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1. INTRODUCTION

The increasing speed and memory of supercomputers is allowing explicit resolution of a larger

range of scales of atmospheric motion in a single computation. This can be seen most clearly
in the global forecast models that are now being run regularly with spatial resolution of order
100 km. Atmospheric motions of interest, though, span many more scales than it is possible
. to explicitly capture in a single computation. Nonhydrostatic motions may contain significant
features on scales ranging from several meters to several tens of kilometers with time scales
of minutes to many hours. Hydrostatic motions, in which the nonhydrostatic motions are
embedded, have motion scales orders of magnitude larger than the nonhydrostatic motions.
The inability to explicitly resolve this large range of motion scales in numerical models has

hindered both atmospheric research and numerical weather prediction.

Most weather phenomena are local in nature, however numerical models typically have uniform
resolution everywhere. Adaptive numerical methods attempt to change resolution locally
in response to the evolving solution. While adaptive numerical techniques have yet to be
extensively applied in atmospheric models, we believe that the next generation of meso-
scale/cloudscale models will be nonhydrostatic and will incorporate more sophisticated nested
and adaptive grid techniques. In particular, these models should be suitable for studying scale
interactions between nonhydrostatic and hydrostatic motions and may be suitable for limited
NWP tasks after sufficient development. The purpose of this paper is to review the adaptive

solution techniques that have been or can be applied in atmospheric models.

In general, the methods can be grouped into two general classifications; global and local
refinement techniques. The global methods involve redistributing existing gridpoints in such
a way that they become clustered in regions where the solution error is high. However, while
the gridpoints move over time the methods are not Lagrangian because the gridpoints do not
move with the fluid velocity. Gridpoint positions are determined each timestep using a grid
generation technique and the gridpoint velocities are the difference in the gridpoint locations

divided by the timestep. Several variants of this general technique will be discussed in Section
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2 and two adaptive computations of atmospheric flow using a global refinement technique are

presented.

Local methods adaptively refine the solution by adding points where the solution error is
high. Two variants of this technique exists. The first adds gridpoints to an existing grid,
usually by subdividing grid cells. While this technique has been used for time-dependent
problems in engineering applications, the author knows of no atmospheric models based on
this approach. The second class of local refinement methods makes use of separate fine grids
which overlie existing coarser grids. The collection of grids interact in the same manner as the
two-way interactive nested grids that are popular in atmospheric models. The local refinement
techniques will be discussed in Section 3. Two and three-dimensional nohhydrostatic adaptive

simulations using nested grids are given at the end of the section.

2. GLOBAL REFINEMENT METHODS

In this section we briefly discuss global refinement methods and show some simple numerical

examples. An excellent general review of the methods is presented by Hawken er al 1991 and
more specialized reviews are given in Anderson (1983), Thompson (1985) and Eiseman (1987).
A large portion of the development of these methods has taken place in the aerodynamics

community and this work is highlighted in these reviews.

Global refinement techniques involve moving gridpoints automatically such that they are
clustered in regions where the solution error is high. The methods consist of two components.
First, an algorithm is needed for solving the set of ‘governing equations transformed from
physical space, where the grid is nonuniform, possibly nonorthogonal and in motion, to
computational space where the grid is regular and stationary. Second, a grid ‘generation
algorithm must be used to compute new gridpoint locations. The most popular grid generation
methods, which seek to minimize or equidistribute some measure of the solution error, involve
solving a set of elliptic equations that are derived from a combination of variational problems
that, in addition to equidistributing the error, attempt to maintain some grid properties such

as orthogonality or grid smoothness.

Three general styles of moving gridpoint methods exists. Periodic gridpoint-movement meth-

ods hold the gridpoints fixed in physical space for several timesteps after which they are
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shifted to new positions. Typically data is moved from the old to the new grid using some
interpolation scheme. The PDEs do not contain terms pertaining to gridpoint movement.
Alternating gridpoint-movement methods require that the gridpoints be moved after every
timestep with data being transferred using interpolation. Again, gridpoint movement does
not appear in the PDEs. Finally, simultaneous gridpoint-movement methods move the grid-
points and integrate the PDEs simultaneously. Thus the dynamical PDEs contain terms for

the gridpoint velocities. No interpolation is required with this method.

The periodic and alternating gridpoint-movement methods can result in a mismatch of grid-
point distribution and solution, and suffer from instabilities and oscillations if timesteps are
too large. Also, interpolations can be difficult to design, particularly when it is necessary
to conserve certain fluid properties. Thus the periodic and aliernating gridpoint-movement
methods appear unsuitable for meteorological problems. In this paper we will review the
simultaneous gridpoint-movement methods. Note, however, that the simultaneous gridpoint-

movement methods are the most complex.

The global refinement techniques offer one major advantage over most local refinement
techniques — the transition between regions of high resolution and low resolution is smooth.
This feature removes some of the wave reflection and wave dispersion problems that are
common in local refinement methods where points are added to a regular grid or where
nested fine grids are used. Although this feature is highly desirable, the global methods also
~ have several undesirable features. First, the grid is no longer regular. The transformation
to computational space produces numerous additional terms that need evaluation and, of
course, the grid metrics must be recomputed each timestep. The grid must be generated
anew each timestep, most often by solving a set of elliptic equations. In time dependent
problems where the equations are integrated with explicit methods, the time step is limited
by the stable timestep for the smallest grid volume. Increasing the resolution in one region
reduces resolution in another, and it is only by adding points that a given overall solution
accuracy can be guaranteed. Finally, in atmospheric models, it is not clear how to correctly
incorporate parameterizations that are dependent in the gridscale. While this problem is also
present in nested models, the parameterizations pose a greater problem on the non-regular

grids because the gridscale changes dramatically on the single grid.
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2.1 Continuous Dynamic Grid Adaption

In this section we outline the efforts of Dictachmeyer and Droegemeier (DD, 1991) and
Dietachmeyer (1991) who construct simple atmospheric models based on a simultaneous
gridpoint-movement method which they denote Dynamic Grid Adaption. First we give an
example of the equations written in terms of curvilinear coordinates with the gridpoint move-
ment terms included, followed by a description of two grid-generation algorithms used by DD
and Dietachmeyer. After a brief description of the overall solution sequence, three computa-
tional examples are given. To the authors knowledge, DD represents the first attempt to use

moving-gridpoint adaptive methods in atmospheric models.

