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Summary: The role of deep, precipitating, organised convection as
a sub-grid scale process in high resolution general circulation models
raises new issues in scale interaction and parameterization. Theoretical
developments are necessary because this type of convection involves
episodic, spatially isolated phenomena of a scale not well separated from
the mesh size. This is distinct from the statistical homogeneous realisation
approach identified with other sub-grid scale convection theories.
This paper presents idealised mathematical models to understand the
primary dynamical processes and attendant flux laws involving organised
convection. Emphasis is on momentum fluxes by travelling convective
systems. An archetype analytical model compares well with observations
both in terms of dynamical structure and flux profiles. This archetype
theory can be extended to a hierarchy of models applicable to a
range of mesoscale convective system regimes. The approach identifies
~ parameterization concepts with the basic dynamics of convection and the
interactions among convective, mesoscale and large scale processes.

1. INTRODUCTION

The role of mesoscale phenomena in the large scale circulation of the atmosphere
is a fundamental but poorly understood problem. Basic research into organised
convection and its scale interactions is of intrinsic scientific merit. It can improve
the way that scale interactions involving complex multi-phase, nonlinear processes are
approximated and in practical terms provide new insight into the long-standing problem

of convective parameterization.

The type of convection addressed herein is the organised, deep, and heavily
precipitating type associated with the meso-f scale (20-200 km) and strong wind shear.
It is epitomised by mesoscale convective systems (MCSs). The horizontal scale of MCSs

is not well separated from the grid scale and this raises new challenges in sub—grid
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scale transport (parameterization) theory. This aspect is pertinent as the resolution
of large scale models improves and moist convection needs to be more realistically
represented. General circulation models (GCMs) do not meaningfully resolve the meso-
f3 scale and parameterization schemes do not adequately represent the physics involved.
It is sobering that organised convection cannot be adequately resolved even in mesoscale
models with a horizontal resolution of 12.5 km (Zhang et al., 1988). GCMs will not
be able to achieve this resolution in the foreseeable future, giving more urgency to
the formulation of new ideas and theories. This is particularly true for momentum
transport because of its inherent dynamical nature. Herein, emphasis is on the archetype
mathematical models of momentum fluxes and their mean flow representation. The
study of momentum fluxes requires dynamical models and brings a new basic perspective

to parameterization.

The interaction of convective fluxes with the forcing circulations, manifested
by mass and moisture convergence and other processes, is the crucial aspect in
parameterization and not the fluxes per se. Communication between convective elements
and large scale circulations frequently involves intermediate scales and in this regard the
meso—f3 scale plays a vital role. Diabatically-driven circulations in the tropics down to
scales of several hundred kilometers, the lower end of the meso—a scale (200-2000 km),
are presumably resolved in GCMs that have a mesh length of (say) 60 km. Explicit
representation of organized convection in these models will not be realistic until the
resolution is O(1 km), thus not in the foreseeable future. With a 60 km grid, however,
the interaction of (parameterized) organised precipitating convection and the larger scale
processes can be studied on a case study basis e.g. highly convective synoptic conditions
over summertime continents and the tropical western Pacific. The latter is a primary

example of a hierachy of organised convection on scales spanning 0(10-1000 km).

The role of organized precipitating convection in the general circulation of
the atmosphere raises concepts that depart from the statistical basis of the current
approach to parameterization. The distinction arises from the dynamical nature
of organised convection and the attendant control over the fluxes. Models of
greater dynamical sophistication than the rudimentary plume models currently used
in convective parameterization schemes are necessary. This raises fundamental issues

on how these systems should be parameterized, one of the main subjects addressed
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herein. In order to make progress it is necessary to understand the complex, non-
linear, multi-scale dynamical interactions associated with organised systems. However,
fluz representations of minimal complezily are necessary in parameterization schemes
and this requirement has largely motivated the archetype dynamical model development

described herein .

There have been considerable advances in the theory, modelling, and
observational definition of organised convection (MCSs in particular) during the last
decade or so (Rutledge, 1991). However, there is a dearth of understanding of the
interaction of MCSs with the larger scales of motion. The necessity for including
convectively-induced circulations in GCMs has not yet been adequately explored. A
mathematical theory for the fluxes is necessary for studying the interaction of convection
with other scales of motion. Flux formulation in terms of mean flow variables is a
fundamental problem throughout fluid dynamics. The MCS is particularly challenging
because multi~phase physics in a shear flow is involved. The magnitude of this task
is put into perspective by noting that there is a wealth of unsolved scientific problems
associated with the physically simpler single- phase phenomena in unsheared base states
(e.g. geophysical turbulence). Arguably, there is an analogy between the role of coherent
structures in geophysical fluid dynamics and organised deep convection in a field of
random cumulus in the sense that both require an understanding of persistent isolated

entities embedded within a stochastic field of motion.

