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Summary: The paper reviews the method of large-eddy simulation (LES) and its applica-
tions to the convective boundary layer (CBL) in the atmosphere at weak mean winds.
Simple conceptual models are deduced to explain and parametrize the mean variances
and diffusivites over homogeneous and wavy terrain with variable surface heat flux.

1. INTRODUCTION

The purpose of this paper is to review the method of large-eddy simulation (LES), its
applications to various dry convective atmospheric boundary layers, and to describe
some parametrizations of flow properties which have been deduced from such simu-
lations and related simple models. k

As summarized in section 2, a large amount of experiences has been gained in LES.
Section 3 reviews applications of LES to CBL, which often prevails over land during day
and over relatively warm sea surfaces. Here, we show that very simple models can be
derived to explain some of the observations. In section 4 we investigate the effects of
wavy terrain and inhomogeneous surface heating. Here the state of knowledge is far less
complete than for the homogeneous CBL. Again, simple models may help to determine
the impact of surface inhomogeneities, and to derive parametrizations for larger scale
models. Many references to related studies are included.

2. THE LES METHOD

2.1 The basic approach .

The first successful LES was performed by Deardorff (1970a). The term LES was intro-
duced by Leonard (1974) and Ferziger (1977). Earlier papers referred to the same method
as direct numerical simulation (Schumann 1975), but this term is now restricted to sol-
utions of the full Navier Stokes equations that compute the evolution of all significant
scales of motion at moderate Reynolds numbers without any turbulence models (Rey-
nolds 1990).

A LES method computes the three-dimensional time-dependent details of the large eddies
using a simple subgrid-scale (SGS) model for the effects of the small eddies on the large
eddies. Here, the large eddies are those motion elements in a turbulent flow which carry
most of the kinetic energy and most of the turbulent fluxes. These motions are simulated
using a three-dimensional time-dependent numerical integration scheme which numer-
ically resolves scales in between a lower limit of order h as given by the grid-scale or any
equivalent resolution limit of the numerical integration scheme, and an upper limit as
given by the size of the computational domain. We require the size of the domain to be
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large in comparison to the scale of the most energetic motion elements, i.e. the “large
eddies.” This is necessary not only to get the correct solutions but also to get sufficient
data for reliable statistics (Lenschow and Stankov 1986). The scale h has to be smaller
than the scale of the large eddies. If the grid scale h is close to the scale of the most
energetic motions, such a simulation is called a “very large eddy simulation (VLES)”
(Reynolds 1990). A VLES demands for more accurate SGS models than a LES in which the
SGS fluxes and variances are small. Such a VLES will still be more accurate than a tur-
bulence model which tries to describe all scales of motion together in one model.

The numerical scheme approximates the basic equations which describe the motions in
the flow under consideration together with proper boundary and initial conditions. Here
we rely on the assumptions that, for flows which approach an asymptotic state, the sta-
tistics of the resultant flow are independent of details in the initial conditions. The boun-
dary conditions have to be suitably selected to describe the forcing from larger scales but
to let the internal dynamics of turbulent motions unconstrained, which is particularly
demanding at inflow and outflow boundaries (Friedrich and Arnal 1990).

The SGS model is necessary because of the nonlinearities of the basic equations. This is
formally shown by averaging or filtering the basic equations with respect to motion scales
smaller than h. The procedure results into the equations to be solved for the large eddies.
Various filter methods have been proposed (Aldama 1990), including volume mean aver-
ages (Lilly 1967, Deardorff 1970a), a volume balance method which integrates where
possible and identifies SGS contributions as surface mean values (Schumann 1975,
Grotzbach 1986, Friedrich and Arnal 1990), and a Gaussian filter within a convolution
integral which corresponds to a sharp cut-off in wavenumber space (Leonard 1974). When
the filter width is narrow, the effective filter is dictated by the approximation properties
of the numerical scheme. Germano (1991) shows that the details of such filters are unim-
portant. What counts are the scales which are resolved in contrast to the subgrid scales
which are to be modelied. On the other hand, Mason and Callen (1986) advocated to use
a filter which has a width considerably larger than the grid scale in order to obtain smooth
fields which can be numerically approximated without approximation errors.

| believe that this is not necessary. In contrary, one should try to simulate an as large
fraction of the turbulent motion energy as possible even if part of the simulations are
affected by some second order finite difference error. This is demanding enough as the
following estimate shows: If the spectrum of kinetic energy follows the well-known von
Karman shape with arbitrary amplitude C, E(k) = C(k/k.)'[1+ (k/k,)’]"""® where
ko = K.,/ 1.6 is @ wavenumber close to that of maximum kinetic energy k... then one finds
by simple integration that all scales up to k/k, = 55.4 (19.5) need to be resoived in order
to resolve 90 % ( 80 %) of all energy. Hence, an order of 50 (20) grid points is the mini-
mum which one should have available to resolve most of the energy. In three dimensions
this gives already quite a large number of grid points and, therefore, one cannot afford to
provide further grid points (say a factor of 3 more in each dimension) in order to resolve
the large scales without any appreciable finite difference errors. '

The SGS fluxes have to be modelled. The model must simulate the transfer of kinetic
energy and scalar variances from large to smal] eddies, where the dissipation by molec-
ular diffusion takes place. For high Reynolds numbers (Peclet numbers) and remote from
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rigid boundaries, these models are usually constructed assuming that the turbulence at
subgrid scales corresponds to Kolmogorov’s inertial range of turbulence (Lilly 1967). This
requires also that the scale h is small in comparison to the buoyancy scale (Deardorff
1980, Schumann 1991a).

Accurate modelling of the fluxes itself is necessary only where the SGS fluxes get large
in comparison to the resolved fluxes. This is typically the case at rigid surfaces where the
scales of the most energetic and flux carrying motions tend to zero. At such boundaries
a LES actually becomes a VLES. Moreover, for some applications it might be important
that the SGS model mimics the stochastic forcing from the small scale motion onto the
large eddies (Mason and Thomson 1991). As any turbulence model, the SGS model must
satisfy the usual requirements like the correct dimensional and tensorial properties,
invariance with respect to Galilean transformations of the coordinate system (Speziale
1985), and realizability (Schumann 1977, 1991a).

Common model variants are the Smagorinsky-Lilly model (Lilly 1967, Deardorff 1970a,
1971), using turbulent diffusivities which depend on the square of the filter scale and the
deformation magnitude of the resolved velocity field, the first-order closure model of
Prandtl-Kolmogorov type in which the diffusivity is computed as the product of filter scale
times square-root of the turbulent kinetic energy of the SGS motions (Schumann 1975,
1991a, Deardorff 1980, Wyngaard and Brost 1984, Moeng 1984, Haren and Nieuwstadt
1989), and second-order closure models which apply the transport equations of the fluxes
(Deardorff 1973) or algebraic approximations (Sommeria 1976, Schemm and Lipps 1976,
Schmidt and Schumann 1989). Mason (1989) and Mason and Derbyshire (1990) apply the
Smagorinsky model with a damping function depending on the local Richardson number,
similarly to that proposed by Lilly (1962). | prefer the first-order closure which makes use
of an energy transport equation because this equation accounts explicitly for the buoyant
forcing and for local deviations from equilibrium, is easy to implement, free of realizability
problems, does not require to specify explicitly the critical Richardson number, and
apparantly provides as accurate simulations as second-order closures (Schumann 1991a).
If the LES is successfully simulating the basic flow, then a factor of two increase in
resolution certainly gives better results than any improvement in the SGS model.