To illustrate the basic technique, consider the two-dimensional advection equation

0 o 0
. o ox dy v
First we need to recast (1) into the (e, 9, 7) coordinate system with x(e, , 7), y(e, 7, 7) and

t = 7. Using the chain rule we can restate (1) as
. O¢ d¢ 99
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where % and y are the velocities of the gridpoints. The fully transformed equations can be

expressed with the aid of the J e_i;chian of the transformation
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Before considering the grid-generation algorithms, note that while we have transformed the
- independent variables x,y and ¢, we. have retained the cartesian velocities u and v. This is
a convenient, though not necessary choice. Transforming of the velocities would lead to the
addition of metric dcriifative‘s. Transformation of the nonlinear ihomentum equations does
not introduce any increased complexity, although second derivative terms are increasingly

tedious to evaluate. For example, a second derivative term ¢y, would be transformed into

¢Jac =G_1(y12,¢e= - 2y:¢r)e + y3¢nn)
+ al(xn¢s - x:¢n) + aZ(yc¢n —yn¢s)
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where

a1 =G 0N — WIPue + VIm);
a, =G0 — Yyne + Vi)

For a prognostic equation set, the evaluation of this term is tedious but not problematic.

However, an elliptic equation posed in curvilinear coordinates will be difficult to invert.

The grid generators determine the gridpoint locations (x, y) as a function of (g, n) given some
measure of the solution error. A large variety of grid-generation methods exist. and they can
be subdivided into four groups; elliptic, parabolic, hyperbolic and algebraic grid generators.
The names reveal the types of equations that must be solved to generate the grids. We outline
an elliptic and an algebraic grid generation method used by Dietachmeyer and Droegemeier
(1991) and Dietachmeyer (1991).

Both grid generation schemes seek to equidistribute a measure of the solution gradient and

curvature W. For example in DD
We,y,8) = (1 + az|s)1 + 1| Vg[1/? — 1, )

where a; and a; are arbitrary coefficients, ¢ is the dependent variable and « is the curvature
defined as

Vz
[1+ |Vg]

The elliptic grid generator used by DD is based on the algorithm of Brackbill and Saltzman
(1982). It is most clearly described as a technique that minimizes the wéighted integral

measures of smoothness, orthogonality and adaptivity. This integral can be expressed as
I=I+ A1, + Awly ‘
= // (G + 2Gh + AWGWZ)dadn (6)
where ), and Ay are free parameters and Gj; are the components of the conjugate tensor

of the transformation (see Gal-Chen and Somerville, 1975). The next step is to recast the
minimization of I into a set of coupled elliptic equations. Defining F = g(1 + A%V) + Aogfz,
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the resulting elliptic set is

zz[(wz] aii)"z?".ﬁ"“’(” mﬂ)zfi’_’_”x_+

i=1j=1 Oe'e 0e/ oW \ 3Gy me1 My O

(A T T

65] m=1ln=1 aGmn an] ani =1 36"135’ asn aEmBEn 351

oF oW
——— =10 for 1 =1,2 : @)
oW o

The coupled equations (7) along with the appropriate boundary conditions can be solved
iteratively (DD, Brackbill and Saltzman 1982). However, the solution of the coupled set can
be very expensive relative to the solution of the governing PDEs. DD do not discuss in detail
the efficiency of their scheme, though they note that it is very expensive and that alternate grid
generation algorithms need to be developed in order to make the moving gridpoint methods

attractive for atmospheric integrations.

In a later work, Dietachmeyer (1991) presents a new algebraic grid generation scheme that
is considerably less expensive than the previous elliptic grid-generation method. It is based
on the observation that the equidistribution of the error, which is approximated by the weight

function (5) implies
W .dA = constant.

In practice Dietachmeyer uses an equidistribution equation of the form

F -dA = constant. (8)

where F = (1 + AwW). Dietachmeyer outlines an iterative procedure which leads to the
solution of a discretized form of (8). The method involves adjusting each gridpoint location in
turn such that the four adjacent gridcells more closely satisfy (8) and the constant is determined
as part of the solution method. The algorithm, which appears similar to traditional relaxation
methods for elliptic PDEs, makes use of two boundary conditions; the boundary points must
lie on the physical boundary and the grid must be orthogonal at the boundary. Convergence
rates for the method are very good and the efficiency of the new grid-generation technique
suggests that the 2-D moving-gridpoint adaptive method is economically feasible for use in

many atmospheric calculations. -
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Dietachmeyer’s algebraic grid generation method does not possess the constraints on smooth-
ness and orthogonality that are incorporated into the Brackbill-Saltzman grid generation
scheme (see eq. 6). Grid smoothness is desired, for nonsmooth grids can lead to increased
truncation error. Dietachmeyer demonstrates that by filtering the weight function using a (1
2 1) filter the desired grid smoothness is achieved. Sufficiently smooth weight functions will

lead to sufficiently smooth grids using this method.