1.1 Fine-scale Modelling as a Parameterization Scheme Test Facility

Fine-scale models in the present context are defined as models that have
a mesh length of about 1 km and domains of at least 100 km. In terms of
parameterization, fine-scale (convection resolving) modelling is currently used more
as a facility for testing existing schemes than as a procedure to develop new omes.
The verification of the horizontally averaged quantities such as the apparent sources
of heat, moisture, momentum (the so—called Q:,Q; and @; quantities, respectively)
in different meteorological conditions against parameterized and observed values is a
valuable application of these models. For example, a two—dimensional model has been
extensively used to test the quasi-equilibrium hypothesis that is the backbone of the
Arakawa and Schubert (1974) scheme (Lord, 1982; Krueger, 1988; Xu 1990). This
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approach, in concurrence with the basic concepts behind that scheme, largely involves
statistical analyses of cloud fields and an evaluation of the closure hypothesis. The
physical basis of this approach has much in common with the large eddy simulation

(LES) widely used in boundary layer modelling.

1.2 Fine-scale Modelling in Parameterization Research

Fine-scale models having large domains are useful for detailed studies of the
effect of fluxes on the larger scales because the interaction among convective clouds,
meso—f3 scales and the larger scale are thereby well represented. However, these
models are no panacea for rapid progress in parameterization unless the void between
the inherent complexity of fine scale modelling and the required simplicity of model
realisations can be bridged. Indeed, how should fine-scale modelling be usefully applied
to parameterization research? This question is of practical as well as theoretical
significance because the computational resources required for three~dimensional, finely
resolved, lengthy integrations can be comparable to those required for general circulation
modelling. However, several fine-scale models can now resolve convection and its
attendant mesoscale circulation in adequatety large domains and thus address scale
interaction directly. Note that microphysical and sub—cloud scale turbulence processes
will always have to be parameterized in models of this type and improvements in the

parameterization of these processes are welcomed.

1.3 Ordinary versus organised convection representations

Current convective parameterizations distinguish only between deep and shallow
cloud categories and stratiform clouds are largely represented as a grid-scale process.
Parameterizations either do not use cloud models (adjustment schemes) or, if used, these
are of the one-dimensional entraining plume type (mass flux schemes) in which a single
cloud realisation is used. Cloud models of this type are likely to be too rudimentary
to represent organised cloud systems within a mesoscale ensemble, especially the

momentum transport.

The concept of the classical entraining plume representation of buoyant elements
within a convective ensemble (Ooyama, 1971) has been widely used in parameterization.

It is, for example, applied in the Arakawa and Schubert (1974) scheme. In that case,
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each member of the cloud ensemble (the number of clouds is at most equal to the
number of grid intervals in the convecting layer) entrains at all levels but detrains only
within the grid interval containing the top of each cloud element. The mass flux 7(z, )
for each cloud in the ensemble, normalised by the cloud base mass flux, is defined
by 7(z,)\) = e*#28) for z € [zp,zp|, where zp and 2p are the cloud base and top,
respectively. The value of ) is piecewise constant (i.e A = A;, where the subscript denotes
the i~th cloud in the ensemble). In practice, A is calculated iteratively by finding the
moist static energy (say) consistent with each cloud top. This simple representation is

an appropriate model of transient convection in small windshear.

The perplexing aspect of the ensemble approach relates to the effect of mesoscale
flow organisation on the fluxes. The theory developed herein should be considered
as a broad strategy for an improved understanding of fluxes by organised convection
and their induced mesoscale circulations. It is acknowledged that individual clouds or
weakly interacting cloud ensembles as represented by the Arakawa—Schubert scheme are
important realisations of ‘ordinary’ atmospheric convection. However, it is considered
that strongly interacting cloud ensembles especially those associated with in marked
wind shear may be an important missing link in the parameterization puzzle. If this is
so, the meso—f scale is the primary interaction scale to understand. The importance of
this strong interaction is expected to become more evident as the horizontal resolution
of GCMs improves. More important, in the near future better precipitation forecasting
products for input to hydrological models will be required. Clearly, highly organised,

convective events are the most difficult to forecast accurately.

Organised convection largely occurs when the mean flow has a substantial shear
and is, by definition, a less stochastic process than ‘ordinary’ convection. Arguably,
it should be parameterized as a dynamical event as opposed to a statistically
homogeneous realisation. Dynamical models based on exact solutions of the equations
of mass, momentum, and thermodynamics have been derived by the author. The
cloud mass flux can be calculated directly from these models, an approach that is
somewhat different from an entraining plume mode}l briefly summarised above. Miller
and Moncrieff (1983) used a physically simple organised regime (the so—called ‘classical
model’ of Moncrieff, 1981) that does not trasport momentum because it has vertically

orientated updraught and downdraught branches. The entrainment/detrainment
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structure of this model is quite different from that in the entraining plume. This
particular dynamical model (essentially a weak interaction regime) could be used to
represent the deepest cloud in an ensemble representation in conjunction with entraining

plume cloud elements.

The use of more than one type of cloud model in a parameterization scheme
requires more sophisticated flux laws and criteria for regime selection. However, a small
number of cloud categories should be adequate. The organisation of individual clouds
into an ensemble raises the concept of a cloud system representation and attendant
dynamical processes in parameterization theory. A paradigm is the travelling organised

convective system, the ubiquitous MCS.

