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1. INTRODUCTION

The numerical modelling of nonhydrostatic atmospheric flow possesses a history similar to

that of modelling hydrostatic flow. The pioneering models in both disciplines are based on ap-
proximate equations that filter modes that are computationally difficult to include. Examples
of these are the barotropic models used in the earliest NWP work and the simplest anelastic
models used in the earliest studies of convection. As time has passed more complete equation
sets have been used in the study of both hydrostatic and nonhydrostatic flow. Today, while
some modcls based on approximate equation sets remain appealing for certain applications,
many nonhydrostatic models now solve the fully compressible Navier-Stokes equations with,
of course, turbulence, microphysics and radiation still largely parameterized. In this paper,
numerical methods used to solve the dynamical equations describing nonhydrostatic motion

are reviewed.

The earliest nonhydrostatic models filtered sound waves by integrating equations based on the
anelastic approximation of Ogura and Phillips (1962). Acoustic modes can exist in solutions
to the full set, and while sound waves are not meteorologically significant (they possess little
energy), their rapid propagation can impose severe limits on the time steps used in models.
The anelastic approximation and several related variants, along with coordinate system and

variables used in nonhydrostatic models will be discussed in Section 2.

The first numerical integrations of the fully compressible equations were performed by Hill
(1974) using an explicit timestep limited by the acoustic modes. However, explicit integrations
of the fully compressible set are prohibitively expensivé. Two approaches are used to reduce
the cost of the simulations. Tapp and White (1976) integrated the compressible system with
a semi-implicit scheme; terms responsible for the acoustic modes are integrated implicitly.
Klemp and Wilhelmson (1978) introduced a scheme whereby the terms responsible for the
acoustic modes are integrated with an explicit, smaller timestep separate from the other terms.
This approach is economical because the acoustic-mode terms are inexpensively evaluated

compared with the nonlinear terms, microphysics, etc... These methods for solving the fully
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compressible system, along with their more recent refinements, will be reviewed in Section
3. Numerical methods for solving the implicit relations arising from semi-implicit solution
techniques for the fully compressible systems and for solving the elliptic equations that arise

in the anelastic systems will be considered in Section 4.

Recently, several nonhydrostatic models have been used to perform large-scale flow simula-
tions. The feas,ibﬂity of performing large-scale flow simulations with nonhydrostatic models is
demonstrated in integrations using the Clark (1977) anelastic model by Polavarapu (1990), with
the Klemp-Wilhelmson model by Snyder ez al, (1991), with the latest versions of the British
Meteorological Office model (Cullen 1990) and with the semi-implicit, semi-Lagrangian model
of Tanguay et al (1990). In many cases the integrations are comparable in cost with the hydro-
static models; both gravity and acoustic waves can be advanced in a manner such that they do
not restrict the model timestep. Moreover, the techniques used to advance the acoustic and
gravity waves are often much simpler than those used to economically integrate gravity waves

in hydrostatic models. We comment further on these considerations in the following sections.

2. EQUATIONS

2.1 Fully Compressible Equations

In atmospheric modelling, we ultimately wish to solve the fully compressible Navier-Stokes
equations. For the purposes of this paper, we neglect the Coriolis terms and detailed presen-
tations of microphysics and mixing parameterizations; they have little effect on the general

structure of the numerical schemes. With these simplifications the governing equations can

be stated as

AR VA )
dr p D—g
dT
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These are the momentum, thermodynamic, mass conservation and state equations respectively

for the standard variables, where V = (u, v, W),
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and D and S represent dissipation and sources. Most nonhydrostatic models solve equations
posed in an (x,y,z) coordinate system, although to include terrain the vertical coordinate is

often transformed. We consider the transformations in Section 2.3.

Few models solve the p— T system (1)-(4). Three major modifications to the set are commonly

employed. The first is to replace (2) with an thermodynamic equation posed in terms of the

R/c,
o= (2)"

potential temperature 6, where

p
The new thermodynamic equation is
40 Dy + S (5)
d 6 6
and the new equation of state (4) becomes
p = ;RO (©)

The advantage of using the potential temperature ¢ over the temperature T is that the thermo-
dynamic equation is simplified. Indeed, in an adiabatic atmosphere it reduces to d6/dr = 0.
The system (1), (3), (5) and (6), which we denote as the p — 6 system, is solved in a model
described by Tripoli and Cotton (1982) where the equations are posed in terms of variables
that are perturbations about a hydrostatic, time-invariant mean state. Most nonhydrostatic

models use @ as the thermodynamic variable.

The second major modification, typically used when @ is the thermodynamic variable, is to

replace the pressure with the Exner function

R/c,
II=c (f—) .

o

With this substitution the momentum equation (1) becomes

—_—= —f C nm—gk+D 7
It g ( )
and the new equation of state is

I = (Rp, po)*/. (8)

Yet another variant is that used by Tanguay et al (1990), where pressure is replaced by -
g = In(p/p,). The pressure gradient term in the momentum equation (1), p~1Vp, is
replaced by RTVgq.
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The third major modification to the original equations is to recast the continuity equation in
terms of I, p or q. This can be accomplished in a variety of ways, the most straightforward
being to take the material derivative of the equation of state and to use the continuity equation

to eliminate p. The new continuity equation for this IT — @ system is

dIl ¢ ¢z de
— =—-——V: - )]
dt cpt cp6” dt

In this system no equation of state is needed; (5), (7) and (9) form a closed system. This
IT — 6 set is used in several numerical models that are discussed in the next section, including
models developed by Tapp and White (1976), Klemp and Wilhelmson (1978), and others.