Dietachmeyer further increases the efficiency of the method by updating the gridpoint veloc-
ities only after every several timesteps, between the update the gridpoint velocities are held
fixed. This method retains the advantages of the simultaneous gridpoint-movement methods
while decreasing the overall cost of the method by calling the grid generator less frequently.
In some simple test cases it was found that there could be as many as 10+ timesteps between

grid generations.

There are several methods used to couple the PDE integration and the grid generation in the
moving-gridpoint schemes. The most compléx approaches couple the two systems together
by requiring that the gridpoint locations x(e, 7, 7 + Ar) and y(e, , 7 + A7) be dependant on
the solution ¢(e,n, T + Ar), ie., the weight function used in the grid generation scheme for
determining the gridpoint locations at time 7 + Ar is a function of the solution at 7 + Ar.
DD use a simpler approach in which x and y at 7 + Ar are only dependent on the solution
at time r. Thus the grid generation and the PDE integration are not explicitly coupled in the

timestep.

Given the solver for the governing equations posed in curvilinear coordinates and the grid-
generation algorithm, the solution procedure used by DD is as follows. First, using the solution
at time T, the grid generation is performed with the weighting function W evaluated using the
solution at time . The resulting gridpoint locations are for time = + Ar and the gridpoint
velocities are defined as %; = (x7*27 — x7)/Ar. Then, the governing PDE is integrated
using whatever method is desired. It should be noted that the timestep is often limited by
the gridscale of the smallest gridcell. In most moving gridpoint models, the timestep size is
adjuéted after every timestep to maintain the stability of the integrations. Multiple-time-level
integration schemes are not often used in these applications because of the changing timesteps.

DD and Dietachmeyer use the madified Heun method.
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Three examples of the DD dynamic grid adaption are given here. The first example is the

' 2-D kinematic frontogenesis case discussed by Davies-Jones (1985).

Equation (1) is solved with the initial condition

¢(,y,0) = —tanh(y/2)

where the radially symmetric, time invariant wind field is given by

2
Viangential = sech’r tanhr.

The initial conditions for ¢ along with the flow field is given in Figure 1a. Figure 1b shows
the exact solution at a given time, Figure 1c shows the solution at that time on a fixed grid
with 31 X 31 points and Figure 1d depicts the adaptive solution on a grid using the same
number of gridpoints as the fixed grid. The adaptive grid at the final time is shown in Figure
le. The solution on the fixed grid contains spurious overshoots and undershoots along the
spiral arms because the sharp gradients in ¢ are not resolved. A fixed grid with nearly double
the spatial resolution (not shown) will give nearly the exact solution. The adaptive solution
resolves the high-gradient regions of ¢ much better than the fixed coarse grid solution. In the
adaptive solution the gridpoints are clustered about the center of the domain. Note that it is
not possible to discern the individual arms in the grid response. Higher resolution adaptive
runs show that the grid generator will produce grids which discern the arms when a sufficient

number of gridpoints exist.

In the previous example the gridpoints are clustered in the center of the domain and the
phenomena doesn’t move. Next DD simulate a dry thermal. The governing equat10ns used

for the thermal are in streamfunction—vorticity form and can be expressed as

Ve = —ug — Whe — GIO, 4 SV |

’ . / 2,
0 = —ugy — w0, + »V'0

where
' 2
'l/’ = Uy — Wy =V¢.
Subscripts denote differentiation in these equations and ¢’ is the potential temperature per-

turbation from a constant reference state ,. The transformation to the computational coor-

dinates (e, ) is given in DD.
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Figure 1 (a) Initial conditions for the
kinematic frontogenesis problem, (b) ex-
act solution at a later time, (c) solution
on a 31 X 31 fixed grid, (d) adaptive solu-
tion on a 31 X 31 grid and (e) the adapted
grid. Figures are from Dietachmeyer and
Droegemeier (1991).
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The initial conditions for their simulations consist of a warm bubble in a quiescent atmosphere.
These conditions are depicted in Figure 2a. The enclosed domain is 800m in width and 1000m
in height and the warm bubble has a maximum perturbation of .5K. In this simulation a 2
m?s ™ viscosity is used and is chosen so as to limit the sharpness of the interface between the
rising thermal and its environment. Figure 2b shows a fine grid solution (61 X 61 points) at
15 minutes, Figure 2c shows a coarse grid solution (31 X 31 points) at the same time, Figure

2d depicts the adaptive solution with 31 X 31 points at this time with the corresponding
adaptive grid given in Figure 2e. Examination of the fixed grid solution reveal spurious

extrema on the central axis at this time. Spurious extrema also exists off axis at earlier times
but are damped by viscosity. The interior of the thermal is also extremely ragged and the
leading edge is smeared. The adaptive solution contain none of these deficiencies. There
is high resolution along the arms of the thermal but relatively low resolution in the thermal
interior. DD speculate that the adaptive gridding resolves the thermals sufficiently well that

downstream oscillations are not generated.

The previous examples used the Brackbill-Saltzman grid generation algorithms. In the next
example, the algebraic grid generation algorithm of Dietachmeyer is used in an adaptive
simulation of multiple barotropic eddies. The multiple eddies require that the adaptive
grid respond to several discontinuous, separate features as opposed to the single continuous

solution features needing refinement in the previous examples.