2. MESOSCALE CONVECTIVE SYSTEMS

The MCS is a particularly energetic and organised type of deep convection.
Mesoscale convective complexes (MCCs), as defined by Maddox (1981), and squall
lines are both subsets of the MCS family. Collectively, these systems are the major
producers of warm season precipitation over the central USA (Fritsch et al., 1986) and
other regions. However, they are not properly represented in GCMs and certainly not
as organized entities. They are represented to a degree in regional mesoscale (limited
area) models but their occurrence is highly dependent on the choice of convective

parameterization scheme (Zhang et al., 1990).
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Fig. 1. Schema of the relative airflow and physical processes associated with a squall
line type MCS. This is a vertical cross section orientated perpendicular to the
line. Note the distinct scales of the convective and stratiform regicns. [From
Rutledge, 1991].
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This implies that the heating profiles as represented by current parameterization
schemes operating in areas where MCSs are active may be seriously flawed; the
direct momentum fluxes are almost always omitted and, if included, are usually
misrepresented. MCSs have extensive cirrus/stratus cloud shields (see satellite images)
and an attendant mesoscale circulation. However, the area of strong convection and
heavy rainfall (see radar scans) is relatively small. Figure 1 schematises this dual-scale
structure. Consequently, although the effects of mesoscale convective systems certainly
extend for hundreds of kilometers, their mesoscale circulation is primarily driven by the
baroclinic effects arising from the heating due to an ensemble of deep convection cells
of scale O(1-10 km), as shown by Lafore and Moncrieff (1989). The hypothesis that
this relatively small scale of sirong convection effectively drives a mesoscale circulation
implies that the parameterization of these systems will not be circumvented by ezplicit

resolution in GCMs nor, for that matter, in limited area models.

However, there is one caveat to this statement. If a MCS evolves into an MCC,
it tends to generate a gyre of vertical vorticity extending throughout a substantial part
of the troposphere (McAnnelly and Cotton, 1989). The dynamical scale of this gyre
is comparable to the Rossby radius of deformation and the system evidently attains
a degree of geostrophic adjustment. Consequently, it is then essentially a ‘quasi-
balanced’ system for which classical potential vorticity theory may be more appropriate
(Hertenstein, 1988) than the ‘unbalanced’ process considered herein. Presumably, high
resolution GCMs can explicitly resolve (albeit crudely) such balanced systems provided
they are spun up by the convective parameterization scheme used, although this probably
does not often happen. Operational GCMs need to adequately represent both types of

precipitating systems, for example to improve precipitation forecasting on mesoscales.

MCSs significantly affect scales smaller and larger than their characteristic scale
in a more energetically and dynamically interactive fashion than ‘ordinary’ convective
clouds: (1) Convective scale downdraughts disturb the boundary and surface layers
over a large area because the systems are long-lived, are several hundred kilometers
in length and propagate relative to the earth; (2) mesoscale downdraughts (largely
dynamically forced descent) warm and dry the middle and lower troposphere; (3) the
deep and extensive stratiform region behind many MCSs produce upper tropospheric

stratiform (stratus and cirrus) decks that are radiatively significant; and (4) the
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dynamical organisation of the airflow produces anisotropic momentum fluxes that cause
a distinctive flow acceleration, O(10 ms~'hr~!). MCSs are ubiquitous (Fig. 2a) and
occur with a marked interannual climatic variability (Fig. 2b) as shown by Tollerud and
Rodgers (1991). Note that Fig. 2 includes only MCCs, so an analogous treatment of
MCSs occurrence could reveal even more striking statistics. None of these processes is
adequately represented in current parameterization schemes, an inadequacy that can

only become more acute as GCM resolution inevitably improves.
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Fig. 2 (a) Number of MCC occurrences over the central USA for each month during
the period 1978-87. (b) Annual variability of MCCs over the central USA during
1978-1987. [From Tollerud and Rodgers, 1991]

2.1 Limited-area Modelling

Zhang et al. (1988) showed that it is necessary to include parameterized
convection to achieve a realistic simulation of a meso—f scale convectively disturbed
weather system even when a grid length of 12.5 km is used in a limited area
model. This aspect was further illustrated in Zhang et al. (1989) where, despite a
fairly sophisticated large scale representation of the condensation/evaporation process,
parameterized convection was required to produce sufficiently strong boundary layer
(localised downdraught) cooling to initiate new convective activity and result in a
realistic system life cycle. Limited area models with a mesh of (say) 10 km can
reasonably well simulate meso-f circulations in highly convective conditions provided a
suitable parameterization scheme is used. It will be interesting to see if this behaviour
is emulated in very high resolution GCMs. Note that the meso—f scale is essentially

absent from current general circulation models with the result that an important fluz
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interaction scale is artificially truncated.

2.2 Fine-scale Modelling

The utility of fine scale modelling has emerged since the realisation that coarse
horizontal resolution (about 1 km) could be advantageously employed in the simulation
of deep convection (Miller and Pearce, 1974). This is especially true in circumstances
where a high degree of dynamical control exists (i.e. in a shear flow) because fluxes
are concentrated on well defined dynamical scales and dominate those on smaller scales.
Provided the major energy sources are parameterized (condensatic;n/evaporation and
radiation) the major structural features are remarkably well reproduced. Thus, crude
parameterizations of the evaporation and condensation processes are useful in fine scale
models of organised convection. Moreover, to the extent that the phenomenon is
largely conservative, dissipative processes are by definition of secondary importance.
As a result, significant progress has been made with quite crude microphysics and
turbulence parameterizations in models having meshes of O(1 km). The degree to
which the introduction of more sophisticated (and computationally expensive) schemes
will modify the overall dynamical structure of the systems (and hence the mesoscale

fluxes) is currently unclear.