Near the surface, the SGS model must be consistent with standard properties of surface
layers. E.g. in the Prandtl layer, for high Reynolds number flows, we assume that the
shear stress is related to the flow velocity in the first grid point. In neutrally stratified
flows, the logarithmic law of the wall describes that relation. By this means also effects
of surface roughness get included. For stably or unstably stratified flows, Monin-Obukhov
similarity is used as e.g in Schmidt and Schumann (1989). Such rather simple boundary
conditions assume that the fluxes at the surface are in phase with the local velocity or
other fields in the first grid cell (Schumann 1975). This approach gives results which are
very close to various alternative schemes, at least for high Reynolds number flows
(Piomelli et al. 1989).

The numerical scheme must simulate correctly the dynamics of the large eddies (Ferziger
1977, 1987, Rai and Moin 1991). In particular it should be able to account for the tendency
to local isotropy (which requires about isotropic resolution) and its approximation errors
should be small in comparison to SGS effects (which requires at least second order
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accuracy because the SGS diffusivities scale with h** in the inertial range of turbulence).
The numerical scheme should satisfy integral conservation of mass, momentum and
second order moments (kinetic energy and variances) to simulate the dynamics of the
large eddies correctly. Such schemes exist for simulations of momentum and scalar
fluctuations in incompressible fluids (e.g. Lilly 1965, Piacsek and Williams 1970, Ferziger
1987, Schumann 1975, 1985). The pressure field has to be determined such that the flow
satisfies the continuity equation, a task which is easy to accomplish using fast elliptic
solvers on regular Cartesian grids (Schumann 1980, Schumann and Sweet 1988) but
computationally more demanding in curvilinear coordinates and grids with variable grid
spacing in more than just one coordinate (Clark 1977, Schumann and Volkert 1984, Kret-
tenauer 1991). However, for scalar quantities, like water concentrations in cloud models
(Deardorff 1980, Moeng 1986, Chlond 1991), species concentrations in models with
chemical reactions (Schumann 1989), or kinetic energy as used for SGS modelling, it is
essential that the model guarantees positivity of the scalars. A prominent example of such
a scheme is that given by Smolarkiewicz (1984). A refined method is described in Smo-
larkiewicz and Grabowski (1990) which avoids not only the appearance of negative values
but also that of non-physical overshootings. Unfortunately, a scheme which guarantees
positivity and, at the same time, conservation of variances is not known so that compro-
mises are unavoidable in this res'pect. The Smolarkiewicz scheme conserves variances
to a higher degree when applied to a scalar with small fluctuations relative to a large
mean value (Smolarkiewicz and Clark 1986, Schumann et al. 1987). Hence, one can often
optimize the simulations with respect to the ccnflicting demands of positivity and variance
conservation by proper selection of the mean value of the scalar when the mean value
itself is irrelevant. This is typically the case for temperature in a Boussinesq fluid and for
inert tracers (Ebert et al. 1989). Often, large finite difference errors occur if the flow
velocity possesses a large mean value relative to the fluctuating components. For such
cases, If ever possible, a Galilean transformation should be used, i.e. a grid which moves
with the mean velocity (Deardorff 1970a). Otherwise, the time step has to be taken very
small and the discretization errors get large. This may have strong effects on the com-
puted spectrum of turbulence and the energy transfer as measured by velocity derivative
skewness {Schumann and Friedrich 1987). Alternatively, the mean advection Should be
treated by a higher order numerical scheme, e.g. by a pseudospectral method (Rogallo
and Moin 1984, Moeng 1984, Gerz et al. 1989). .

2.2 Large eddy simulation model equations )
For a dry Boussinesq fluid, for small Coriolis forces, at high Reynolds number, the
equations to be solved by means of LES are the continuity equation for constant density

P

ou:
_u_]=0’ : : ' ) : (1)

6xj

the equations of motion,

— — __.'—_—_U"U" +ﬁg’ , , - ’ (2)



the heat balance (T corresponds to the potential temperature in the Boussinesq approxi-
mation), and possibly many budget equations for all scalars  involved,
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For flow over smooth orography h(x, y) a transformation is used with z replaced by 7,
where

n=H(z — h)/(H - h), (4)

and H is the height of the top of the computational domain. This is a standard procedure
and described in detail by Clark (1977) and Krettenauer and Schumann (1991).

2.3 Numerical method

The equations are solved numerically using a finite difference scheme based on a stag-
gered grid. The discrete equations are second-order accurate and conserve energy, mass
and momentum. Advection of scalars  is computed by means of the second-order Smo-
larkiewicz (1984) scheme. Pressure is computed by solving the elliptic equations using
FFT and Gaussian elimination for Cartesian grids and a block iteration for terrain following
coordinates. For further details see Schumann et al. (1987) and Krettenauer (1991).

2.4 Subgrid-scale (SGS) model

Subsequently, the SGS model is described which we recommend based on previous
experiences (Schumann 1991a). It is a first-order closure model of Prandtl-Kolmogorov
type. The SGS fluxes are computed using eddy diffusivites K,, for momentum and K, for
heat and other scalars. These diffusivities are computed using the SGS kinetic energy
e= 1/25’3,-. The latter is the solution of the following transport equation,
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The momentum and heat fluxes are computed from
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and likewise the scalar fluxes u””. The essential parametrizations concern the dissi-
pation rate ¢ and the SGS diffusivities,
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Here, the factor containing the Brunt-Viisilid frequency N = (8gdT/dz)"? is applied only in
stable parts of the flow and only for vertical diffusion. It guarantees positive SGS energy
e and vanishing vertical diffusion of heat for A’N*/e>1. The relevant lengthscale is given
by the mean grid spacings,

£ =min(A, cz), A= (Ax+ Ay + Az)/3. (8)
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If ever possible, equidistant and isotropic grid cells are used. The essential model coef-
ficients are the following ones which are computed from inertial subrange theory,

5 32
¢, = (ﬁ) 7 = 0.845, (9)
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where o = 1.6 and y = 1.34 are the Kolmogorov and Batchelor coefficients (Schmidt and
Schumann, 1989), see also Moeng and Wyngaard (1988). ‘
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2.5 Boundary conditions

At the top of the computational domain we set diffusive fluxes to zero and compute the
pressure (in its Fourier modes p) from vertical velocity to allow for upward propagation
of gravity waves as proposed by Bougeault (1983) and Klemp and Durran (‘1983):
p = Npw/k. At lateral boundaries, periodic conditions are assumed for those applications
described in this paper. At the bottom, the surface temperature flux is prescibed,

wT's= Qs : (11)

Momentum fluxes are determined from the Monin-Obukhov relationships as a function of
local friction velocity u,

T = =g o =12 U=k UE) [Ine/z) — Yz L) + (/T (12
with standard profile functions y, according to Paulson (1970) and Dyer (1974). Here,
L = — /(xfgQ,) is the local Obukhov scale, k = 0.41 is the von Karman constant, and

U(z) = (& + 53)'* + 0.07(8gQ,82)' " (13)

is the “effective” velocity magnitude at z= Az/2. For neutral flows, where L — co and
V., = 0, this represents the classical logarithmic law of the wall.