Alternatively, the continuity equation can be expressed in terms of the pressure p as

d c,pdo
LR A T L (10).
dt c, 0dt

- This p — 6 system is used in some nonhydrostatic models, such as the model of Cotton and
Tripoli (1978). Note that an equation of state is still needed in this system. Finally, the

continuity equation for the g — T system is

d
2% . _V.V+ O+ ST (11)
cp dt

No equation of state is needed here.

2.2 Approximations to the Continuous Equations

In general, one can partition the existing models into those that solve the fully compressible
equations and those that solve the anelastic equations. In this section we discuss the anelastic
approximation first, and then consider some approximations used in the fully compressible

models.

The earliest nonhydrostatic models did not solve the fully compressible equations because the
presence of acoustic modes severely limited the model timesteps. Ogura and Phillips (1962)
introduced the anelastic approximation that results in replacing the continuity equation (3)
with

V- p,V = 0. (12)

This removes sound waves from the system. The rigorous scaling analysis which underlies this

approximation requires that the potential temperature 8; have only small variations from a
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reference temperature 6,. For dry convection the approximation appears sound, however, the
assumption of near constant # may not be valid when phenomena such as deep, moist con-
vection or stratospheric gravity waves are being simulated (Durran, 1989). For the remainder
of this paper basic state mean quantities will have a subscript 0 and perturbations a subscript
of 1.

Several alternative anelastic systems have been put forth that address some of the problems
noted by Durran. The anelastic approximation of Wilhelmson and Ogura (1972) uses a non-
isentropic base state. However, a closed form energy integral cannot be derived for it without
further approximation whereas for Ogura and Phillips’ set a closed form exists. Lipps and
Hemler (1982) present an anelastic approximation wherein the necessary assumption is that
the base state @ be a slowly varying function of z. This set has a closed form energy integral.
A more recent analysis of this set (Lipps, 1990) lends further evidence to its validity and
applicability. '

The anelastic approximations we have discussed all use the continuity equation (12) with
differing definitions of the base state and slightly different truncations of the momentum
equations. Durran (1989) has introduced another anelastic approximation which leads to a

continuity equation of the form

V - (poboV) = (13)

cpll,
where H is the rate of heating per unit Volume. The assumptions made are that the Lagrangian
time-scale associated with a disturbance is much larger than the sound-wave time scale and
that II; < TI,. This approximate set conserves an energy form that is similar to that conserved
by the fully compressible set and the energy conservation i_s achieved independent of the mean

state stratification.

With the introduction of an anelastic approximation, a prognostic equation for the pressure
(or density) no longer exists. A diagnostic equation for the pressure is produced by forming a
divergence equation from the momentum equations. The Helmholtz equation used by Ogura
and Phillips is |

V - p,VII; = RHS. (14)

While p, might not vary horizontally but does vary vertically. Wilhelmson and Ogura derive
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a similar equation using their approximation with p,0, replacing p,; Lipps and Hemler solve

a similar equation. Using (13), Durran derives a diagnostic equation for IT; of the form
V - p.8,6VII; = RHS.

This system is slightly more complex than (14). The new equation no longer has constant
coefficients in the case where the mean state varies only in z. We will discuss solution

procedures for these elliptic equations in Section 4.

Most nonhydrostatic models solve equations for variables that are perturbations about a
hydrostatic, time-invariant mean state. This approach reduces truncation and roundoff errors
in calculations of the hydrostatic balance. Also, certain terms are linearized about the mean
state in several models. These relatively minor approximations will not be discussed. For
cloud-scale simulations (I < 100km), linearization about a vertically varying mean state is
reasonable. However, for larger-scale flows the mean state may be difficult to define, hence

linearization or any approximation based on a mean state may lead to significant errors.

Two approximations often used in fully compressible models deserve comment. First, certain
terms in the pressure equations (9), (10) or (11) that replace the original continuity equation

(3) are often discarded. Equation (9) can be written as

am  c oIl ¢t do
— + =V .Vtw— = —Vy.VII + = (15)
&  cyf 8z cp6” dt

Klemp and Wilhelmson state that the terms on the right in (15) have little influence on the
cloud-scale, and simulations with and without these terms differ little. Second, the sound
speed c,(x,y,z,t) is often replaced by a singlé constant sound speed. Furthermore, in some
models the sound speed used is significantly less than the actual sound speed, often only 50 to

75% of the actual value. This guasi-compressible approximation is discussed by Droegemeier
and Wilhelmson (1987).

23 Alternate Vertical-Coordinate Systems

Several models use vertical coordinate systems other than the geometric height z. The inclusion
of terrain in a model is usually brought about by using a transformed-z vertical coordinate.
The most popular transformation is that given by Gal-Chen and Somerville (1975)

z—z

H — zs’
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where z, is the height of the surface and H is the top of the domain. Various other transformed-
z coordinates are possible. For example, Carpenter (1979) introduces terrain into the semi-

implicit, fully compressible model of Tapp and White using the independent variable
n=z—H

These transformations introduce only minor changes to the governing equations.