Fine-scale modelling has contributed significantly to the extensive progress
that has been made over the last decade or so in understanding travelling organized
convection (Moncrieff and Miller, 1976; Thorpe et al., 1982; Dudhia et al, 1987;
Redelsperger and Lafore 1988; Crook and Moncrieff, 1988; Lafore and Moncrieff 1988;
Nicholls, 1988; Rotunno et al., 1988; Fovell and Ogura, 1988; Tao and Simpson,
1989, among others). These simulations emulate observed system structure quite well,
particularly squall line type MCSs consisting of an ensemble of strong convection cells
that periodically develop (periods ranging from 20 to 35 min) over the leading edge
of a cold pool that is maintained by evaporatively-driven downdraughts. Figures 3
and 4 show that these cells have a horizontal scale O(10 km) and travel backwards
relative to the leading edge of the cold pool which moves in the direction of system
propagation. These cells are embedded in a mesoscale circulation (ascent and descent)
of horizontal scale O(100km). This distributes diabatic heating over a wide area and

helps establish baroclinic vorticity generation that is largely responsible for driving the
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mesoscale airflow. The Lafore and Moncrieff (1989) model study illustrates this type

of behaviour in an African squall line case. This two—dimensional study used an

interactively—nested model (Clark and Farley, 1984). In this simulation three nested

domains were used (1, 2, and 3) having horizontal meshes of 6 km, 3 km, and 1 km,

respectively, configured as in Fig. 3. Consequently, a well-resolved convective region was

simulated in a large outer domain (480 km) that contained the mesoscale circulation.

Several shear profiles and differing thermodynamic soundings were used in integrations

extending up to 16 hours.
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Fig. 3. The three-domain nested model cloud mixing ratio field ¢. after 12 hours of
simulation. The domains of the inner models are drawn and the heavy contour
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Fig. 4. The simulated convective scale structure of an MCS. (a) Cloud water in the inner
domain with isoline interval 0.25 g kg=! and (b) vertical velocity in the inner
domain with isoline interval 1 m~! [From Lafore and Moncrieff, 1989].



MONCRIEFF, M.W. Fine-Scale Modelling. ..

2.3 Dynamical Models of the Mesoscale Circulation

It is becoming clear from the analysis of data encompassing many field
experiments in diverse geographical regions (not to mention satellite images) that
MCSs are ubiquitous. Their contribution to the net convective flux divergence could
be substantial. A simple but nevertheless dynamically precise formulation emulates
the observed momentum flux profiles; a hierarchy of regime archetypes will now be

summarised.
2.3.1 Conservative hydrodynamic archetype model

Figures 1, 3, and 4 show the basic morphology of line type MCSs. The
hydrodynamic archetype solution developed in Moncrieff (1991), in which density is
constant and no baroclinic sources of vorticity exist, is depicted in Fig. 5. The jump
updraught branch (rear-to—front flow) is a fundamental component of the system, the
structural integrity of the three-branch morphology and the mesoscale momentum
fluxes.  Despite its dynamical simplicity, this model captures the essential features
of the observed momentum flux profile (see later). The far—field archetype is useful
because it defines a single nondimensional number E = Ap/ -;- pUE, where Uy is the
constant inflow to the jump inflow branch and Ap is the pressure change across the

system.
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Fig. 5. Conservative hydrodynamic archetype MCS model. Streamfunction field is
obtained from a numerical two-dimensional solution of an exact vorticity
equation defining a free—boundary problem. The approximate shapes of the two
free boundaries are shown. The flow is unstratified and hy = A = 1/2 in this
example. Units are Uy H and the isoline interval is 0.025. [From Moncrieff, 1991]
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This quantity is fundamental to the dynamics of isolated, organised propagating
convection in a shear flow. Formally, it is the ratio of the work done by the
pressure field to the kinetic energy of the jump inflow per unit volume. Note that
vorticity generation by horizontal potential temperature gradients arising from latent
heat release, evaporation and stratification are excluded from the archetype. A
rationalisation of this strategy and a full discussion of the far-and near—field models

is given in Moncrieff (1991).

The regime diagram for the so—called symmetric and asymmetric regimes that
result from the theory is shown in Fig. 6. The domain-integrated horizontal
momentum equation is the primary constraint on the solution domain. Only flow
morphologies that have a certain functional relationship between the jump updraught
depth (ho) and the downdraught depth (k) can exist. This relationship for the
asymmetric regime is given by hy = (1 — h)/(3 — 4h), the curve plotted in Fig 6. It can
be shown that ho € [§,1] corresponding to E € [—8, 8], or approximately Ap € [-4 hPa,
3 hPa] for an inflow speed Up of 10 ms=2. Alternatively, the values of k and kg can
be expressed solely in terms of E,as h = 1[3 — (1 - E)“%] and ho = [1+(1 - E)‘%]

The functional relationship for the symmetric regime is kg = 1 — h, hence its name.

The near-field solution (a free boundary type of problem) for the example of
h = ho =1/2 is shown in Fig. 5a. The archetype, as the nomenclature suggests, is the
most elementary dynamical representation of the finite-amplitude mesoscale circulation
occurring within an MCS. The presence of the ascending rear-to—front flow is the
fundamental component that promotes stationarity and is typical of both observed and
modelled MCSs. In the absence 6f this flow branch, transient behaviour predominates
(Moncrieff, 1978). Its presence, intimately involving the parameter E, requires mean

flow (synoptic) conditions in which strong shear is confined to low levels.