3. RESULTS AND PARAMETRIZATIONS FOR THE CBL

3.1 Results from LES

The CBL arises over heated homogeneous surfaces (Stull 1988). Measurements on the
turbulence structure in the CBL have been reported by many authors including Kaimal
et al. (1976: plumes up to inversion; 1982: spectral characteristics), Caughey and Palmer
(1979) and Lenschow et al. (1980: mean turbulence profiles), Hunt, Kaimal and Gaynor
(1988: merging plumes), Lenschow and Stephens (1980: updrafts, g-plumes), Greenhut
and Khalsa (1987: w-plumes with nonzero thresholds), Young (1988: w-plumes with zero
thresholds), and Sorbjan (1990, 1991: similarity function).

LES of the homogeneous CBL have been performed by Deardorff (1972, 1974: CBL for
—z,/L > 5), Wyngaard and Brost (1984: top-down and bottom-up diffusion), Moeng (1984,
1986: pseudospectral, dry and stratus), Moeng and Wyngaard (1984, 1986, 1988, 1989,
analysis of turbulence modeis), Nieuwstadt and Brost (1986: decay of convective turbu-
lence), Becker (1987), Sykes and Henn (1989: shear effects, confirm Deardorff’s results),
Mason (1989: SGS-effects, spoke pattern), Nieuwstadt (1990, 1991: review, buoyant stack
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plumes and dispersion of a line source), Schmidt and Schumann (1989: spoke pattern,
plume dynamics, heat transfer for zero mean wind), Ebert, Schumann and Stull (1989:
tracer transport, transilient matrix), Schumann (1989: transport with chemical reactions;
1990: upslope boundary layer), Schumann and Moeng (1991a, b) and Moeng and Schu-
mann (1991: plume structure and related fluxes and budgets), and Shaw et al. (1991: LES
of a forest layer below a CBL).

With respect to parametrization, the most important finding is probably that of Deardorff
(1970b) who showed that the relevant scales of the CBL are

z, w.=(fgQz)"’, T.=Qjw., t=zlw, (14)

for length, velocity, temperature and time, respectively. This result is based on insight
Deardorff obtained from his first LES of a CBL. Here, z, is the depth of the CBL, measured
usually as that altitude above ground where the vertical turbulent heat flux reaches a
(negative) minimum (alternatively, we will denote this height by H). Typical orders of
maghnitude are z, 2 1000 m, Q, 2 0.1 K ms™' (corresponding to a heat flux of 100 Wm™?), for
which w.= 1.5 ms™', T.=0.07 K. Deardorif (1972) deduced from LES the result that the
mixed layer of the CBL is controlled solely by buoyant forces if

z/(— L) = kw?u’ > 5, (15)

where L is the Obukhov lengthscale (negative under unstable conditions), u. is the mean
surface friction velocity, and x is the von Karman constant. For the given order of magni-
tude estimates, this means that v. should stay below 0.6 ms™', which is quite a large fric-
tion velocity. As shown in fig. 1, this CBL condition is typically reached, even for strong
mean winds U (say > 10 ms™') if the layer is thick, the heating strong and the surface
roughness height z, small.

The turbulent structure of the CBL has clearly been identified from LES. For example, fig.
2 shows the flow field computed by Schmidt and Schumann (1989) using a LES in which
160 x 160 x 48 grid cells where used to resolve the computational domain of 5 x 5 x 1.5 in
terms of z,. These simulations, and also those of Mason (1989), showed more clearly than
Deardorff’s less resolving earlier simulations a spoke-pattern of convection in the lower
quarter of the CBL. From the hubs of the spokes the most energetic updrafts rise of which
a few rise up to the inversion and penetrate into the stable troposphere above. These
plumes are quasi-steady updrafts persisting over a time of order 2 £, but contain also hot
bubbles which rise occasionaly within the updrafts even more quickly. Basically the same
structure has been found by direct numerical simulations of the CBL for
Re = w.z;/v = 139 by Moeng and Rotunno (1990).

The penetrative plumes cause some of the entrainment by which relatively cool air is
transported into the warmer (in terms of potential temperature) troposphere above.
Moreover, for continuity, warm downdrafts sink from above into the CBL. Both effects
together cause a negative entrainment heat flux Q. at the inversion. As a consequence,
the mixed layer gets heated from below by Q, and from above by Q.. Also subsidence
may contribute considerably to the heat budget (Hoppmann and Roth, 1991). The resultant
changes in mean temperature and the rise of the inversion can be parametrized as
described in Raynor and Watson (1991). Parametrizations of the surface heat flux at weak
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mean winds are deduced from a simple surface layer model in Schumann (1988) and
discussed in Schumann and Schmidt (1989) and Schmidt and Schumann (1989).

As shown by fig. 3, the profile of vertical turbulent heat or temperature flux decreases
about linearly from its surface value to the entrainment flux. Such a linear profile is nec-
essary to give a uniform vertical divergence of the heat flux which in turn causes a con-
stant heating of the mixed layer within the CBL. The figure shows also that the LES results
agree nicely with measurements. In fact, such measurements are difficult and often
deviate more from the theoretical linear trend than do the LES results (Sorbjan, 1991).
Also the LES results contain statistical uncertainty because of the finite domain size which
implies that averages are taken over a finite number of large eddies (updrafts and down-
drafts). This statistical uncertainty is indicated by the error bars in fig. 3.

Fig. 4 is taken from a study (Nieuwstadt et al. 1991) in which four LES codes have been
compared using rather coarse grids (only 40 x 40 x 40 cells in a domain of size 4 x4 x 1.5
in units of z). The results agree closely with those of the high resolution analysis of
Schmidt and Schumann (1989). We see that the scatter between the various LES results
is smaller than the scatter of the observational data. Sorbjan (1991) shows similar pictures
with more data revealing even larger scatter of the observations. The mean trend of the
vertical velocity variance is close to the observations and can be approximated as pro-
posed by Lenschow et al. (1980),

w2 w2 = 1.8(z/2)?%(1 — 0.82/z)’. (16)

See Sorbjan (1990, 1991), Young (1988) and Jochum (1990) for further parametrizations of
this kind. The observations tend, however, to show generally larger horizontal velocity
variance u’ than obtained from all the LES. It is assumed that this is caused by deviations
from ideal CBL states, e.g. by shear at the inversion or at the surface, surface inhomo-
geneity (terrain or variable surface heating) or by advection or even by some clouds
within the upper CBL.

Fig. 5 shows the third order moment of the vertical velocity fluctuations and the related
skewness, S = w”*/(w'?)*2. The vertical velocity cubed describes the turbulent transport of
kinetic energy (within the vertical velocity variance). It has to be positive in order to bal-
ance for the excess in buoyant energy production near the surface and the excess in
energy destruction (both by turbulent dissipation and by the entrainment heat flux) in the
upper part of the CBL. In fact, as a rule of thumb, one should expect that this flux
increases for larger entrainment flux. This rule is correct as long as the alternative energy
flux p’w’[p does not dominate. See also Moeng and Rotunno (1990) for a discussion of
these fluxes as a function of the heat flux profile. The skewness is approximately related
to the mean area o, of updrafts if these are defined as w-plumes, i.e. as those regions
where the velocity w’ is positive.

