing-dependent
truncation error improves accuracy of integrations. However, since in the current test
the rate of decay is about 0.85 pef time step, it is not clear whether observed accuracy
improvements are of any practical importance, and whether they are worth the effort.
In order to clarify this issue, we consider below a simple dynamic example that admits

nonlinear coupling of fluid variables.
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3.2 Density stratified, hydrostatic flow past an isolated mountain in isosteric coordinates

In the current example we consider an approximation to the system of equations
governing hydrostatic flow of an inviscid, incompressible, nonrotating, density stratified
fluid past a two-dimensional mountain in the isosteric coordinates (cf. Smith, 1989;

Bleck and Smith, 1990). The system (1) takes then a simple form

om o Op M
00p 9,6 0Op,
é—t"é;-i-—é; ua)—ﬂ , (18b)

where s = p~! is the specific-volume, vertical coordinate of the model, p is the pressure,
m= ugf is the horizontal momentum, and M = gh + sp is the Montgomery potential
with h and g denoting the actual height of a density surface and the acceleration of
gravity, respectively. The prognostic equations for momentum’a,nd mass continuity are

supplied with the diagnostic relationship of the hydrostatic balance of the fluid

oM

The upper boundary condition incorporates the free-surface assumption, (p =
const)s — o0o» whereas for the lower boundary a material surface is assumed. Note that
due to the specific choice of the vertical coordinate the resulting momentum equation
departs from the conservation-law form (4) éharacteristic of the Euler equations. Since
a goal of this section is to emphasize the importance of compensating the forcing-
dependenf truncation error term in (11), we shall discuss only briefly other physical and

numerical aspects of the computations performed.

There are several degrees of freedom for designing a second-order approximation to
a system consisting of (18) and (19), and many different discretizations may be
considered. Herein, we select one that is convenient for the problem at hand. In
the horizontal, all variables are defined at the same grid-point positions; in the s-
direction, the pressure is staggered with respect to all other variables. The temporal

discretization follows (13), where AZZ employs the nonlinear MPDATA scheme whose
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design, properties, performance, and various options were documented in a series of
publications (Smolarkiewicz, 1983, 1984; Smolarkiewicz and Clark, 1986; Margolin and
Smolarkiewicz, 1989; Smolarkiewicz and Grabowski, 1990). The general concept of
the algorithm is that of the dissipative advection schemes; however, compensation of
the leading truncation error terms is nonlinear. It is achieved through the iterative
application of the donor-cell scheme where the second and following iterations use pseudo
velocity fields, obtained from renormalization of the truncation errors of the donor-cell
schcme'inté the form of donor-cell fluxes. The MPDATA family of algorithms offers
a variety’ of 0ptioﬁs of different accuracy, computational efficiency, and complexity
levels. The version of MPDATA selected in the current example compensates the
entire, forcing-independent error term on the r.h.s of (11) and preserves the sigﬁs of
the transported variables. The sign-preservation property of the scheme is essential:
it prevents development of spurious negative pressure thicknesses of isosteric layers
(which could lead to “convective” instability) and bounds the total “energy” of the
scheme, necessary for the nonlinear stability of the system (For discussion, see the
accompanying paper in this volume). The MPDATA schemes assume flux form and
require the advective Courant numbers to be staggered-in-space with respect to a
transported variable. This spatial staggering is achieved by averaging the velocity
variable between the two adjacent grid points, whereas the temporal staggering,
assumed in (6) and (13), employs extrapolation of the velocities from n — 1 and
n temporal levels (see Smolarkiewicz and Clark, 1986, for discussion). In order to
prevent spurious accelerations due to pressure forces from zero-thickness layers (the
issue discussed in detail by Bleck, 1987, and Bleck and Smith, 1990) the horizontal
derivative of the Montgomery potential is approximated with the second-order-accurate
pressure-thickness-weighted average of the one-sided derivatives; in essence, such an
approximation follows that of Bleck and Smith (1990). In order to simulate an infinite
extent of the fluid, a gravity-wave absorber (Klemp and Lilly, 1978) is employed in the
upper portion of the model; and the Davies (1983) relaxation scheme is-incorporated at

the lateral boundaries of the computational domain.

The time-step advancement of the discrete equations proceeds in three stages. First, the
advective Courant numbers, and the transported variables, are defined using primary
variables u and p at appropriate temporal and spatial levels; and the advection of the

variables is solved using the MPDATA algorithm. Second, the new values of pressure
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are recovered from the updated pressure thicknesses, and the hydrostatic relationship
provides new values of the Montgomery potential (the lower boundary condition is
approximated to the second-order, using the updated values of surface pressure and
s-derivatives of the pressure at the first staggered s-level). Third, having available the
new values of the pressure thicknesses and Montgomery potentials, the forcing terms in
the momentum equation are incorporated using the arithmetic averages from the old
and new time levels; and the correction terms for the forcing-dependent truncation error
term are included using the old values of the appropriate fields. Finally, the updated
velocity field is recovered from the momentum variable. Such a desfgn ensures entirely
second-order approximations in the interior of the fluid. Except for the absorbing lateral
and upper boundary regions, the solver employs no numerical filters or other means of

explicit artificial viscosity.