Various forms of a pressure coordinate system have been used. Here we consider both a

pressure-coordinate system and two systems based on a o-coordinate, where

- P — Duwop
= —p* .

o (16)
In one the pressure p* is the surface pressure and in the other p* is a fixed reference-state

pressure that depends only on terrain altitude.

Dudhia (1991) has developed a nonhydrostatic model using a numerical scheme similar to that
in Klemp and Wilhelmson (1978) except that he replaces Klemp and Wilhelmsons’ vertical

coordinate z with the o-coordinate system (16) where p* is a fixed reference-state pressure.
| The reference state satisfies the hydrostatic equation 8p, /8 = —p,z; po(z) is defined for
any terrain height and p* = p,(Zsuace)- In the new vertica}-coordinate system the horizontal

and vertical momentum equations are

" v _ P81 _gwp Pl 8Rpr

at p p* 0o ¢ P pT, ¢p .
where the variablés have been expahded into mean and perturbation components. Though the
horizontal momentum equation is similar to that found in hydrostatic o-coordinate models,
the system uses a perturbation pressure and not a height or geopotential, and of course a
vertical momentum equation replaces the hydrostatic equation. In the new system the pressure

equation takes the form
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This pressure equation is formed in the same manner as the pressure equations (8), (9) and
(10), and is not analogous to the surface pressure equation in a e-coordinate hydrostatic
model. The nonhydrostatic system is derived by direct substitution of the o-coordinate, with
p* = p*(x,), into the p — T system which uses the pressure equation (10); the t;ansformation

is exact and the two systems are physically equivalent.

More in keeping with the use of o-coordinates in hydrostatic models, Miller and White (1984)
describe a o-coordinate nonhydrostatic model in which p* is the surface pressure. The fully
compressible p and o-coordinate equations are given by Miller and White. However, they are
so unwieldy that they are not used without some simplifying approximations. The approximate
set in p-coordinates used by Miller (1974), derived through a rigorous scale analysis, is shown
by Miller and White to be the counterpart to the z-coordinate anelastic equations of Ogura
and Phillips. The z and p-equation sets are not physically equivalent but the differences are
at the order of approximation for both sets. The approximate a-coordinate equation set is

found to be a direct transformation of the pressure-coordinate nonhydrostatic set used by
Miller.

In the ¢ and p coordinates of Miller and White, as in the z-coordinate anelastic equations,
an elliptic equation must be solved for the geopotential which takes the place of pressure in
the new systems. Integration of the p-coordinate system is simpler than integration of the o
system. In the p system, the momentum and thermodynamic equations are stepped forward
to ¢ + Ar with some time-integration scheme and the geopotential at the new time is recovered
by inverting an elliptic equation. This is the procedure used in most anelastic models. In
the o system, the solution procedure is much as it is for the hydrostatic o system. However,
instead of integrating the hydrostatic equation for the geopotential a 3-D elliptic equation
must be solved. Also, the elliptic equation is significantly more complex than those arising in

other anelastic systems.

Briefly summarizing, there are a variety of equation sets that can be employed in a nonhydro-
static model, along with a choice of several possible approximations to the fully compressible
system. In terms of computational effort, most of the systems require a similar amount of
time to integrate using the latest numerical techniques. Given this observation, it is not sur-

prising that most current nonhydrostatic modelling efforts are focused on solving the fully
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compressible system.

3. . METHODS FOR INTEGRATING THE FULLY COMPRESSIBLE SYSTEM

There are two methods for circumventing the severe timestep restriction brought about by the

presence of acoustic modes in solutions to the fully compressible system. Either the terms
respousible for the acoustic modes must by integrated implicitly (a semiQimplicit model) or
else explicitly with a smaller timestep within a time-split method (an explicit time-split model).
In this section we will consider two models that are representative of the two classes, followed

by a brief discussion of the stability of general semi-implicit and time-split methods.

Before continuing, we note that the presentation will focus on the temporal discretization of
the systems. There exists much more leeway in the choice of spatial discretizations because
they engender fewer stability restrictions. However, consideration of the variety of spatial
discretizations existing in nonhydrostatic models is well beyond the scope of the present
review. One general observation concerning the spatial discretization is that the majority of
the nonhydrostatic models use a grid where the velocities u; are staggered 1/2Ax; in the i-th
coordinate direction from the pressure and thermodynamic variables. This allows for accurate
calculation of the divergence. We also note that only a few models are considered here. This
is not meant to suggest thaf other models are more poorly constructed, but rather that the

models highlighted were the first to incorporate the various schemes that are discussed here.

3.1 Semi-Implicit Methods

The model of Tapp and White (1976) was the first semi-implicit fully compressible nonhy-

drostatic model. The model numerics related to the dynamics have undergone significant
modifications, in particular the introduction of terrain (Carpenter, 1979) and a modification
of the semi-implicit scheme (Cullen, 1990). We will not consider terrain here other than to
note that the choice of vertical coordinate systems does impact the structure of the Helmholtz
equation and the effort needed for its solution. The following description of the model

parallels that found in Cullen.