The LES result for the updraft area fraction «, is shown in fig. 6 as computed by Schumann
(1989) and by Schumann and Moeng (1991a) in comparison to data by Young (1988). The
results differ most strongly in the upper part of the mixed layer where Schumann’s LES
gives smaller values of o,. This difference is also found by Nieuwstadt et al. (1989) who
found that other LES give results in between those shown in Figs. 6a and 6b.
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According to Wyngaard (1987), the relationship between skewness S and area fraction of
updrafts a, is

S oy, . (17)

However, this relationship underestimates the skewness for given values of «, < 0.5, and
underestimates the area fraction of updrafts «, for given values of S, because it assumes
a top-hat velocity field and ignores contributions from skewness within updrafts. For
example, it predicts «, = 0.28 for S = 1, and S = 0.41 for a, = 0.4. The results indicate that
a factor of about two should be included for correction, i.e. S =S, a, = 1/2 + (&, — 1/2)/y,
with y= 2, and S, &, denoting the values computed from the previous equation.

The variable cross-section of the updrafts and the related skewness profile have strong
impact on vertical diffusion. As shown in Fig. 7 (Schumann 1989) and discussed by Wyn-
gaard and Weil (1991) and others, a species introduced through an area source at the
layer top and having zero flux through the bottom (i.e., one undergoing “top-down” dif-
fusion) has a well-behaved 'eddy diffusivity with maximum value of about 0.2. But one
introduced at the bottom, with zero flux at the top (“bottom-up” diffusion) has a much
different diffusivity profile. It may show a singularity with very large or negative values
but is otherwise of order 0.4. The tendency to ill-defined bottom-up diffusion is an effect
of counter-gradient diffusion, as explained by Wyngaard and Brost (1984), Schumann
(1987) and Holtslag and Moeng (1991). Subsequently, we derive a simple model, which
explains the differences in the magnitude of the diffusivites for bottom-up and top-down
diffusion.

3.2 Two simple models for bottom-up and top-down diffusion

We consider the simple flow configuration sketched in fig. 8a. The domain of height H and
width B is split into four subdomains. The bottom and top domains are of depth H/2, the
right ones represent the updraft with a width o,B, the left ones the downdraft with width
(1 — o,)B. We assume a mean steady circulation such that the mean flow rate per unit
lenght is wb, where b = B/2. This flow rate from subdomain 1 to 2 is the same as that from
2 to 3, 3 to 4, and 4 to 1, because of continuity. We ignore any small-scale turbulent mixing
between the subdomains but assume that the single domains become well mixed. The
mean concentrations of a species is ¢, i =1, 2, 3, 4, in the four subdomains. The species
is emitted from the surface with a uniform flux density U and likewise from the top
downwards at rate D. Either U or D is zero. As a consequence, the mean concentration in
the whole layer, ¢, increases at steady rate by

dé|dt = (U + D)/H. (18)

The mean vertical flux at midlevels in steady state is (U — D)/2. Hence, the effective dif-
fusivity K can be estimated from

Uu->D K ay(Cs — o) + (1 — o )(cs — €4) .

(19)

2 HJ2

The concentration deviations from the mean ¢ satisfy the individual budget equations
31




1.2

1.5 - 1.5 T
z Il )
K a) / e 1.0-
1.0 " S BRE AN 1
i : 0.8-
d N z
z,
051 ;o osd ;06
up jdown do n“|
" 0.4
0 et —T— 0 — ,/ ——
0 0.5 0.8 0 0.5 0.8 R
area fraction h, ~Waown 0.2
W W s
0
0.3
. . 1.2
Fig. 6 Area fraction of upward and
downward motions « and mean values 1.0 1
of the vertical velocity w in the two 0.8 -
areas. a) Top: from Schumann (1989) éos
for U =0, b) right: from Schumann and i
Moeng (1991); here z/(—L)=14. The 0.4 4
circles and the dashed interpolating 0.2
curves denote field observations from
’ 0 T . T . T . .
Young (1988). -08-06 -04-02 0 02 wi/w, 08
1.5 ". | . I
z Z |
z z, )

K, /(wgz) K,/(wy z,)

Fig. 7 Effective eddy-diffusivites for top-down (K,) and bottom-up (K,) diffusivity versus
height at a sequence of times. Dotted curves: mean value; thick curves: interpolations
from Moeng and Wyngaard (1984); dashed curves: interpolation from Schumann (1989).

32



V,dc,/dt = — wb(c, — ¢;) + (1 — o, )BU — V,dE/dt, ‘ (20)

V,dc,/dt = — wb(c, — ¢;) + a,BU — V,dt/dt, ' (21)
Vadcs/dt = — wb(cy — ) + o,BD — VadE/dt, (22)
V,dc,/dt = — wb(c, — c3) + (1 — o, )BD — V,dc/dt. , (23)

Here, V,=V,=(1 — o,)BH[2, V,=V,; = o, BH/2. In steady state, the required concentration
differences can easily be found from the above equations:

wb(cy — ¢y) = o, B(D — U)[2, wb(cy —¢y) = (1~ a,)B(D — U)/2. (24)
Hence,

_ (0~ pH o |
K= Aoy (ca— )+ (1 —a)eg —cq)] 4(1 N 2, N 2%%) ) , (25)

independent of D and U. Thus, this model predicts eqvual diffusivities for bottom-up and
top—dowyn diffusion even for a, # 1/2. However, the model predicts diffusivities which are
up to an factor of two larger for a,<1/2 and for «,>1/2. For o, = 1/2 the model gives
K = wH/2, i.e. about the right magnitude, K = w.H/4, if w =w.[2, which is a reasonable
value, see fig. 6. o

In order to explain the asymmetry between bottom-up and top—down diffusion, we next
consider the alternative simple flow configuration sketched in fig. 8b. The domain of
height H and width B is split again into four subdomains but with different topology. The
bottom and top domains are of depth h<H so that their volume can be ignored in com-
parison to subdomain 2 which is of width «,B, and represents the updraft region. The
downdraft in subdomain 4 is of width (1 — o,)B. OtherWIse the model is as before. Hence
the effective diffusivity can be estimated from o
Uu->D C3 — €

=K== | A (26)

The concentration deviations from the mean ¢ satisfy the individual budget equations

V,dc,/dt = — wb(c, — c,) + UB — V,d&/dt, : (27)
V,dc,/dt = — wb(c, — ¢;) — V,dc/dt, -  (28)
Vadcs/dt = — whb(c, — ¢,) + DB — V,de/dt, - (29)
V,dc,/dt = — wh(c, — c5) — v;da/dt. | (30)

Here, V,=hB<V, V,=o,BH, V,=hB<V, V,=(1—-a,)BH. In steady state, the
required concentration difference can easily be found from the above equations:

whi(cs — ¢;) = (D — U)B[2 + (V, — Vo)(1/2)dc/dt = B[(1 — ,)D — x,U]. (31)