Dietachmeyer integrates the shallow water equations on a sphere.

du 1 8¢ U tand
h_ Lo (o, w),
dt a cosf oA

dv 193¢ u tanf

dt a 0o a

do [ 1 éu 1 8w cosO)]
dt —¢ acosfdX acosh OA
where A and @ are the longitude and latitude respectively, a is the radius of the earth and

d 0 u v o

d_t o a cosBB_A aof
Figure 3a and b show the height field and adaptive grid at a single time in an adaptive
calculation of three vortices. The domain varies longitudinally from 0° to 55° and latitudinally

from —5° to —55° (southern hemisphere). The vortices are well space and the grid deforms
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Figure 2 (a) Initial 6 field for the buoy-
ant thermal, (b) 6 at 15 minutes on a
61 X 61 fixed grid, (c) on a 31 X 31 fixed
grid, (d) adaptive solution on a 31 X 31
grid and (e) the adapted grid. Figures
are from Dietachmeyer and Droegemeier
(1991).
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Figure 3 (a) Height field at a later time in an barotropic adaptive simulation and (b) the
adapted grid. Figures are from Dietachmeyer (1991). :

{”

N

(a)

(b)

Figure 4 Cyclone tracks for (2) a fixed coarse grid and (b) for a fixed fine grid. Only on the
coarse grid do the vortices merge. Figures are from Dietachmeyer (1991). '

172



WILLIAM C. SKAMAROCK ADAPTIVE GRID METHODS...

in such a way as to cluster points about the vortices. When the vortices are well spaced the
cyclone tracks are well predicted even on a fixed coarse grid, however, the amplitude is poorly
predicted. When cyclones are closely spaced the fixed coarse grid does not even predict the
track well while the adaptive mociel does produce accurate tracks (here the exact solution
is that obtained on a very fine fixed grid). Cyclone tracks for a fixed coarse grid, adaptive
and fixed fine grid are given in Figure 4. Note that in the coarse grid two of the original
three cyclones merge, while in the adaptive solution with the same number of gridpoints the

cyclones do not merge.

Using the algebraic grid generator, Dietachmeyer finds that the adaptive calculations are a
few to several times less expensive than fixed grid simulations which give solution of similar
accuracy. As noted earlier, use of the Brackbill-Saltzman grid generator results in integration
times much greater than the comparable fixed grid simulations (in some case being two orders
of magnitude greater). While more complex equation sets will help amortize some of the grid
generation costs, the use of an efficient grid generator is crucial to the cost effectiveness of

the scheme.

Finally, we reiterate that work on the moving gridpoint adaptive methods is still progressing.
It is not clear how to incorporate some of the standard parameterizations that depend on
gridscale into the scheme given that the grid changés continuously. The equation sets grow
very complex when higher order derivatives are approximated on the nonorthogonal grid.
Also, extension to three dimensions may prove extremely difficult because of the much more
complex transformed equation sets and more difficult still is the grid generation task in three
dimensions. At this point, it appears that moving gridpoints methods ére feasible in two

dimensions.

3. LOCAL REFINEMENT METHODS
3.1 Grid-Cell Subdivision

Local refinement methods that involve adding gridpoints or dividing grid cells have been

exploited by many modellers. In this approach there is only one grid, and gridpoints are
added to the grid where necessary by subdividing gridcells or elements. The irregularity of
the grid gives rise to a complex solution algorithm and prevents the use of standard solvers.

The primary advantage possessed by these techniques is that refinement can be more easily
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tailored to the phenomena; fewer gridpoints need to be used. We know of no efforts to

construct atmospheric models using this approaches.

There are examples of adaptive time-dependent Navier Stokes integrations in the aerodynamic
community using a grid-cell subdivision method. Kallinderis and Baron (1989) add gridpoints
to a grid in an evolving transonic flow calculation by means of subdividing gridcells with the
solution being calculated using a finite-volume numerical method. A calculation of transonic
flow over an airfoil is given in Figure 5a along with the adaptive grid in Figure 5b. In this
calculation the Navier-Stokes equations are integrated in the appreciably viscous regions while
the inviscid Euler equations are integrated in the rest of the domain. The adaptive algorithm,
which make use of an expert system to determine refinement location, resolves well the shocks
and the boundary layer on the airfoil. However, note that the grid is complex. Standard solvers
can no longer be used and because of the highly irregular grids these solution techmques

have not been widely used for fluid flow calculations.

32 Adaptive Mesh Refinement
In this section we outline the Adaptive Mesh Refinement technique (AMR) of Berger and

Oliger (1984). The adaptive method involves nesting fine grids based on refinement criteria
extracted from the evolving solution. It genéralizes the nesting procedures often used in other
atmospheric- models by allowing multiple, overlapping and arbitrarily oriented grids on any
refinement level. AMR has been successfully used for many fluid flow problems including
large-scale hydrostatic atmospheric flows (Skamarock et al, 1989), transonic airflow (Berger
and Jameson 1985, Berger and Colella 1989) and steady-state and time-dependent Navier-
Stokes equations (Caruso et al 1986, Thompson and Ferziger 1989, Perng 1990). AMR is being
used in nonhydrostatic models and adaptive nonhydrostatic simulations will be presented

following a description of the method.