The model uses the perturbation variables IT; and 6, for the pressure and thermodynamic

variable along with the geometric vertical-coordinate z. The momentum, thermodynamic and
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pressure equations can be written as

av 891
—5 + GOVHl ——k=-—-V.-VV—- 91VH1 + D,
o
86, a6, Dot S
— W— = V. 1 + ,
or e v-Va o 9

2
oIl C
! - gw + e v . V = Rn,
ot Cpbo Cpbo

where Ry is given in Cullen. The acoustic-mode terms, along with the gravity-mode terms,
are on the left side of the equations whereas the terms on the RHS of these equations are not
responsible for the acoustic or gravity modes. The RHS terms are integrated explicitly using
leapfrog time discretization. The terms on the lefthand sides of the equations are treated

- semi-implicitly. The temporal differencing for the equations is

Vn+1 . Vn—l

—24t60(@VIL " + (1 — o) VIP )
+ 2At0£(a01" oy (1 — a)g" 1k + 2ArRy,
[2]

: . a6 4
0" " — g1 —2Atgzg(awn+l + (1 - a)w"—l) + 2AtR:,

¥ H1n+1 - Hln—l = QAL g (awn+1 +(1— a)Wn_l)
L Cpbs

2

c
- 2Atc “; (aV v (1—a)V - V" 1) + 2AtR].
pYo

Ry and Ry are the RHS terms in the original set and « is a temporal weighting factor for the

semi-implicit step. Next, a second order correction term for IIj,
+1 —
7= el — 07 4 (1 — oY), (17)
is used to eliminate H?l”'l from the system. The resulting equations are

vyl —yn—1 _ 2010,(Vx') + 2At0£(a01"+1 + (1 — a)p" Dk
o

_ 2A100(Vﬂ1’1) + 2AtRy;, (18)
, a0
Blnﬂ-l =01n—1 —_ zAté_(awnﬁ'l + (1 _ a)Wn_l) + 2At 85 (19)
ﬂ_n =2A¢ g (awn+1 n (1 _ a)wn—l)
Cpbo
C2 -
_4Atc “; @V - V'H'l +(1—a)V- V"_l) — 2(]'['11 - mll_l) — 4AtR: (20)
6o )
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A Helmbholtz equation for « is formed by eliminating 6"+ from (18) using (19) and then
eliminating V”**?! from (20) using (18), with the result being |

3 ] ] 1 | .
V%ﬂn * [E(A_IE) - %A_laz 4a? czAtZ] Bl 1)

L)

See Cullen (1990) for definitions of 4 and ®. The advance a timestep one solves the Helmholtz
equation (21) for « and then advances the momentum equations (18) and the thermodynamic

equation (19).

The stability analysis of Cullen shows that the timestep is limited only by the advection speed;
gravity waves do not limit the timestep and, of course, neither do the acoustic waves. The semi-
implicit scheme without implicit treatment of the gravity waves is given in Tapp and White.
- They show that a stability criteria for that scheme is N?Af < 1, where N is the Brunt-Viiséla
frequency The removal of th]b stablhty limitation is achleved by sem1-1mphc1t discretization
of g6/ o,,k in the vertical momentum equation and seml-lmphcn representation of the vertical
advection of the base-state stratification wdb, /& in the thermodynamic equation. Cullen
notes that the base state should be chosen such that it is more stable than what is likely to
be encountered in the simulation. Th]s con51derat10n is dlscussed ina hydrostatlc context by
Simmons et al. (1978)

The gravily-Wave stability restriction in the Tapp and White model does not depend on
the gridscalé Ax. For typical values of N, the grid scale Ax would need to be at Jeast a
few tens of kilometers before the gravity-wave stability limit becomes more restrictive than
that from advection (this assumes the use of an advection scheme with a general stability
restriction of UAt < D). Cullen suggests that the removal of the stability restriction based
on the stratification will allow use of semi-Lagrangian advection schemes and a much larger

timestep.

3.2 Split-Explicit Methods
Klemp and Wilhelmson (1978) (hereafter referred to as KW) introduced a split-explicit
-technique for the integration of the fully-compressible system. The splitting technique is

similar to, but predates, that used by Chao (1982) for hydrostatic models. A brief discussion
of the stability of time-split techniques can be found in Section 3.3, and a detailed discussion

of the stability of time-split numerical techniques for both hydrostatic and nonhydrostatic
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models is given in Skamarock and Klemp (1991). The semi-implicit treatment of gravity
waves by Cullen has a natural time-split counterpart which we include in the overview of the

KW model; it is described in detail in Skamarock and Klemp.

The momentum, thermodynamic and pressure equations used by KW are

av g8,
‘37 + BDVHl -k = —V. VV — gIVHl + D, (22)
o .
%1 1 W% +D,+ S 23
——— w-— - _— - » ,
p e V- Ve o T Sg (23)
2 .
— +—2V.4,V =R, (24)
I A -

~ This system is the same as that used by Tapp and White except here in the pressure equation
the acoustically active term (cf/cpeg)v - 9oV replaces —gw/cpbo + (cf/cpe,,)v . V. Asin
Tapp and White, KW treat the terms on the RHS of (22) and (24) as acoustically inactive.
These terms will be advance with a centered-in-time leapfrog step, this is referred to as the
large timestep. The terms on the LHS of (22) and (24) are résponsible for the acoustic modes
and are advanced with a smaller, explicit timestep, this is the small timestep. As Cullen
has demonstrated for the semi-implicit scheme, gravity-wave restrictions to the timestep can
be circumvented by including the vertiéal advection of 6, and the buoyancy term in the
vertical momentum equation in the acoustic computations. Hence the appropriate terms in
the thermodynamic equation (23) and the buoyancy term in the vertical momentum equation.