Hence,
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Hw/2 (D — U)Hw

dc  A[(1—a)D—o,U] "
dt

K=

(32)
1+4(1— 2au)—b-:’il7

For D=0, U+# 0, we obtain the bottom-up diffusivity, and for U=0, D # 0, the top-down
diffusivity,

Kup = Hw/(2a,), Kgown = HW[[2(1 — a,)]. (33)

The two values are equal for a, = 1/2 and about K = wH/2. This is the same result as in
the previous model, see eq. (25), and gives the right magnitude if w = w./2, which appears
not unrealistic, see fig. 6. The ratio of diffusivities is

Kup/Kdown =(1—ay)/oy. ] (34)

This result is identical to that given by Wyngaard (1987) but the present model is simpler.
The related skewness of vertical velocity is given by eq. (17). Table 1 lists some typical
results from these equations. Obviously, the model gives qualitatively the correct trend
but the computed asymmetry appears to be too small for the realistic value a, = 0.4. This
means that also small-scale motions within the plumes contribute to the asymmetry.

o, 172 0.4 1/3 0.3 174 0.2
S 0 0.408 0.707 0.873 1.1585 1.5
Kol K down 1 1.5 2 2.33 3 4

Table 1. Influence of updraft area on skewness and diffusivites.

Equation (32) shows that the difference between bottom-up and top-down diffusion origi-
nates from the asymmetry of the volumina of those regions into which the upward and the
downward diffusing flux is injected, and from the presence of a temporal change in the
mean concentrations. The asymmetry of the flow is measured by a, = V,/(V, + V,), but lies
also in the fact that all fluxes go from the surface through subdomain 1 into 3, without any
part mixed directly with subdomain 4, and similar conditions for the top-down diffusing
species. The latter point is essential and was not noted before. It appears, however, to
be related to the condition of curved mean concentration profiles which were found to be
a necessary condition for differences in the diffusivities in a continuum model by Wyn-
gaard and Weil (1991).

Hence, the transport asymmetry is caused in the CBL by the skewed turbulence structure
composed of strong updrafts which shrink in mean cross-section with aititude within the
mixed layer, and are surrounded by weak and wide downdrafts. It is not sufficient to
assume different width for the updraft and downdraft parts rather than the vertical vari-
ation in the width of updrafts is important too. The analysis shows further the importance
of the time dependence of the concentrations. We expect similar changes in the diffusiv-
ities if the concentration changes not because of unsteadiness but because of other
source or sink terms as they appear for chemically reacting species. Such effects have
been, in fact, observed in LES of the transport of chemically reacting components {(Schu-
mann 1989). : |
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4. CONVECTION OVER INHOMOGENEOUS SURFACES

4.1 LES of convection over a surface with variable heat flux ,

In this section we report on LES of the CBL with variable surface heat flux and variable
surface height for zero or very weak mean. The effects of inhomogeneous surface heating
on the turbulent CBL over a flat surface has been investigated using LES by several
authors. Hadfield (1988) observed a general increase of velocity fluctuations due to an
idealized two-dimensional surface heat-flux perturbation. Schmidt (1988) found consider-

able increase of horizontal velocity fluctuations with increasing inhomogeneity but a small
reduction in the vertical velocity component. Graf and Schumann (1991) supported this
result from simulations in comparison with field observations including a weak mean
wind. Hechtel et al. (1990) simulated an observed case of the CBL with weak mean wind
including moisture effects and random surface properties; they found little influence of
inhomogeneity on the turbulence statistics. The case of infinitely extended slope layers
has been simulated by Schumann {1990). He showed that the turbulent motions dominate
relatively to the upslope flow velocity for weak inclination.

As a demonstrative example of the effect of inhomogeneous surface heating, fig. 9 shows
results of a LES of a CBL with zero mean wind and with periodically varying surface
heating. The simulation parameters are as given in Schmidt and Schumann (1989) except
that the surface heat flux varies in a step-wise manner. It amounts to (2/3)Q for
0<x<25H, but to (4/3)Q for 2.5 H < x <5H. Here @ is the mean heat flux and H the
depth of the CBL. The resultant mean fields shown in fig. 9 represent averages over all
grid points along the y coordinate. We observe a strong coherent circulation pattern. In
terms of the convective velocity scale w., the maximum updraft/downdraft velocities are
1.02 | — 0.4 w., respectively, . the maximum horizontal velocity is 1.32w.. The updraft
deforms the stable layer above the mixed layer only slightly. The resultant heat flux is
strongly concentrated and reaches a local maximum of 4.44 Q. In spite of the strong local
updraft, the mean vertical velocity variance w?, averaged over the x coordinate, is slightly
smaller than for the corresponding homogeneous case with constant surface heating; the
maximum value of W’E/w.2 is 0.40 / 0.43 in the inhomogeneous / homogeneous cases,
respectively. However, the horizontal velocity variance increases over the inhomogene-
ous surface; the maximum mean values of U’_Z/w.2 occur near the bottom surface and
amount to 0.57 / 0.32 in the two cases, respectively.

4.2 LES of convection over wavy surfaces

Field observations of the structure of the atmospheric CBL, by Kaimal et al. (1982), Druil-
het et al. (1983), Jochum (1988), and Huynh-et al. (1990) found that “gently roliling
terrain” affects the turbulence only little. "’Ho‘wever, the experimental studies did not

explain why the effects of terrain appear to be small in most respect.

In a recent study of convection over wavy terrain (Krettenauer 1991), which extended that
of Krettenauer and Schumann (1989) to larger Reynolds numbers, and that of Walko et al.
(1990) to other parameters, seven cases were treated. The cases are denoted by a string
“LddIL”, where L stands for LES, dd € 0, 10, 15, identifies the wave-amplitude 6/H in per-
cent, le U, 1, 2,4, 8, the wavelength A/H (U for undefined), and L € 4, 8, denotes the
domain size L[/H. Fig. 10 depicts the computational domain and the grid on the wavy sur-
face for case L1014. In order to point out that the undulation is strong, we note that the
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Fig. 8 Sketch of simple flow configurations for estimates of vertical diffusion. Here, o = a,
denotes the updraft area fraction. ‘
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Fig. 9 Mean velocity vector field in a vertical cross-section of a CBL over a flat surface
with step-wise varying surface heat flux.

Fig. 10 Perspective plot of the computational domain as used for LES of convection over

wavy terrain. In the example the surface wave has amplitude § = 0.1H, and-wavelength
A=H; L=41
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maximum slope 2rnd/1 reaches 0.942 with an inclination of 43¢ for 6/H = 0.15. The surface
roughness height (which enters the Monin-Obukhow relationships for momentum and
heat transfer) is specified as z, = 10"*H. As shown in Schmidt and Schumann (1989), the '
effect of the surface roughness is weak for prescribed heat flux in the convective cases.
It is assumed that the CBL is capped by a strong inversion so that vertical fluxes are
vanishing at the top of the mixed layer. The numerical scheme uses a grid with
64 - 64 - 16 grid points for L =4 H and 128. 128 16 grid points for L = 8 H. Hence, the grid
cells are close to isotropic with grid spacings of the order H/16.