The observed momentum flux profile is remarkably well produced by the
archetype flux realisation, including mean flow enhancement and associated upgradient
transport (see later). This model can be extended at the expense of a progressively
increasing mathematical complexity by including (1) shear in the jump updraught
inflow; (2) the cold pool (density current) using the theory of Moncrieff and So (1989);

(3) latent heating in the overturning updraught branch; and (4) evaporative cooling in
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the downdraught. The latter two extensions require  the full conservation equations of
Moncrieff (1981). Note that the inclusion of compressibility is relatively easy, requiring
merely a transformation of vertical coordinate from height to a form of normalised
pressure (Moncrieff, 1991). However, it is physically inconsistent to include latent
heating in a jump updraught that does not overturn trajectories. For this reason, the

following elaboration to the archetype hydrodynamical model is required.
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Flg 6. Regime diagram for the conservative hydrodynamical archetype model showmg
the functional relationship between h and ho. The insets show the flow regime
associated with limiting regions of parameter space. Broken and full lines

represent the symmetric and asymmetric regimes of behaviour, respectively.
[From Moncrieff, 1991]

2.3.2 Conservative convective archetype

As previously described, observations and numerical models both illustrate that
many MCSs are characterised by a transient cellular convective region above the leading
edge of the cold pool. These cells are embedded within a slowly varying mesoscale
circulation (see Figs. 3 and 4). A vital point is that flow trajectories do not overturn in
the jump updraught of the hydrodynamic archetype. This morphology is consistent with
a two—dimensional jump updraught having a convective Richardson number equal to or

less than zero, namely a non-buoyant or forced updraught.

Consider another type of jump updraught in which there is a release of convective
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available potential energy (CAPE) so the convective Richardson number is positive.
Allow airflow trajectories within the jump updraught branch to overturn as in Moncrieff
and Miller (1976). This regime can be considered to be an idealisation of steady
‘supercell’ type of organised three-dimensional overturning. As in the hydrodynamical
model, total energy, mass, and thermodynamic (Lagrangian) properties are conserved
along trajectories. However, a more general energy conservation equation has to be used
for the jump updraught (Moncrieff, 1981). The set of solutions is again constrained by

the (eulerian) domain-integrated momentum integral.

The mathematical problem can be treated in considerable generality but the
special case of hg = h = 1/2 serves as an illustration. The dynamical problem is
defined in terms of the two non-dimensional numbers E = Ap/ 1pUZ and a convective
Richardson number for the jump updraught, namely R; = CAPE/ %Ug . These two

nondimensional numbers are related by the expression

Ry= %e(z +e)2—e) (1)

where € = 1 + /1 — E. Solutions exist within the range 1 < € < 2. This defines low
values of the Richardson number (0 < Ry < %) Moreover, 0 < E < 1 so a positive
pressure anomaly exists behind the system. This implies a high jump inflow speed (large
U and a rapidly travelling system and/or small positive values of CAPE). Low values
of the convective Richardson number are associated with a high degree of dynamical
organisation. This aspect was demonstrated for strictly two-dimensional overturning
by Moncrieff (1978), albeit for a different convective regime. The-asymptotic (remote
flow) structure in the limit of R; = 0 in the above formula (e = 2) is the hydrodynamic
archetype. The internal (near—field)structures of the two models are, however, quite
distinct due to the inherent topological difference between two— and three—dimensional

flow fields in the interior of the system (near field).

2.3.3 Non-conservative archetype

The above archetypes are consistent with an organised convective region
embedded within a comparably well organised mesoscale circulation. However, a more

‘chaotic’ or transient behaviour can be modelled by assuming non—conservation of energy
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along trajectories. This distinction is somewhat analogous to discrete wave propagation
theory (e.g. dissipative hydraulic jumps versus undular bore behaviour in shallow fluids).
A more detailed discussion of the latter two dynamical models is beyond the scope of

this paper. Flux laws will be derived only for the hydrodynamic archetype.

3. MESOSCALE MOMENTUM FLUX

The primary objectives of this section are, first, to formulate momentum flux
laws for line-type MCSs using the dynamical model described in 2.3.1 and, second, to
validate the flux laws.

3.1 Formulation

Non-linear conservation properties have been shown to model distinct nonlinear
regimes of convection and its fluxes (Moncrieff, 1981, 1990, 1991). These are
particularly useful in two—dimensions because analytic solutions are obtainable. The
two—dimensional solutions orientated perpendicular to the low-level wind (or shear) are
finite—amplitude representations of line type MCSs. Unless otherwise stated, velocities
are relative to a frame of reference travelling at the earth-relative velocity of the
convective system. However, system relative coordinates will be used throughout this

paper, unless otherwise stated.