(22) are integrated along with the acoustically active terms.

The small and large timesteps are not taken scparately in the KW scheme but rather are

coupled. In keeping with the leapfrog approach, the acoustically active terms are integrated

from ¢— At to ¢ + At with n small timesteps Arwhere Ar = ZAt/n. The temporal discretization

for the system (22) through (24), with the small and large timesteps are coupled, is
- oI 2At 8

urAT = YT — Ar + —;z——Ru' + 7”7&;(“7 A (25)
w’r+A‘r = w'r . AT[(Q 1 + (1 _ a) &1)

g T+ Ar ‘ T 24t t o T
+ =@ 4 (1 — a)gl)] + —R, + 1 =(V.aV) (26)
b, n &
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00 2At
AT = 6 — Ar (@A 4 (1 — o) — + —R, (@7
oz n
' Arct.
n-i'-l-A-r = H'i‘ _ ;VH . 00V7+A-r
- Cply ,
Arcy  3(BoWTAT) 80w, 24t _, |
- a - + R 28
cpo,,z( e +t(l—a)” ) —Ru | (28)

Several features of this discretization deserve comment. First, the leapfrbg integration of the
non-acoustically active terms takes place through the addition of the terms (2A¢/n)R '; in the
discretized set. These RHS terms are computed before the small timesteps are taken. They
are evaluated at time 7 and need only be evaluated once during the timestep; typically the RHS
computations consume the bulk of overall CPU time. The horizontal momentum equation
(25) and the pressure equation (28) are integrated using the forward-backward scheme of
~ Mesinger (1977). In this application the horizontal momentum equations are advanced first
using IT] followed by the pressure equation using the new velocities V5*47. For centered

differencing on the C grid, the stability criteria for the horizontally propagating acoustic modes

iscsar/ax < 1

In typical simulations the vertical grid spacing is much finer than the horizontal grid sp4cing.
Acoustic modes propagate at approximately the same spéed vertically as horizontally, hence
vertically propagating acoustic modes are handled implicitly in much the same manner as
the acoustic modes are handled in the semi-implicit model of Tapp and White. The 1-D
implicit system in the KW model is solved by eliminating II7* A" and 6747 from the vertical
momentum equation (26) using (27) and (28). In the spatially discrete system the elimination
leads to a tridiagonal matrix for w™tAT which is easily solved. This removes all timestep

restrictions arising from the vertically propagating acoustic modes and from the gravity waves.

Another feature of this explicit scheme is the introduction of an acoustic filter. The final
terms in the temporally discrete momentum equations (25) and (26) involving derivatives of
the divefgénce V - goV act to damp the acoustic modes in the system, hence we call this
* divergence damping. An analysis by Skamarock and Klemp shows that the addition of this
term, involving the full 3-D divergence, eﬂéctively damps the acoustic modes and has little
effect on the gravity waves. Th]s filter is not the same as the the divergence damping found -
in some hydrostatic app]ications; the hydrostatic applications damp the horizontal divergence

with the purpose of removing gravity waves (see Morel and Talagrand 1974, Sadourny 1975).
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33 Stability Considerations

The preceeding fully-compressible models make use of what are now standard numerical
methods for integrating the dynamical equations. The time discretization in both is based on
the leapfrog scheme with the addition of an implicit scheme in the Tapp and White model
and with the addition of a splitting technique which uses a forward-backward scheme of
Mesinger in the split-explicit model of KW. An obvious question is whether there are any
time-integration schemés:that could replace leapfrog time differencing. A more accurate
scheme may be desirable given that leapfrog with Asselin time-filtering is only first order
accurate. Alsb, some of the forward-in-time advection schemes coupled with a split-explicit
or semi-implicit approach would require only half the data storage of the original schemes, and
in the case of the time-split approach would require only half the number of small timeSteps

to integrate the acoustic modes, needing now only to be advanced from ¢ to ¢ + Af.

The feasibility of these extensions can be examined through a stability analysis of a simple

acoustic-advective system.

u, + cp, + U, = 0, (29)
ptcu+Up =0 (30)

Consider the application of the split-explicit integration technique of KW to the system (29)

and (30) with Fourier spatial decomposition. The relevant discrete equations become

i
UAT = T — idgp” — — A (31)
Dy
i
pT’f‘A‘r - p-r — iAcqu+AT _ ;‘Aupt, (32)
s

where A, = 2AtkU, Ay = Arcsk and k is the wavenumber. For the non-time-split system,
ie., AT = 2At, the discrete system is pure leapfrog using forward-backward time differencing
for the terms multiplied by ¢, (Mesinger, 1977) and the method is stable for |A, & Ae| < 2
(see Figure la). In contrast, for acoustic modes alone the stability of the scheme requires
|Acx| < 2 and for advection alone A < 2. The stability of the scheme using several small
timesteps per large timestep (Ar = 2At/ns, ng > 1), is shown in Figure ’1b. It would appear
that nothing is gained by taking several small timesteps per large timestep; large Courant
numbers cannot be run for both the large and small (advective and acoustic) timesteps. The

fingers of instability appearing in Figure 1b are related to the advection of acoustic modes
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Figure 1. (a) Amplification factor from a von Neumann stability analysis for 1 small timestep
per large timestep using the KW split-explicit scheme, (b) for six small timesteps per large
timestep. Regions where 4 > 1 are stippled, the thick line is the 1.0 contour and the minor
contours are at 0.2 intervals.