We show first results in terms of mean profiles which are averages at constant trans-
formed coordinates 5 = const, see eq. (4), and averaged in addition over the last five time
units. Fig. 11 shows a few results from the LES. The undulation effect is largest in the
x-component of the velocity variance. The horizontal variances increase with wavelength
in x-direction while that in the y-direction gets reduced. This is consistent with an
increased excitation of rolls with axis parallel to the surface crests. However, the
reduction in v is less systematic than the increase in v variance. The w variance generally
changes very little.

Inspection of the instantaneous flow fields shows that the motions are dominated by ran-
dom motion components which hide the coherent parts induced by the boundary forcing.
In order to make the coherent motion parts better visible, we will present results aver-
aged over a finite time period within the final part of the simulation period where the
time-average filters out the short-living small-scale random motions and emphasizes the
large-scale and long-living parts of the turbulent motions. For this purpose, we average
over the time period 30 < t/t. < 35. The limits of this interval are arbitrarily selected; the
interval length of 5 convective time units is large enough to detect persistent structures
but still small enough to show up turbulent motions. If one would average over an infinite
time period, all motions parallel to the crests of the surface waves should average out.

Fig. 12 shows results from case L1018. The wavelength is A/H =1, the amplitude is
&/H = 0.1. We see that the flow is dominated by the few strong updrafts that reach the top
boundary. They cause the flow to diverge. Several such divergent flows collide along lines
where the fluid sinks back to the mixed layer. The characteristic horizontal scale can be
estimated to be 3 to 4 H. Although these results are obtained for an undulated lower
boundary, the results look isotropic and do not show up this forcing. The vertical cross-
section shows clearly that the dominant turbulent scales are larger than the wavelength
of the surface.

From horizontal cross-sections for other cases, it has been found that the undulation for
A/H = 2 causes a flow pattern which is dominated by rolls with horizontal axis. But the
axis of these rolls are, surprisingly, not parallel rather than perpendicular to the waves
and these rolls get stronger by increasing wave-amplitude. Qualitatively, the same effect
was shown by Pal and Kelly (1979) and Krettenauer and Schumann (1989). Shorter surface
waves enhance the rolls perpendicular to the crests while longer surface waves drive
rolls parallel to the surface wave-crests. Further analysis are reported in Krettenauer and
Schumann (1991). | |
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Fig. 11 LES results for mean profiles of a) variance of velocity in x-direction, b) same in
z-direction. ...... L1014, ——-- L1024, L1044, LOOU4, .. .. L1514, --.—-. L1018,

Fig. 12 Velocity field at z=H (top) and at y = 0 (bottom), averaged from ¢/t = 30 to 35 in
the case with L/H =8, 1 =H, § = 0.1 (case L1018). Maximum velocity 1.72 w..
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In fig. 13 we investigate the effects of various surface undulations on the time and y-av-
eraged flow fields in a vertical plane. We observe that a regular convection pattern, as to
be expected from the forcing by the wavy surface, arises only for A/H > 4. The averaged
motion amplitude is strongest for 1/H =4. It increases slightly with increasing wave
amplitude.

4.3 A simple model for convection over inhomogeneous surfaces

The behaviour of the CBL over inhomogeneous terrain, as found above, can be explained
approximately using a simple model as described in Schumann (1991b). The following
description is a highly abridged version of that paper. The model assumes that the flow
can be described (in the sense of VLES) by just two grid cells in the vertical and two grid
cells in the horizontal per half-wavelength. The resultant flow can be determined quasi
analytically. The model includes both the effects from the coherent motion of the most
energetic circulation and small-scale turbulent mixing, gives an estimate of the effective

small-scale turbulence intensity, and predicts the dynamics of the flow together with the
effective diffusivites.

The model considers the turbulent convection in a boundary layer of mean depth H driven
by a mean surface temperature flux Q at zero mean wind. The surface is assumed to have
a regular wavy form with wavelength 1 and amplitude é < H. The surface heat flux varies
also periodically with the same wavelength and amplitude g <Q around the positive
mean value Q. We assume that all properties vary piecewise linearly. The resultant mean
deviations in the heat fluxes are + g/2. In the case of fig. 9, g/Q = 2/3. The surface is
assumed to be rough with roughness height z,. The top of the boundary layer is assumed
to be represented by a very stable inversion such that it can be approximated by a rigid
free-slip adiabatic boundary. The fluid is exposed to gravity g. We assume the Boussinesq
approximation for a fluid with uniform density p, and constant volumetric expansion
coefficient f. Because of constant mean surface heating, the volume averaged temper-
ature T increases at constant rate

dT |dt = Q/H. N (35)

In order to obtain an estimate of the resultant convective (coherent) motions we approxi-
mate the flow domain, as sketched in fig. 14, by four subdomains, 1 to 4, each of width
b = 1/4. On average the depth of the subdomains is h = H[2. Between the subdomains,
we assume a flow with surface averaged velocities u from domain 1 to domain 2, and, for
continuity, at the same rate from domain 3 to 4. In the vertical directions the correspond-
ing flow velocities from 2 to 3 and from 4 to 1 have the mean value w. Flow across other
boundaries of the subdomains are zero because of symmetry, periodicity and because
of top and bottom boundary conditions. Because of continuity,

uh=wh. (36)

This equation applies for arbitrary values of § < H because the velocities are the Carte-
sian components and because the domain height is 2 h at the mid-interface for symmetry.
The volume sizes of the four subdomains, per unit length in y direction, are
V,=V,=b(h+ 6/4), V,=V,=b(h—5/4). Let T, i = 1, 2, 3, 4, denote the mean local tem-
perature deviations from the (arbitrary) mean temperature T. We approximate advective
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Fig. 13 Influence of wavelength of orography on the velocity field in a vertical plane for
various surface undulations. These plots represent time and y-averaged results. a) L1014,
b) L1044, c) L1514, d) L1024, e) L1088. Maximum normalized velocity vectors a) 1.03, b)
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Fig. 14 Sketch of a half-wave (wavelength 1 = 4b) of a vertical cross-section of the periodic
flow domain of mean height H = 2h with surface height amplitude  and mean variations

in surface temperature flux Q + g/2, showing the four control volumina 1 to 4, and char-
acteristic horizontal and vertical velocities v and w.
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fluxes by “upstream” values, e.g. the flux from volume 1 to volume 2 equals h u T,. With-
out loss of generality, this requires v = 0. Moreover, we apply eq. (36). Then, the heat
balance for each of the subdomains results in

VidT,/dt = — (uh + w'b)(Ty — Tg) — u'h(T) — Tp) +(Q — g/2)b — V,dT [dt, (37)

and similar equations for the other subdomains (Schumann 1991b). Here, v’ and w’ are
effective turbulence velocities such that, e.g., w'(T, — T,) = — K(T, — T,)/h, describes the
turbuient flux density between volumes, e.g. from 1 into 4. They are related to horizontal
and vertical diffusivities,

Ky=u'band K,=w'h, (38)
respectively.