The current experimental set-up assumes a uniform, undisturbed flow U = 20ms™?,

constant Brunt-Vaisilli frequency N = 2.094 - 10~2s~1, and the bell-shaped hill
(centered at the middle of the domain),

h(=z) _ H (1 + (%)2) - (20)

with a horizontal scale L = 12 -10® m and height H = 1146 m. The flow parameters,
characteristic of a downslope windstorm regime, were selected after Miller and Durran
(1991, Section 3b). The computational domain covers 22L and 3A\(= 2xU/N) in the
horizontal and the vertical, respectively. The regions adjacent to the lateral boundaries
of width =~ 1L, and the upper portion of the domain of depth ~ 1) are designated
for absorbing boundary schemes. The horizontal domain is resolved with 176 grid
intervals, whereas the vertical domain is resolved with 61 isosteric levels, initially spaced
at uniform 300 m intervals. The At = 3s time step of the computations is limited by the
propagation speed of the external mode. The solutions discussed below are after 4800

time steps which is equivalent, respectively, to 24 characteristic time-scales T'(= L/U).
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/L : ,
Flgure 2. Constant density surfaces for calculation with the compensatmn of the forcmg-
dependent error term; this solutmn essentmlly employs no ﬁlters or other means of

~explicit artificial v1scosﬂ:y : Ceoe

F1gure 3 Constant den51ty surfaces for caleulation without ‘the compensatmn of the
forcing-dependent error term, but with an explicit artificial viscosity added to the
momentum equation.
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Figure 2 shows the solution evaluated with the algorithm outlined in the preceding
paragraphs. This solution is acceptable in the sense that after short times (not
shown) it compares well with the relevant solutions discussed in the literature (cf.
Smolarkiewicz, 1991) and there are no indications of serious numerical problems in
a long-term integration. When the correction for the forcing-dependent truncation
error term in (9) is turned off, the solution becomes noisy and weakly unstable; as a
consequence, the model “blows” soon after ¢ > 8T'. This solution may be stabilized by
adding some weak dissipation to the r.h.s of the momentum equation. Figure 3 shows
such a solution with K = 0.02AX?/At (half of this value still gives a noisy solution).
Although the solution is stable and smooth, it does underestimate such characteristic
features of this flow regime as wave steepening and development of a neutrally-stratified
region separating the high-speed shooting flow at the surface from the flow aloft (cf.

Miller and Durran, 1991, for discussion).

In order to quantify the impact of the forcing-dependent error term in (11) on the
overall accuracy of integrations, we compare below numerical and analytic results
for a finite-amplitude flow regime, where departures from the small-amplitude linear
theory solution are significant, yet small enough not to emphasize the sensitivity of the
numerical solutions to the imposed boundary schemes and initialization procedure. The
current experimental set-up is analogous to that in Fig. 2, except the mountain height
has been reduced to H = 477.5 m. Figure 4 shows the fully second-order-accurate
solution after 40L/U (8000 time-steps). This solution compares reasonably well with
the analytic, steady-state solution (dashed line) of Lilly and Klemp (1979) obtained via
Long’s equation. The error within the domain (excluding absorbing boundary regions),
measured by the maximum difference between the analytic and computational isosteres’
heights, normalized by the wavelength of the standing mountain wave, is about 2.9%;
the accuracy of the numerical solution may be further improved by extending the depth
and width of the computational domain in order to minimize spurious influences of
the boundary schemes. As in the previous example, turning off the compensation of
the forcing-dependent error term leads to a weakly unstable solution. Adding viscosity
K = 0.02A X2/ At stabilizes the solution (as before, half of this value does not suffice for
stability); but the error increases to 4.1%, which is an intermediate value between that

for the second-order solution and the 5.1% value characteristic of the first-order-solution
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(not shown?) containing all truncation errors on the r.h.s of (11).

0.0 : * ! * :
-10. L 0. : L 18.
z/L

Figure 4. Steady state constant density surfaces for a small, finite-amplitude mountain.
Dashed lines display the analytic solution; the solid lines are for the numerical solution
with the second-order-accurate algorithm employed in Fig. 2.

4. CONCLUDING REMARKS

The examples discussed in section 3.2 clearly illustrate the practical significance of the
theoretical considerations set forth in section 2. -Iﬁ the physical problems exanﬁnéd,
the compensation of the first-order, forcing-dependent error term appears important
as it improves not only the accuracy but also the stabiiity of the resulting solutions.
In many applications (see, for example, section 3.1), this error may be small and
of no importance beyond merely degrading the formal accuracy of approximations.
However, since a compensation of this error term is simplé, computationally eﬁcient,

and easy to implement in any numerical model employing forward-in-time differencing,

7 In contrast to the downslope windstorm regime (Figs. 2, and 3), differences between the
three solutions discussed are relatively minor in appearance; the lower-order solutions
closely resemble that in Fig. 4, except they underestimate the amplitude of the wave
aloft.
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it should not be neglected, especially since it is theoretically required for the dissipative

approximations claiming second-order accurate solutions (section 2).
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