205



WILLIAM C. SKAMAROCK NUMERICAL METHODS...

whose frequency is higher than that which can be represented on the large timestep. However,
these unstable modes are well damped by the Asselin filter used in with the leapfrog scheme

and are also controlled by the divergence damping used in the KW scheme.

Semi-implicit differencing of the system (29) and (30) leads to an uncoupled pair of discrete
equations of the form

o1 = ¢n—;l —ing — _i'\?ac(‘ﬁnﬂ + ¢n—1). '

Kwizak and Robert (1971) have shown that this scheme is stable whenever ,\,2‘ <1+ ,\fx. For
acoustic modes in the fully compressible system A, 3> ), hence the scheme is always stable.
Further stability is engendered by offcentering the implicit portion of the scheme with more
weight given to the value ¢***. This offcentering, accomplished in the Tapp and White model
by using a > 1/2 in (16), (17) and (18), serves to transform the neutral scheme to one that
damps. This damping can control instabilities arising from other computations in the model
and is also used in the vertically implicit small-timestep computations by KW. Offcentering
the implicit computations does degrade the accuracy of the overall scheme to first order in

time.

Returning to the question of the use of alternate time discretizations for the advection terms
that are presently handled using leapfrog, we examine the use of the forward-in-time Crowley
schemes (Tremback ez al 1987) coupled with the split-explicit and semi-implicit schemes. The
second-order accurate Crowley scheme is

1+ At ¢ By, t A t t t

¢ = ¢ — E(¢j+1 = ¢’j—1) + ‘2"(‘1"+1 —2¢; + ¢j—1)’ (33)
where g is UAt/Ax. In the split-explicit technique, the discrete equations (31) and (32) for the
simple system (29) and (30) remain the same. The spatial discretization in (33) and Fourier

decomposition in x lead to a new definition for the parameters Ay and A in the discrete

equations,
M = —if*(1 — cos(kAx)) + Bsin(kAx). (34a)
2,1 | kAx :
Aa = sin —2— (34b)

Figure 2 depicts the stability region for 6 small timesteps per large timestep with explicit

integration of the acoustic modes for the 4Ax horizontal wavelength mode. In the absence
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Figure 2 Amphﬁcatlon factor for the 4Ax mode from a von Neumann stability analysis for

6 small timesteps per large timestep using the second order Crowley scheme for advectlon in
the split-explicit KW method on a C-grid. Contoured as in Figure 1. -
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Flgure 3. Amphﬁcatlon factor from a von Neumann stability analy51s of a semi- 1mphclt
scheme using second order Crowley scheme for advection. The finite differencing is on a
C-grid. Contoured as in Figure 1.
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of acoustic modes the Crowley scheme is stable for 8 < 1. The instabilities associated with
the advection of high frequency acoustic modes are significantly stronger for this scheme than
for the leapfrog scheme (compare Figs. 2 and 1b). Divergence damping and other filters will
help control the instabilities, particularly those associated with the short horizontal wavelength
modes. However, the longer wavelength modes are also unstable, and while the instability
is weaker for longer wavelengths, it covers a larger portion of the (A, )-stability domain.
The longer wavelength modes are not appreciable damped by most ﬁlteré, hence the use of
this Crowley scheme with explicit integration of the acoustic modes is not feasible. We have
also performed numerical experiments with the advection scheme of Smolarkiewicz (1984)

and find similar results when used in a split-explicit model.

The stability of the higher-order Crowley schemes have been examined for use in the explicit
time-split algorithm. Skamarock and Klemp (1991) find that the higher-order Crowley schemes
excite weaker instabilities than their lower-order brethren. In general, the increased damping
in the lower-order schemes on the large timestep leads to larger instabilities associated with
the advection of the acoustic modes. The higher order Crowley schemes have less damping,
- and smaller instabilities, and the counter-intuitive result is that the scheme with less damping
is more stable. Through sixth order, however, the instabilities are still more severe than those

arising in the KW scheme, and the long wavelength instabilities remain.

Implicit integration of the acoustic modes can be examined by considering the simple dis-

cretized equation
i
7= g = e (=), (35)

where A, and ), are given in (34a,b). For the second order Crowley scheme, the amplification
- factor in the von Neumann stability analysis for (35) is
A — 1 - iAw - iAcz(l - a).
_ 1+ id;za
Figure 3 shows the stability space for this scheme. Both short and long wavelength instabilities

exist, though both are effectively damped by offcentering the implicit acoustic mode integra-
tions. The higher order Crowley schemes possess these same stability characteristics when
coupled with implicit integration of the acoustic modes. Thus the Crowley advection schemes
can be used in models where the acoustic modes are integrated implicitly, but the acoustic

integration must be offcentered for stability.
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This result for the 2nd- order Crowley scheme also extends to the 2nd-order seml-Lagranglan :
scheme of Bates and Macdonald (1982).