The horizontal momentum balance is set up for a control volume of size V,= b h enclos-
ing either the lower or the upper lateral interfaces between volumes 1 and 2 and between
3 and 4. The shear stress at the bottom surface is denoted by — u? as a function of the
friction velocity w.. To first order in geometrical terms, the balances are

V, duldt = pa(h — 5[4) — py(h + §/4) — 2w'ub + (py + Py + P3 + P4)d/8. (39)

for the upper volume, and similarly for the lower volume. Here p; is the mean pressure
(per unit mass) in the i-th control volume. Similarly, the vertical momentum balance is
formulated for the two control volumina enclosing the interface between subdomains 2
and 3 and 4 and 1.

To close the set of equations, we have to specify the turbulent diffusivities K,, K,, and the
surface friction velocity u.. The latter is related to the horizontal flow velocity v according
to the Monin-Obukhov relationships, following Paulson (1970) and Dyer (1974), as used in
the LES boundary conditions. They are evaluated for z = h/2.

The turbulent diffusivities are roughly approximated by

Knp=3av'h, K,=oav'h, sothat u’ =3av'h/b, w =av'. (40)
Here, o =~ 0.079 and K, /K, == 3 are empirical parameters.

The effective turbulence velocity scale v’ is determined from an energy balance as fol-
lows. The total kinetic energy E,, = E + e, averaged over the whole domain, is composed
of the energy E = y(u® + w?)/2 of the coherent motion part plus e = 3v'?/2, the turbulent
motion part. The factor y measures the ratio between the averaged energy of the coherent
motfion and its maximum value. For a linear variation of the velocities within the four
subdomains, as it is consistent with the present model concept, we have y = 1/3. The total
energy satisfies

d(E + e)/dt = fgQ[2 —~ &, (41)

where the source term describes the energy production due to buoyancy and ¢ is the
viscous dissipation rate. The factor 1/2 enters the buoyant part because the mean heat
flux decreases from its surface value to zero at the top and equals Q/2 on average. Shear
contributions from the coherent motions are irrelevant in this sum, because shear pro-
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duction of turbulent motions equals shear energy loss of coherent motions. Also diffusion
and pressure contributions vanish because they are zero in the volume mean for the
given boundary conditions. The energy of the coherent motion part satisfies

i‘-’-E=y(uﬂ+w—‘-’-"—"—)=y Y (14 w2Jp?), (42)

where the last relation comes from continuity. The difference of egs. (41) and (42), nor-
malized by w. gives

H d 1 He u H du 2,,2
e=rm————y————— (1 4+ 4H"|1"). (43)
WS A OTT T T W )

The acceleration term du/dt is given by eq. (39), or finally by eq. (47) below. The dissi-
pation rate ¢ is commonly related to the turbulence velocities by

e =PI, = 3v2*?L,, (44)

where L, is the dissipation lengthscale. For the homogeneous case and vanishing coher-
ent motions, e comprises the total kinetic energy. For this case, Krettenauer and Schu-
mann (1991) show that L, 2~ 0.93 H. For a CBL topped by a finite inversion this value is little
smaller and about 0.8 H (Schumann, 1991a). If the coherent motions are non-zero, the
lengthscale is smaller because it measures the size of the turbulent parts only. Hunt et
al. (1989) proposed to relate L, to the mean shear. In rough agreement with their proposal,
we set

1
L —093[H +o—{(u/h) + (w/b) }"2] . (45)

Here, 2u/h and 2w/b are the effective shear rates in the horizontal and vertical directions.
The coefficient o is to be adjusted empirically. We will present results for ¢ = 1, but the
results don’t change significantly if we vary o between 0.5 and 2. These approximations
allow us to compute v’ from eq. (43) for steady state, i.e. for de/dt=10

'3
‘;‘“(2/3)3/2 - {%_ Y e ‘:2 71‘; (14412 )} - 48

From the solution v’, we can now determine the diffusivities as a function of the turbu-
lence intensity, using eq. (40). For u=0, eq. (46) predicts realistically a rms value
v’ = [(2/3)*%0.93/2]"*w. =~ 0.633 w.. The corresponding total energy is E,, = 0.6 w?.

4.4 Solutions of the simple model for convection over inhomogeneous surfaces
For steady state, the model equations can be solved analytically to determine the pres-
sure and the temperature fields. From this one finds an equation for the velocity,

H du 8u’ u 2, 2
—V;z——d?-:-—ll( H/) + )—WT——U./W.

w.{2w + (w + 2w')(6/H + q/Q) + [4u' + u(2 — 6/H — q/Q)]cS/l}
+ 8[w(u+ u')+ w'(u+2u)]

(47)
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For steady state (du/dt=0), the solution u/w. of this equation can be determined iter-
atively. Analytic solutions exist for limiting cases, which we give below for v’ = w.. For
AIH — oo, u'|]w. — 0, compare eq. (40), and therefore

u _1_\/ q/Q + 6/H w .

.= —— =0, Cy=—. (48)

Aw'|w. + Cuufw. * We u

In this limit, variations by d/H and g/Q have equivalent effects. One obtains a finite
coherent circulation which magnitude depends strongly on the vertical turbulence velocity
w’ and also on the friction velocity u.. Obviously, the smaller the turbulence velocity sca-
les are the stronger is the large-scale convection. Since C,<1, surface friction will in
general be less important than the convective turbulence in limiting the coherent motions.

In the other extreme, for very short wavelengths, 1/H<1, we obtain u<u’, w<w’, C,— 0,

and
S
7 ) (49)

Here, the terms containing é vanish over smooth terrain where 6/H goes to zero faster
than (A1/H)%. The result suggests zero motions over homogeneous terrain and a strong
dependence on «, i.e. on turbulent diffusion. The resuits for the limiting cases of large and
small wavelengths together show the existence of a wavelength A, with maximum
coherent motion.

u 1 1 p
wo s 18432';2—,-,5 (5/H+Q/Q+24

~|=

For a wavelength of order 4 H the model solutions suggest that v'<€u and w’'<u. For such
conditions, eq. (47) reduces to an explicit expression for the coherent flow amplitude,

u |1+ 6/H+ql(2Q) — (§/H + q/Q)4/(4H)
190 + 4C,u-w. )

W (50)
It shows that the surface friction plays the smaller role in comparison to the convective
turbulence in limiting the coherent motions. Moreover, we note a nonlinear interaction of
undulation and variable heat flux which tends to reduce the convection for large values
of 6/H. Since C,<1, we find for 1 =4 H and for small inhomogeneities the simple result

u S A
WT:A[1+2H+4Q , W—-2. (51)

Here, A ~ 1.0 for o« = 0.05, and A = 0.7 for a = 0.1.

Fig. 15 shows the resultant turbulence intensities in terms of total kinetic energy and in
terms of the individual components, for 6/H =0.1, g= 0. It should be noted that these
results depend quite strongly on the model parameters, in particular on o and y. We see
that v, which corresponds to the total variance in the y direction, decreases with 1/H up
to a broad minimum near A/H of order five. The vertical velocity variance, computed as
the sum of coherent and turbulent motions, shows a non-monotonic behaviour but
decreases and reaches v'? for large wavelengths. Only the horizontal velocity variance
shows a significant increase at 1/H > 2. However, this increase is not strong enough to
prevent a slight reduction in total kinetic energy. The coherent motion amplitude stays
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o = 0.079. (g/Q = 2/3).