Define A,Q(z) = [Q]L* to be the farfield difference in an arbitrary scalar
quantity @ where s = z or y. The system spans the space z € [0,L,] y € [0, L,] and is
taken to be of unit transverse dimension (L, = 1). The system is of unit depth and L.
is called its effective width. Define the mesoscale mass fluz, as M = L, < pwn(z) >

where on using the mass continuity equation,

z
Mz = - / A(punm) dz . (2)
0
Now consider the formulation of the momentum flux. Integrate the Euler equation
over the area a = L X L, and define the corresponding mesoscale momentum fluz to be

Lz < pumwm(z) >. On integrating the horizontal component of the relative momentum

equation, the momentum flux divergence is shown in Fig. Ta and is

1)
Lol < prmton(s) > = (— AL(pu, + pm) o) (3)
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where pr, is the pressure deviation from a hydrostatic base state and in the archetype
model p,, = Ap, the reference pressure perturbation arising in the definition of E.
Clearly, the momentum flux is the integral of this equation and is shown in Fig. 7 b.

Since w,, = 0 at z =0 and H, the integral momentum constraint (‘flow force’)

1
[ Aslovta 4 pm) dz =0 (4
0

must be satisfied. Thus in the absence of turbulent mixing or surface drag, momentum
can be redistributed but not generated by the convection. This is-quite different from
the problem of orographic gravity waves because in that case mean flow momentum can

be removed by the form (pressure) drag effect.

It follows that the mesoscale mass fluz and momentum fluz divergence can be
written in terms of far—field variables (Eqs. 2 and 3, respectively). These quantities
are analytically defined by the dynamical models. The reorganisation of the mass and
momentum fields are thereby mutually consistent because they are determined from mass

and energy conservation properties together with the integral momentum constraint.
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Fig. 7 (a) Momentum flux divergence and (b) momentum flux by the conservative
hydrodynamical archetype model. Units are pUZ/H and pUZ, respectively.
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3.2 Comparison with Observations

Analysis of a GARP Atlantic Tropical Experiment (GATE) squall line by LeMone
(1983) demonstrated the upgradient nature of the momentum transport by organised
convection of the type considered herein. The convective momentum tendency (negative
of the momentum flux divergence ) is shown in Fig. 8a for an eastward-moving case.
The easterly component of momentum at upper levels is enhanced, while the westerly
component is enhanced at lower levels. This behaviouris typical of squall line type MCSs
as has been subsequently found in field experiments in diverse geographical locations,
spanning from mid-latitudes through sub-tropics to tropics. This gives credence to the
idea that a universal theory of the dynamics of these systems and their transports is an

achievable proposition.

Lafore et al. (1988) performed a dual-Doppler radar analysis of a westward
moving squall line that occurred during the Convection Profonde Tropicale (COPT)
experiment in west Africa and the momentum flux profile is shown in Fig. 9a. The
tropical squall system studies of LeMone (1983) and Lafore et al. (1988) give broadly

similar results.
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Fig. 8. (a) Convective momentum tendency due to an eastward—moving GATE squall
line in GATE; (b) corresponding momentum flux. [From LeMone, 1983]
A dual-Doppler study of a middle latitude squall line that occurred over
Oklahoma, USA was performed by Smull and Houze (1987). The convective momentum
tendency obtained from this case study is shown in Fig. 10. Note that the archetype

model represents mesoscale as opposed to convective scale momentum fluxes. It is
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hypothesised that the mesoscale fluxes will often dominate due to the coherent nature
of the mesoscale airflow. This is given credence by the Smull and Houze (1987) analysis,

because the mesoscale fluxes clearly dominate those on the convective scale.

HEIGHT(Km)

0

VERTICAL U-MOMENTUM FLUX (kg m~s™7)

Fig. 9. (a) Convective momentum flux due to a westward—-moving west African squall
line; (b) corresponding fluxes derived from a fine-scale modelling simulation data
set. [From Lafore et al. 1988].

The form of the momentum flux is similar in both tropics and middle latitudes
and are in overall agreement with the theoretical model, especially for the cases having
downdraughts of finite depth. However, the relative importance of the convective and
mesoscale fluxes varies from case to case. This could be a real feature but could also
be a product of the inadequate resolution of the radar and aircraft data used in the

studies. Clearly, more precise field measurements using modern technology is necessary

to quantify this problem. IZ'OL .
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Fig. 10. Convective momentum tendency due to an eastward-moving Oklahoma squall
line. [From Smull and Houze, 1987]
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3.3 Comparisons with Fine—scale Models

Lafore et al. (1988) modelled the same west African squall line that they
observationally analysed. The profiles of observed and modelled mesoscale momentum
fluxes (Fig. 9 a and b) are similar. Both are consistent with the theoretical model. Due
to the practical difficulties in obtaining accurate momentum fluxes from radar or aircraft
observations in strong MCSs, extensive analysis of fine-scale numerical simulations are
necessary to test the momentum (and thermodynamic) flux formulae. One important
‘aspect that requires study is the scale dependence of the fluxes, in particular the
relative contributions of the convective and mesoscale, namely O(10 km) and O(100 km),

respectively.

3.4 A Limited—area Simulation of an MCS

The mesoscale momentum budget for a squall line was obtained by Gao
et al. (1990) using a data set from Zhang et al. (1989). The Penn State
University/NCAR regional mesoscale model (MM4) was used with the Fritsch and
Chappel (1980) parametrization scheme to represent convective—scale thermodynamic
fluxes; momentum fluxes were not parameterized. The initial conditions were obtained
from an analysis of standard observational data for the case study of 10-11 June 1985
during the Preliminary Regional Experiment for Stormscale Operational and Research
Meteorology (PRESTORM) field experiment. The mesoscale relative flow field evolved
to the three-branch morphology reminiscent of the archetype model. The relative
momentum flux transverse to the squall line, also shown in this figure, has the negative
values typical of a system having an eastward—moving component of motion (the system
moved southeastwards). Figure 11 shows that the horizontally-averaged momentum flux

is similar to those typical of the analytic model.