34 Discussion

In this section we have outlined the semi-implicit scheme of Tapp and White and the split-
explicit scheme of Klemp and Wilhelmson. Furthermore, we have considered possible ex-
tensions to the two’at)proaches by means of replacing the leapfrog time differencing with
some more sophisticated forward-in-time integration schemes. We search for more accurate
and possibly less costly (memory and/or CPU) schemes. Unfortunately, the stability of the
forward-in-time integration schemes is poor when coupled with semi-implicit or split-explicit

integration of the acoustic modes.

The stability results presented in Section 3.3 are further reinforced by attempted applications
of the more sophisticated integration schemes in fully compressible models. Models in which
the momentum equations are integrated with schemes other than leapfrog have, on the whole, -
proven unstable. Presently, most models use hybrid schemes wherein the momentum equations
- are integrated with the traditional leapfrog-based semi-implicit or split-explicit schemes and
the scalars are integrated using some more accurate forward-in-time scheme. The hybrid

models are stable.

Within the leapfrog framework many types of advection schemes can be used. For example,
Tanguay et al (1990) present a semi-implicit, semi-Lagrangian fully compressible model. This
model handles the gravity-wave terms implicitly and can be ¢onsidered the semi-Lagrangian
counterpart to the semi-implicit model of Tapp and White. The model is developed in a
leapfrog time-differencing framework and appears quite stable, possibly a result of its use
~ of the leapfrog scheme. As reported in Tanguay et al, a timestep of 1800s is used in a test
with a large horizontal gﬁdscale (127 km). This is about twice the timestep as would typically '
 be used in the semi-implicit or split-explicit nonhydrostatic models described previously and

the tests illustrate the advantage of the semi-Lagrangian scheme, i.e., the ability to use larger

timesteps.

- The model of Tanguay er al is semi-Lagrangian in only the horizontal directions; vertical

advection is centered in space and time. At this point it is worth considering in more detail
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how a nonhydrostatic model is to be used. As suggested by scaling arguments and revealed
through practical experience, hydrostatic models are adequate when used on gridscales no
smaller than 10 to 20 km. Nonhydrostatic models should be used when gridscales are 10 to
20 km or less. For example, the British Meteorological Office uses a nonhydrostatic model
on a 15 km grid. Simulations of strong convection with cloud models using a gridscale of
2 km often show updrafts of 30 to 40 ms™. Also, when the horizontal gridscale is a few
kilometers the vertical velocities become equal in magnitude to the horizontal velocities and
the circulations in the vicinity of the convection have an aspect ratio H/L of order 1. From
a practical standpoint, it is.the vertical advection that limits the maximum timestep in the
cloud models. For modelling philosophy, these observations strongly suggest the nécessity of
designing the horizontal and vertical discretization as a whole and not as separate pieces as
is the general practice in hydrostatic modelling. In the semi-Lagrangian model of Tanguay et
al one can expect that the the larger timesteps allowed by th_é scheme may not be realized
when used with a gridscale of 10 km or less because the vertical velocity will limit the
timestep. It is not clear how straightforward the extension of the ‘semi-Lagrangian method
to three dimension would be. Smolarkeiwicz and Pudykeiwicz (1991) have constructed a
semi-Lagrangian 2-D (x,2), incompressible Boussinesq model and have extended it to three
dimensions (Smolarkeiwicz, personal communication). The method has not been extended

to the fully compressible system.

Finally, it is worth noting that the acoustic modes are treated poorly in these schemes. Thé
semi-implicit schemes propagate the modes more slowly, and when the implicit scheme is
offcentered the all modes, including the acoustic modes, are damped. The split-explicit
scheme advances the modes more accurately in the horizontal, but is vertically implicit and
may damp modes with vertical structure. In addition, the divergence damping technique used
in the latest version of the KW model serves as an acoustic filter and drives the solution to
a nondivergent, but not anelastic, state. While the analysis of Skamarock-and Klemp suggest
that the filtering has little effect on the gravity modes, we are continuing to investigate the

impact of the various acoustic filters.

210



WILLIAM C. SKAMAROCK NUMERICAL METHODS...

4. SOLUTION TECHNIQUES FOR ELLIPTIC EQUATIONS

The discretized anelastic equations and the semi-implicit methods for the fully compressible

equations lead to elliptic equations for some form of pressure. While the equations are
linear, they are elliptic in three dimensions and the coefficient structure is often non-uniform,
particularly when orographic effects are mcluded in the model. The solution techniques for
the systems can be broken up into two types direct methods and iterative methods. In the
case of non-constant coefficients iterative approaches can be coupled with the direct solution

methods.