The adaptive solution procedure for hyperbolic systems begins with a coarse-grid solution
valid at some time ¢. The numerical error (normally the truncation error) in the solution is
. estimated at the gridpoints. Where the error is greater than some predetermined tolerance
the points are flagged indicating that the area needs refinement. Rectangles (the fine grids)
are fit enclosing these points. The grids may overlap and they need not be aligned with the

base grid. Initial conditions for the fine grids are interpolated from the coarse grid or possibly
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from previously existing fine grids. Next, the coarse and fine grids are integrated from time ¢
to time £ + Afcoarse. The time steps on the fine grids are smalle‘r than those on the coarse grid
so as to keep Ax/At constant on the different grids (as is appropriate for hyperbolic systems).
Fine-grid boundary values are interpolated, spatially and temporally, from the coarse grid or
from the fine grids in places where fine grids overlap. When all grids have been integrated
over the time step, the values at the coarse grid points that lie inside of a fine grid are replaced
(updated) with an approprjateiy averaged value from the fine grids. This process may now
be repeated for the next tnne step. The error estimate and recreation of the fine grids need
not occur at each tnnestep but rather only at specified intervals. By periodically re-estimating
the error and creatmg new ﬁne grlds, the grids can move with whatever is responsible for the
high error, usually some prominent solution feature. A fully adapnve method is achieved by

allowing for error estimation on the fine grids and the intr_oduction“of still finer grids.

AMR offers advantages over other -adaptive approaches All grids are regular, hence pre-
existing: fast solvers can be used. Any number of refinement levels can be invoked, hence the
solution accuracy is not hm1ted by the algorithm. Parametenzatlons can be tailored to the
resolution of the partlcu]ar grld something that is dlfﬁcult to do with the moving-gridpoint
methods. AMR can be used with parallel and dlstrlbuted solutlon techniques. The primary
dlsadvantage is the existence of internal, fine-grid boundanes Wave reflection is a problem

where the resolutlon abruptly changes

Before con51dermg the detalls of the AMR approach, it is worthwhile to briefly consider
the existing nested hydrostatlc and nonhydrostatic models. The fine grids in AMR function
as 2-way interactive nested grids commonly used in atmosphenc models. Grid nesting has
been used extensively in hydrostatic models. Examples in a research setting are the Penn
State/NCAR MM4inodel '(Zhang et al, 1986) and in an operational setting the NGM used
at NMC (Hokeét dl, 1990). In both cases the grids are fixed in both number and location
though recently the‘ MM4 has'inc'orporated the ability to have multiple fine grids that move in
time (George Grell, ’petsonai cominum'cation). Applications where the fine grids are allowed
to move include the hurricane models of Harrison (1973) and Jones (1977). These nested
models are not truly adaptive in that it must be known a priori where increased resolution

will be needed and how large the refined region must be.
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There are fewer nested nonhydrostatic models. Clark and Farley (1984) constructed a nested
model basea on an anelastic set of equations. The system allows multiple nesting but they
cannot be rotated with respect to the base grid and multiple overlapping grids cannot be
used on the~ same refinement level. Solution of the elliptic pressure equation in the nested

configuration does not appear to impose any significant computational penalty.

The nonhydrostatic AMR model uses a compressible equation set along with a split-explicit
solution technique. This choice of equations and solution technique allows straightforward
use of rotated, overlapping fine grids. Fine grid rotation is difficult to achieve when using
the anelastic system, or any system in which exact mass conservation is important, because
interpolations for boundary conditions and averaging for updating must be conservative.
Hydrostatic nested and adaptive models generally have not used conservative interpolation
. and averaging procedures, examples being Skamarock et al (1989), Zhang et al (1986), Jones
(1977), Harrison (1973) and others. The elastic nonhydrostatic system is similar to the
* hydrostatic system in that both have prognostic, hyperbolic equations for pressure and this
suggests that strictly conservative interpolation and averaging procedures are not essential for

the elastic model.

The remainder of this section outlines boundary condition specification for the interior fine
grids, updating procedures, and presents examples of the nested/adaptive AMR simulations
using a nonhydrostatic, elastic set of equations. Details of the error-estimate procedures are
given in Skamarock (1989). Algorithmic details and data structures, along with a more general

overview of AMR can be found in Berger and Oliger (1984).

The updating and boundary condition procedures used in the adaptive model are as follows.
For updating coarse grid values that lie in a fine grid, the fine-grid values are averaged over an
equivalent coarse-grid volume and then the new coarsé-grid values are bilinearly interpolated
from these averaged values. Interpolation is necessary when a fine grid is rotated with respect

to a coarse grid because coarse and fine gridpoint locations may no longer coincide.
Boundary conditions are required for both the coarse and fine grids. The coarsest grid

has its boundary conditions satisfied through some numerical representation of the physical

boundary conditions. Fine grid boundary conditions consists of quadratic spatial and linear
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temporal interpolation of all variables, except pressure, to the fine grid boundaries from the
interior of the coarser grid(s). The interpolated variables include a velocity normal to the
ooundary and, one-half Ax, inward from the boundary, a tangential velocity and all other
variables. Boundary values for overlapping fine grids must be interpolated from the other fine

grid where possible, while all other boundary value come from the coarser grids.

The solution procedure used in the nonhydrostatic AMR model is the split explicit technique
described by Klemp and Wilhelmson (1978) with the addition of an acoustic filter d1scussed
in Skamarock and Klemp (1991). The technique requires that several small timesteps be used
to advance the acoustic modes within the Ieapfrog timestep used to integrate the non-acoustic
modes. Proper transmission of soundwaves through boundaries would require that bound-
ary value interpolations and updating occur every small timestep because the sound wave
terms are 1ntegrated with the small timesteps. However, the soundwaves are meteorologlcally
insignificant and the overhead associated with the updating and interpolations is not insignif-
icant. Hence, boundary value interpolations and updatmg occur only every large timestep.
Also note that the overlapping fine grids are independently integrated over a srngle timestep
and boundary values for the small timesteps between ¢ and ¢ + At are not ‘ye‘t available from
the neighboring fine grid. In this case the boundary values needed on the srnall‘timestep
between ¢ and ¢ + At are linearly extrapolated using the boundary values at time ¢ and ¢ — At.
The extrapolated values are replaced with the values interpolated from the overlappmg fine
grids after the full timestep is complete for both gnds Finally, we note that the drscretlzed
pressure equation needs no boundary conditions, its stencil is complete at all point on the
grid. However, the boundary pressures are replaced with values interpolated from overlapping
or coarser grids at the end of the leapfrog timestep so as to keep the pressure solutions on

the various grids more closely coupled.