This study raises the interesting problem of the relative contributions of resolved
versus parameterized convection. For example, the results of Zhang et al., (1989) and
Gao et al., (1990) show that the momentum field in an MCS can be crudely represented
by resolved or implicit thermodynamics, albeit using fairly complicated schemes for
both sub—grid scale and grid scale moisture. However, parameterized convection could
not be neglected because it was required to give a realistic system life cycle and

system structure. Note that momentum flux was not parameterized in Zhang et al.,
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(1989). This illustrates the problem of scale separation because although the direct
effect of momentum was omitted, the indirect effect brought about by flow response to

(parameterized and resolved) convective heating is represented.
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Fig. 11. Area-averaged momentum flux derived from a regional model at 0000, 0300 and
0600 UTC on 11 June 1985. Averages computed over a (450 km x 300 km) area.
[From Gao et al., 1990].

Clearly, finer resolution can always be expected to produce a more realistic
growth rate and dynamical structure. However, the real question is to what ezient more
stringent conditions and essential processes ezist in fine scale (ezplicit resolution) models
that are not included in current parameterization schemes for convection in GCMs.
Parsons (private communication) suggests that criteria for activating parameterization
of squall lines should include a representation of the effects of gust front dynamics due

to its convection initiation properties.

3.5 Incorporation of Momentum Fluxes in the Large—scale Eqﬁations

Consider the z—component of the grid scale momentum equation. In the
absence of other sub—grid scale processes, Moncrieff (1991) represented the convective
momentum induced tendency as

d . N - 0p ]
-a—z(ﬁﬁ)+dw(ﬁ"dv)—pfir'ﬂ-a—z:eﬁ(pum) (5)

where the overbars represent grid scale variables and the convective momenntum
tendency §/6t is the negative of the momentum flux divergence. The dimensionless
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closure (amplitude) parameter € is a function of the mass flux and the grid resolution.
The total mesoscale effect must be implemented on the right-hand-side of Eq. (5) and
this implies that the mesoscale perturbation is unresolved in the corresponding large
scale model. For reasons outlined in the introduction this is quite true for virtually all
existing global and mesoscale models because a grid of O(1 km) is necessary to capture
the convective scale processes that are primary to the generation of the mesoscale
circulation. This is considerably different from (say) the Schneider and Lindzen (1976)
method.

Application of the mesoscale transports to convective parametrization in large—
scale models requires considerations in addition to flux approximations. First, a closure
that establishes the amplitude (€) of the sub—grid scale tendencies in Eq. (5). Second,
a procedure to initiate or activate the convection scheme; in this regard current parcel
lifting methods may not be optimal but are acceptable considering the imprecision in
representing the physical processes. The above tendencies should be shear dependent

t.e. applied only when the low level shear is concentrated in low levels.

3.5.1 Closure

A mass flux type of closure is attractive. Define My = Ly < pwy,(zgr) > to be
a reference mesoscale mass fluz, the'mass flux corresponding to a mesoscale circulation
that fully spans the grid scale (L), so that L, = Ly in Eq. (3). The reference height
z = zp can be a;'bitrary in the range (0,1) because the analytically determined mass
and momentum fluxes are dynamically consistent. Let M be a mesoscale mass flux
that is independently determined and related to the conventional cloud mass flux (M.).
Define ¢ = M/M, to close the mesoscale parametrization. Note that ¢ can be of
order unity and is a function of h (or E) and M.. It has an intrinsic large-scale
grid dependence, namely ¢ = F(h,Ly, M.). The ensuing momentum parametrization
scheme (flux approximation, closure and initiation) should be compared to conventional
schemes. Moreover, the functional form of M and ¢ should be investigated using fine-

scale numerical models.
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4. MOMENTUM FLUXES USING CLOUD MEAN PROPERTIES

4,1 Schneider and Lindzen Scheme

Schneider and Lindzen (1976) approximate the convective momentum flux
divergence as
10(pu'w') 10 _
o oz pos M7 (©)

1

where ¥(z) = 2 Jyria

v da, M, and v.(z) are the grid scale mean of horizontal velocity,
the convective mass flux per unit volume and the cloud-scale mean of the horizontal
velocity, respectively. The negative of this quantity is the ‘cumulus friction’ or the
convective momentum tendency applied to the right-hand-side of the momentum
equation. The mass flux is defined in the usual way as M.(z) = apw’ = [, pw'da, where
the cloud area is a. Equation (6) requires that the horizontal eddy flux divergence
is negligible on the grid scale, an approximation that is consistent with the basic

assumptions of this approach. However, these assumptions are questionable when the

parameterized scale is comparable to the mesh size.