The anelastlc model of Clark 1977) mcorporates a solutlon method for an elliptic pres-
sure equatlon that features many of the common mampulatlons used in other models The

dlagnostlc pressure equatlon used in the model can be expressed as

Ry Gl,zp 1 _aj. o aZ(G”ZG”p)»_ #(G'*G"p)
. Gi2a?P = T mxoz oz .
1/2 1/2~13 172 1/2 ~23
1 o [GI/ZGB(BG P GG P) + G1/2G23(5G P, GG P]
T G2y & & ay &

+F (9

where G1/2 is the Jacobian of the transformation and G¥ is the conjugate tensor (see Gal-Chen
and Sommerville, 1975). The approach taken by Clark involves solving (36) iteratively holding

the RHS terms fixed during each iteration. For this iterative scheme (36) is rewritten as
n+1 32 n+1 o k
V P az —F = LP' + F, 37

where P" is the aih 1terat1ve solution for G'/2 p. The terms on the RHS of (36) are evaluated
using the latest iterative solution of P, thus only a simple elliptic equation need be solved. In

practice only 2 to 3 iterations using (37) are required for convergence.

Next, to solve the simpler 3-D elliptic equation (37) during any iteration the dimension of the

system is reduced using the method of Ogura (1969). Vertical discretization of (37) results in
GVh¢ +4¢ = H, _ (38)

where A is an (m X m) matrix for an m level model and ¢ is the column vector ¢
(1, $2, ..-m]- (38) represents a coupled set of 2-D elliptic equations. Diagonalization of the
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matrix A is given by A = S4S™?, where A and § are the eigenvalue and eigenvector matrices
for 4. The diagonalization can be used to derive an uncoupled set of 2-D elliptic equations
from (38) with the result being

GVi® + A® = R, . (39)

where & = S¢ and R = SH. The matrix 4 is constant and does not depend on x or y, hence
the eigenvalues and eigenvectors need only be computed and stored at the beginning of a

computation.

Finally, we are left with the need to solve 2-D elliptic equations with simple coefficient structure.
Both direct and iterative methods may be used. Clark uses a direct Fourier method. Tapp
and White use the iterative Alternating Direction Implicit (ADI) method for solving their
counterpart to (39). Tanguay et al use Successive Over Relaxation (SOR) on the fully 3-D
elliptic equation. The Tapp and White model with terrain (Carpenter, 1979) does not require
the outer iteration required in Clark’s model [see (37)] and neither does the model of Tanguay

et al.

There are two points to consider when choosing the form of the the diagnostic equations and
their solution techniques. In order to decompose a 3-D elliptic equation into a system of
uncoupled 2-D equations it is critical that the vertical discretization of the LHS term in the
system not possess coefficients that are dependent on the horizontal position. One does not
want to carry a different matrix 4 for every horizontal gridpoint. Clark accomplishes this by
using an outer iteration for the terms that would be troublesome (Eq. 37) while Carpenter
accomplishes this thr.01'1gh the choice of the vertical coordinate, using 9 = z — z, as opposed
to the transformed z coordinate given in Section 2.3 and used by Clark. The horizontal
coefficient structure matters little if iterative methods for solving the 2-D elliptic systems are

used, though the use of direct methods require that the coefficients be regular.

We conclude by noting that the solution techniques used for the elliptic systems have existed
for quite some time, and more recent, possibly more efficient, techniques have yet to be
exploited. In particular, multigrid methods (Fulton ef al, 1986) have not been applied in the
semi-implicit fully-compressible models where they would replace existing iterative techniques.
Multigrid methods have been used in the Clark model but have not, at present, proven as |

efficient as the iterative/direct method outlined here (Clark, personal communication).
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5. SUMMARY ’

We have presented an brief review of methods used to solve the nonhydrostatic equations of
motion. Acoustic modes présent the most fdrmidable numerical problems in designing non-
hydrostatic models. Anelastic approximations, discusséd in Section 2.2, remove the acoustic
modes from the system and leave a straightforward set of prognostic equations along with a
complex 3-D elliptic equation for diagnosing the pressure. Solution techhiqués for solving
this diagnostic equation, considered in Section 4, rely on iterative techniques, possibly in

" combination with direct methods, along with order reduction.

Anelastic models were the only nonhydrostatic models in use from the early 1960’s through the
mid 1970’s. Two approaches for integrat’ing‘ the ’fkully compressiblé equations that voverc'ome
the difficulties associated with the acoustic Imodgs were introduced in thg mid—1970’s. The
first integrates the non-acoustic terms expliciﬂy While'treating the acousﬁc terms implicitly.
This semi-implicit approach is considered in Section 3.1. The second Iriethod integrates the -
acoustic terms with a smaller timestep than the other terms. This is thé split-ekplicit apprdach
and is discussed in Section 3.2. In both approaches the terms responsible for gravity waves
can bé included in the acdustic integrations at little extra cost, hencb 1the rgsulting s,cheme"s‘
possess timesteps limited only by the advection. The primary diﬁérence between the two
approaches is that the semi-implicit techniqhes leads to a diagnostic 3-D elliptic equation for
a pressure correction while the split-explicit approach requires taking multiple, explicit small

timesteps for the acoustic mode integration.

The fully compressible models have been undergoing a slow evolution since they were first
developed in the mid to late 1970’s, having incorporated only modest refinements since the
mid 1970s. Possible extensions to the present time-split or semi-implicit schemes possess
stability problems which have yet to be overcome. In particular, the use of more sophisticated

advection schemes has been limited to scalar advection in the hybrid models.
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