321 2-D Nonhydrostatic AMR Simulations

In this section adaptive results for two different flows are presented using the following dry,

Boussinesq, elastic equatlon set. The Boussinesq, dry, adiabatic equations used in the 2-D

model are
ou or ou du
gt"f‘?ax“: _uE—WT&— 9).
w o -g(—f— —,1) Ll (10)
ot & /] & oz
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or L, ou o
——+cs(——+——)=0 o
ot & &

and
0 80 8
— +u— +w— = 0. - (12)
& & oz

Equations (9)-(12) are the ¥ and w-momentum, pressure and thermodynamic equations
respectively. u and w are the fluid velocities inx and z, 6 is the potential temperature and 6(z)
is the mean potential temperature, = is the perturbation Exner function (I = C,6(p /po)R/ ),
g is the gravitational constant, ¢ is time and ¢; is the speed of sound. The sound speed is
constant. As noted earlier, integration of (9)-(12) is performed with a time-split scheme
where the terms responsible for the sound waves are separated from the remaining terms and
integrated with a smaller timestep. Second order accurate, centered spatial discretization is

used.

Both flows in the adaptive simulations result in horizontally propagating gravity currents, one
starting from the release of a cold bubble in a closed box, and the other arising from the
collapse of a cold pool (Skamarock and Klemp, 1989). In the first simulation the viscosity
"is fixed and a grid-independent solution is very nearly attained. However, in the second
simulation the viscosity is a function of the resolution and the solution does not converge.
This non-convergence has implications for the evaluation of any solution computed with
adaptive, nested, and grid refinement models in which parameterizations ére a function of

the resolution.

In the first simulation all physical boundaries are solid, free-slip surfaces. The domain length
is 24 km and its height is 12 km. The initial cold bubble is specified as follows:
=40 L>1;
Ad { ~15[cos(zL) + 1]/2 L Z1

where

2 272
(x—-—xo) _(z—Za) 2
L = +
x 7
and x, = 0,x, =. 4000m, z, = 3000m, and z, = 2000m. The initial velocities are zero and
the initial pressure  is the anelastic pressure. The model parameters used in the runs are

Ax,, Az, = 300m, At, = 4.0s, A = 0.55, @ = 0.05 and » = 75m?s L.
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Figure 7a shows the initial cold bubble. Figures 7b and c depict the results at 900 seconds for
fixed grid simulations with 300 meter and 33.3 meter resolution. The coarse grid simulation
cannot capture the billows that form behind the gust front head. However, the general shape
of the gravity current is well captured and, surprisingly, the gust front position is the same in
both the coarse and fine resolution simulations. Generally, the propagation of the gust front

is independent of the resolution though it does depend on the viscosity.

Adaptlve simulation results are shown in Figs. 7d, e and f. In the adaptive 51mulatlons the
refinement ratio is 3 and the truncation errors are computed and fine grids replaced every
25 coarser grid timesteps. Thus the fine grids are replaced every 100 seconds when one
refinement level is used and, for two levels of reﬁnement the ﬁnest level grids are replaced

every 333 seconds.

The adaptive simulation with a single level of refinement resolves the overall structure of the
billows fairly well. There is still 51gn1ﬁcant Gibbs phenomena associated with the propagating
front and with the tail of the gravity current. The noise from the Gibbs phenomena is advected
into the billows, partlcularly the leftmost billow. The adaptive simulation with two levels of
refinement, where the finest grids have 33.3 meter resolution, compares well with the single
fine grid run (compare Figs. 7c and f). The Gibbs phenomena are almost entirely removed
and the position and shape of the billows are vrrtually identical in the two simulations. For
most purposes the solutions are identical though there are small differences. For cxample, the
middle billow in the fixed grid simulation has a slightly colder core than that in the adaptlve

simulation.

As noted, the finer grlds are replaced periodically as the solution evolves. We mclude the
adaptive solution at 600s to depict the changing grid structure over time. The finest level of
grids is replaced 27 times over the course of this simulation. Also note that one of the finest
grids is not placed on the lower boundary; fine grids can be placed anywhere in the solution
domain. The solutions in the fine-grid overlap regions behave properly and the procedure
of obtaining boundary values from the overlapping grid correctly resolves fine scale features
passing through overlap regions. Also, the fine grids are not rotated in these simulations.
We choose not to rotate the grids so as to always have gravity'acting in a single coordinate

direction. We will demonstrate fine-grid rotation in a 3-dimensional example.
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Figure 7 (a) Initial conditions for the cold bubble experiment, potential temperature with a
contour interval of 1. The other panels show the potential temperature at 900s for (b) a single
grid with Ax = Az = 300m, (c) a single grid with Ax = Az = 33.3m, (d) an adaptive run
with one level of refinement with Ay = Az; = 100m, (¢) an adaptive run with two levels
of refinement with Axy = Az = 33.3m at 600s and (f) the adaptive run with two levels of
refinement at 900s.
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Resolution CPU time Memory

(meters) .(seconds) (thousands of words)
- 300 5.1 ~ 35

100 94.3 ~ 300

33 2288 ~ 920

300-100 35.3 ~ 85

300-100-33 337.2 ~ 170 .