0.6 r T T T

! . :
2 4 AJH 6
Fig. 17 Vertical effective diffusivity K,/(w-H) versus wavelength i/H for various values of
terrain amplitude §/H =0, 0.1, and 0.5, with g/Q = 0 (full curves), and for various values
of surface heating q/Q =0, 0.1, and 0.5, with /H =0 (dashed curves). Asymptotic sol-
utions for A/H = 1000 = oo are indicated at the right vertical axis; z,/H = 107%, a = 0.079.
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finite for very large wavelengths because of the finite terrain undulation. Therefore, for
A/H — oo, all energy components are smaller than for A = 0. The analysis suggests that
the relevant tubulent scale decreases with increasing u./w., at least for small values of
this ratio.

Fig. 16 shows that the coherent flow part achieves a maximum at about 2 to 3 H with
respect to the vertical velocity component. The horizontal one is maximum near 4 H. The
critical wavelength increases slightly for increasing inhomogeneity parameters. The effect
from surface undulation is little larger than from variation of the heat flux but approxi-
mately the same for 6/H = q/(2Q). The numerical results show the strong increase for
small A/H, see eq. (49). We see that both inhomogeneity parameters increase the coher-
ent circulation, but the circulation is quite large already for a homogeneous surface. Fur-
ther parameter studies have shown a very weak sensitivity to the surface roughness
height; its effect is less than 3 % for z,/H < 107",

As shown by the LES results and observations, the characteristic distance between
updrafts and the wavelength of w-spectra is of order 2 to 4H for homogeneous surfaces.
Also, the maximum root-mean-square value of the horizontal velocity fluctuations and the
maximum value of uv in conditional plume averages is of order 0.7w.. Moreover, we found
a maximum response to wavy terrain for 4 = 4H. These findings are in rough agreement
with the prediction of the model.

The flow results can be used to evaluate the vertical diffusivity for the heat flux K,. The
result is
Hiw(u + u') + w'(u + 2u")]

Ky = 4u' +u—6[H—-qlQ) (52)

For uv'<u,

(w+w')H

Kv=Z"%m—qa"

(53)

Hence, K, increases with increasing amplitude of the ccherent motions. We expect a
maximum for A/H = 3, where the vertica!l velocity achieves its maximum. For larger wav-
elengths, the diffusivity decreases. This is reasonable because any heat added to the
lower subdomain is first transported with the mean circulation horizontally before it
eventually is carried upwards. The larger the horizontal circulation wavelength, the slow-
er will be the vertical mixing. We further observe an increase of vertical diffusivity with
increasing inhomogeneity. This comes from increase in vertical velocity which enters the
above expression explicitly and also by reducing the vertical temperature differences; the
latter causes the factor in the denominator. For A/H = 4, we may apply eq. (51) to estimate
w = uh/b so that

~wHA 6 .39
Ky = w:.H 2 <1+ H +4 Q)' ' (54)

Fig. 17 depicts the dependence of K,, eq. (52), on 1/H and on the inhomogeneity parame-
ters. As to be expected from the above analysis, the diffusivity is small for A/H =0, and
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maximum near A/H= 3. For very large wavelengths, it returns to the value for AJ/H=0
because of vanishing vertical mean velocity. This result suggests a strong impact of
inhomogeneities on vertical mixing. This is true with respect to internal mixing. However,
the mixing from the surface into the CBL is controlled by small-scale turbulence which is
much less affected by the coherent motions.

Finally, we compute the diffusivities for vertical transport of a scalar which is emitted with
mean flux C and horizontal variability ¢, as corresponding to Q and g. For bottom-up dif-
fusion, i.e. for given surface fluxes and zero fluxes at the top of the boundary layer, the
budget equations for the species concentrations c; in the four domains are formally the
same as those for the temperatures 7,, We obtain

_ Hw(u+u')+w'(u+2u')]
40+ u(2— §/H - ¢|C)

K (55)
Note the formal similarity to Ky, eq. (52), as expected. For v'<u, w'<€w, and A1/H = 4, using
eq. (51), this gives

cwhHA (148, 9, ¢
Kyp = wW-H ) (1+ i + 20 + °C ) | (56)
For the top-down diffusion case, we assume that the fluxes are imposed at the top boun-
dary, simulating entrainment flux from above the inversion. The flux C is taken positively
downwards; the variation ¢ is positive if the flux into subdomain 3 is larger than into sub-
domain 4, depicted in fig. 14. The result is :

w(u + u') + w'(u+2u)

Kaoun =H 2 ¥ a@ + oTH + cC) 57}
For u'<€u, w<€w, and 1 = 4 H, one obtains
~w A 9 __c
Kdown=W*H 4 (1 + 4Q 2C ) (58)

We see that the bottom-up diffusivity is larger than the top-down diffusivity over undulated
terrain. This is a consequence of the asymmetry of the flow structure. For bottom-up dif-
fusion the species is transported first with the shorter updraft while for top-down diffusion
the species is transported first with the longer downdraft. It is interesting to see that an
asymmetry of geometrical nature has similar effects as an asymmetry of dynamical
nature. This effect was not noted before. The bottom-up diffusivity is also larger than its
top-down counterpart if ¢ > 0. This is caused by the fact that the extra flux ¢ is added into
the upward branch of the circulation from below (subdomain 2) but into the horizontal
branch from above (subdomain 3). This topological asymmetry drops if the sign of c is
changed at one of the boundaries. For § =c¢ =0, i.e. for homogeneous surfaces, the pre-
sent model gives equal values for both kinds of diffusion, and basically the same as eq.
(25) for a, = 1/2. This is, as we have seen, not realistic, but a consequence of the sym-
metric flow structure which is assumed in this model.
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5. CONCLUSIONS AND OUTLOOK

It has been shown that LES provides reliable data on the structure of the CBL. We have
deduced various simple models to explain the differences between vertical and horizontal
diffusivity and their dependence on the horizontal scale of the convective circulation. We
showed that several conditions must come together to explain the differences between
bottom-up and top-down diffusion. These include the nonstationarity (or other sink terms),
the skewness, and the vertical variability of the updraft area. Wavy terrain with moderate
amplitude (6 < 0.15 z)) has generally small impact but has strongest effect for 1 2 4 z,. This
can be explained quasi analytically.

Certainly, the potential of LES studies is very large, in particular for cloudy cases and
stratified turbulence. In an ongoing study (Dérnbrack et al. 1991) we investigate the effects
of flow over wavy terrain, both with and without a troposphere of finite stability. Here an
important question is the effect of a turbulent boundary layer over wavy terrain on the
gravity-wave momentum transport within the troposphere. Other ongoing activities con-
cern the LES of dispersion in homogenous stratified and sheared turbulence (Kaltenbach
et al., 1991) and the wave breaking and related dispersion in a stable troposphere due to
decreasing mean density and shear.

The success of the very simple models, which just use two grid cells in the vertical,
suggests that refinements in resolution near the surface is often unnecessary and a waste
of computer time. This should be true if the internal fluxes are large in comparison to
fluxes at the surface, which is the case at least for convective turbulence. In contrary, one
should try to get comparable resolution in horizontal as in vertical directions. With two
grid cells per mean boundary layer thickness in all spatial'coordinates, VLES may become
possible in the not too far future even for numerical weather predictions.
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