Table 1 Timing and memory statistics for the 2-D cold-bubble simulation. Program in-
structions and miscellaneous memory are an additional 700 X 10° words. All computations
performed on the NCAR CRAY Y-MP/864 The runtimes are with all plotting turned off.

We have demonstrated that the adaptive method can produce results almost identical to fixed
grid results having the same resolution as the finest grid in the adaptive simulations. For
the adaptive method to be cost effective, i.e., to actually justify its use, the CPU times and
memory for the adaptive runs must be significantly less than that for the fixed grid runs.
Table 1 presents the CPU times and approximate memory sizes for the adaptive and fixed
grid codes. Obviously, increasing resolution increases both memory size and CPU times.
Efficiency of the adaptive method is examined by compartn‘g the 300- 100 meter adaptive run
with the fixed 100 meter grid run and comparing the 300-100-33.3 meter adaptive run with
the fixed 33.3 meter grrd run. With one level of reﬁnement we decrease the CPU time (from
the fixed grid run) by a factor of 3 and decrease the memory requirement by a factor of 3.
Further refinement increases the efliciency. CPU times are decreased by almost a factor of 7

and memory requirements are reduced similarly.

Before considering the collapsing cold pool case, we emphasize that the AMR method is

a local refinement method. The efliciency of the technique decreases as more area needs
refinement. The break-even point for the method where the cost of an adaptive simulation will
be approximately equivalent to a fixed grid simulation, occurs when around 50 to 60 percent
of the coarse domain needs refinement at the finest reﬁnement level The AMR technrque is

suitable for local phenomena only. .

The 2-D adaptive model has also been used for simulating a collapsing cold pool and resulting
gravity current and the results are given in Skamarock and Klemp (1989). In these simulations
the upper, lower and left boundary are sohd free-slip surfaces and the right boundary is open

wrth boundary condltlons specrﬁed as in Klemp and Wllhelmson 1978 The channel length 1s
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40 km and the channel height is 10 km. The initial cold pool is specified as follows:

0 = {300 — MWO=z1) ;< 5000m, x < 15000m;
300 elsewhere.
The initial velocities are zero and the initial pressure = is in hydrostatic balance with the tem-

perature field. The model parameters used in the runs are Ax, = 250m, Az, = 3.0s, At =

0.5s and » = Ax : 1m/s.

In these simulations the viscosity is now a function of the grid scale. We have chosen the
viscosity such that only well resolved features are present on any grid. Figure 8 shows the
solution for the collapsing cold pool at 900s in three different simulations. The first (Fig.
3A) is for a coarse grid run. No billows are presenf behind the head of the gravity current

because the viscosity mixes out any incipient billows.

Comparing the fixed and adaptive grid runs with 27.8 meter resolution (Figs. 8b and c), it
is immediately apparent that certain features in the solution are different. In particular, the
leftmost eddy that appears in the adaptive solution depicted in Fig. 8b does not appear in
the reference solution in Fig. 8c. Fxamination of the evolving adaptive solution shows that
perturbations associated with changing resolutions were sufficient to initiate leftmost billow
and the billow has sufficient truncation error associated with it to cause refinements to follow
it. Even changes in the numerical scheme can produce perturbations that excite the billow.
Evidence for this is provided by the simulations presented in Carpenter et al (1990), where a
different numerical technique has been used to simulate the same problem and the leftmost
eddy appears in their fine resolution simulation and yet does not appear in their coarse

resolution results.

These results point out a difficulty in interpreting any simulations, particularly nested and
adaptive simulations, when significant phenomena grow from infinitesimal perturbations — as
is the case with Kelvin-Helmholtz billows. Numerical solutions will diverge as small per-
turbations are magnified and it is difficult to evaluate the accuracy of the solutions. Also
problematic is the use of parameterizations that depend on the gridscale (Ax Af), for ex-
ample parameterizations of turbulence, convection, etc... There exists no exact solutions to
these parameterized systems and it is difficult and often impossible to judge the accuracy of

the numerical solutions. At the very least, grid-scale dependent parameterizations must be
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Figure 8 Collapsing cold pool simulation with. potential temperature contoured at 0.5. (a)
Single grid solution at 900s with Ax = Az = 250m, (b) adaptive solution at 900s with two
refinement levels, Axy = Aze = 28.7m and (c) single grid solution at 900s with Ax = Az =
28.7m. L . , ; , o
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carefully examined when we ask that they function over a wide range of grid scales. The

paramecterizations may have a substantial impact in an evolving adaptive and nested solutions.

3.2.2 3-D Nonhydrostatic AMR Simulations

A three-dimensional model (constructed by Dale Durran) has been modified for use with

the adaptive grid method. The model solves the full compressible equations of motion and
is similar to the 2-D model described in Durran and Klemp (1983). An explicit time-split
method is used to advance the elastic system of equations that includes both an acoustic filter
based on divergence damping and a new technique for integrating the buoyancy equation
(Skamarock and Klemp 1991a). The model includes terrain, moist processes (vapor, cloud
and rain water) and is fully compressible. The 3-D model differs from Durran and Klemp’s
2-D model primarily in the momentum equations and scalar equations for water substances;
in the 3-D model they are cast in flux form whereas in the 2-D model they are in advective
form. As in the 2-D model an equation for the pressure is used as opposed to computing with
a continuity equation for p. The density is computed using a moist equation of state. Moist
physics in this model are included through a Kessler parameterization scheme, calculated as

described in Durran and Klemp using three forms of moisture; vapor, cloud and rain.

In its current implementation, the 3-D adaptive model does not perform automatic gridfitting.
The user must periodically examine the evolving solution and input the positions of any
new fine grids. In what follows, we show adaptive simulations of convective storms that
demonstrate grid placement based primarily on an examination of low to mid-level updrafts,
vorticity, rainwater and temperature gradients. With appropriate grid placement, these criteria
appear sufficient for capturing isolated, strong convection. The simulations also demonstrate
the robustness of the numerical methods used in the adaptive framework, particularly the
boundary conditions between coarse and fine grids and between overlapping fine grids. A
more complete description of the nonhydrostatic adaptive model can be found in Skamarock
and Klemp (1991b).

We have adaptively simulated a squall line similar to the deep-shear case in Weisman et al
(1988, see Section 4) where the environmental wind varies linearly from 0 ms™" at the surface
to 30 ms™! at 5 km and remains 30 ms™" above that. We initiate convection with a three-

dimensional line thermal 200 km in length oriented at 45 degrees relative to the shear in a
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1080 km sQuare domain. In Weisman et al, the domain has an along line length of 120 km with
periodic bdundary conditions. Thiis, we are no longer enfdicing a particular line orientation
(other than through the initial perturbation) and we now include squall-line end effects. The
fine grids in the adaptive simulation and the Weisman ez al single grid have 2 km horizontal
resolution and 700 meter vertical resolution. In the adaptive simulation there are three levels
of grids having 18, 6 and 2 km horizontal resolution. We use the domain speed in Weisman

et al.

Figuré 9a shows the flow field at z = 3150m at two hours for the adaptive run. The end cells
are much stroﬁger than any interior cells. By 4 hours, Figure 9b, the line has reoriented itself
so that it is perpéndicular to the shear. New convective cells are forming on the northern and
southern ends of the line along the gust fronts propagating away from the storms that initially
developed at the ends of the line. - ' S h

As is evident in the solution at 2 and 4 hours,. the line features pass Smoothiy thoﬁéh the
overiapping grid boundary. The use of multiple, OVerlapping, rojtat‘ed' grids allowé optimél
resolution of the growing squall line, even“as the line changes its oiiéntation. A vertical
cross section is given in Figure 10. Note that the cold pool has cleanly propagated through
the western boundary, as have the ﬁpp‘er-'levél sform—outﬂow_ featuxeé thtough the eastern

boundary.

We conclude by noting that the adaptive iiiodei requires little additional memory over"va
single grid model other than that used to store the additional grids. In these Siinulations, the
adaptive overhead is small, over 80 pércent of the CPU time is used by the solver advancing
the sc)lution on a particular grid. The adaptive model allows us to resolve both the convection
and the larger-scale flow economically, and in the case shown above, Simple refinement criteria

are sufficient for producing adequate simulations.

4, SUMMARY

Adaptive grid methods are advantageously used when phenomena needing refinement are
local, i.e., they cover only a small portion of the solution domain. The adaptive methods can
be groiiped into two classes; global and local refinement techniques. While several methods

are discussed in this paper, only two methods appear suitable for atmospheric calculations.
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Figure 9 Adaptive squall-line simula-
tion (a) at 120 minutes and (b)at 240 min-
utes. The cold frontal boundary is at the
lowest model level and is denoted by the
-1 C potential temperature perturbation,
the heavy solid line represents the 0.5

g/kg™" rainwater contour at z = 3150m.

Vertical velocity is contoured at 5 ms™?!
intervals with negative regions stippled
The scale is the same in (a) and (b).
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Figure 10 A vertical cross section through the squall line at four hours at AB in Figure
9b. The perturbation temperature field is contoured. Note that there are no anomalous

disturbances at the various grid boundaries.
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A global refinement technique has been used in atmospheric calculations b‘y'kDietachmeyer
and Droegemeier (1991) and Dietachmeyer (1991). The method requifeS'th‘at the existing
gridpoints move simuitaneohsly with the integration of the equations." ’fhus'the governing
equations include terms for gridpoint movement. Gridpoint locations are recomputed each
timestep by a grid generation aigorithm which clusters points in regions needing refinement
while also attempting to generate a smoothly varying grid. The method requires the trans-
formation of the governing equations into curvilinear coordinates and the new coordinates
may be non-orthogonal, hence many new terms arise in the new system. Grid generation
can be very expensiife, although the new grid generator introduced by Dietachmeyer (1991)
appears to allow economiycal integrations of simple systems. While grid—'ger‘ler'ation methods
still require research, a more pressing issue for the use of moving-gridpoint adaptive methods
in atmospheric models is the formulation of parameterized physics on the nonuniform grids.

This may be a major problem with parameterizations that depend on gridscale.

The local refinement technique of Berger and Oliger (1984) has been implemented in both hy-
drostatic models (Skamarock et al, 1989) and nonhydrostatic models (Skamarock and Klemp,
1989). The method makes use of multiple, overlapping fine grids to increase resolution where
necessary. In this reviewAwe have presented results from the nonhydrostatic adaptive models.
Two-dimensional simulations of gravity currents and three-dimehsional simulations of severe
convection (squall lines) demonstrate the applicability of the models. The work remaining
in the application of this teehniqhe is the developmentef robust gridﬁttiﬁg algorithms. The

three-dimensional model currently requires the user to specify the positions of any fine grids.

Both local and global refinement techniques can be used in atmospherlc models. The AMR
method of Berger and Oliger i is more readﬂy apphcable because of its use of emstlng solvers.
The method is bemg used in complex nonhydrostatlc mo dels for research purposes. The global

refinement techniques for atmosphenc,models are still in the early stages of development.
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