The methods used to determine the cloud-mean velocity v. distinguishes
individual applications of that scheme. Schneider and Lindzen (1976) assumed that
the cloud scale horizontal momentum is conserved so v, is constant, say, the grid scale
horizontal velocity at cloud base. However, horizontal momentum is conserved only
under exceptional conditions. In particular, the role of the horizontal pressure gradient
should not be neglected in deep convection, especially squall line systems. Recognizing
the weakness of the momentum conservation assumption employed in the Schneider
and Lindzen scheme, ad hoc attempts have been made to more realistically calculate

the cloud-mean momentum (e.g. Flateau and Stevens, 1978; Shapiro and Stevens,

1980).

It is illuminating to demonstrate the effect of the original Schneider and Lindzen
(1976) method on a mean flow profile typical of situations in which MCS convection
prevails. This mean wind profile has strong shear in low levels and small shear in upper
levels. Take the idealised (earth-relative) flow profile u(z) = 4z for z € [0,1/2] and
@(z) = 2 for z € [1/2,1] as an illustration. This is similar to one of the profiles used in

simulations by Thorpe et al. (1982), and others. Selecting the (constant) cloud mean
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velocity as u. = uo(1/4) = 1. Use the mass flux calculated from the analytic model

(Fig. 12, the two-dimensional model). The convective momentum tendency is shown
in Fig. 13a.
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Fig. 12. Mass flux calculated from the archetype hydrodynamic model. In units of pU,.
[From Moncrieff, 1991].

4.2 Application of the Two—dimensional Conservative Archetype Model

A limitation of the original Schneider and Lindzen (1976) scheme is the use
of a constant cloud mean momentum. Since the two-dimensional flow field for the
conservative hydrodynamical archetype has been obtained (Fig. 5 a) it can be used to
calculate the cloud mean momentum without approximation. Note that the effect of

the pressure field is automatically included in the two—dimensional solutions.

The cloud mean momentum is now defined as the horizontal mean of horizontal
velocity component derived from the solution of the free boundary problem (u =
0% /0z;w. = —8¢% /) and therefore a function of height. The mean flow profile, (z), is
as defined in section 4.1 because the steady two—dimensional flow regime is a legitimate
time—asymptotic state of the initial value problem having the velocity profile defined
above as an initial state (e.g. Thorpe et al. 1982). Thus the full effect of the finite-
amplitude system that develops in wind profiles of this type is represented by the fluz
divergence formulation. It is stressed that this regime of convection exists in quite
general mean wind profiles, provided that the shear is strong in low levels. There is
an important distinction to be made between the mean momentum application of the

dynamical model and the conservative flux law developed in section 3.1. That is, the
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latter is determined solely by far—field (remote flow) properties, while the former requires
near-field (fully two—dimensional) flow solutions that in turn require the solution of a
difficult free-boundary problem for each individual case. The convective momentum

tendency using the model-derived cloud mean momentum is as shown in Fig. 13b.

4.3 Flux Law Comparisons

Note that the relative and absolute divergence profiles give identical results in
the cloud mean momentum approach and neither reproduces the observed structure
in Figs. 8, 9, or 10. The two cloud mean momentum methods differ in detail but
yield broadly similar momentum flux tendencies (Figs. 11a and b). It was expected
that the difference would be small in this example because the absence of baroclinic
effects precludes the production of vorticity. Consequently, the flow acceleration (and
the internal pressure field perturbation) is produced solely by dynamical effects.
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Fig. 13. Convective momentum flux tendency using: (a) Schneider and Lindzen (1976);
(b) Schneider and Lindzen with cloud mean momentum calculated from the two—
dimensional model. Abscissa in units of U2 /H and ordinate in units of H.

The profile obtained using the conservative method (Fig. 14) is quite different
from either of the above tendencies and in good general agreement with the
observationally determined profile. Clearly, it is superior to either cloud mean
momentum approaches (c.f. Figs. 8, 9, 10, 13, and 14), This result encourages
further development of the conservative approach and its application in a large-scale
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parameterization. Note that in a parameterization scheme the amplitude would be

determined by a closure assumption, such as that defined in section 3.5.
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Fig. 14. Convective momentum flux relative to the system calculated from conservative
hydrodynamical archetype. Abscissa in units of U# /H and ordinate in units of
H.

5. CONCLUSIONS

Momentum fluxes by organised convection have been formulated using a
dynamical model developed from exact far—field mass, energy and momentum
conservation principles. The mesoscale mass and momentum fluxes are mutually
consistent in the conservative approach and this property has been employed to define
a physically based closure. The realistic nature of the modelled momentum fluxes,
despite the simplicity of the archetype model, can be explained in elementary terms.
Momentum transport by organised eddies in a shear flow is largely determined by
their orientation relative to the mean flow shear c.f. phase tilt in wave dynamics.
This is an intrinsic property of the dynamical structure of the relative flow involving
the pressure field. In developing an elementary explanation there is no loss in
generality in considering an eastward—-moving system; an analogous argument applies to
westward-movement. It is obvious that if the eddy orientation axis tilts upshear then
< W(z) > is negative. Thus, provided the eddy orientation is correctly modelled
the momentum fluxes should be well represented. This orientation is indeed reproduced

by the two-dimensional solution and is consistent with the physical integrity of the
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system. Inclusion of the omitted baroclinic processes neglected in the archetype are not
expected to fundamentally alter this basic conclusion. Note the opposite (downshear)
orientation prevailsin the constant shear analytical model of Moncrieff (1978), which has
< W(z) > positive. However, it that case a dynamically and thermodynamically
consistent stationary structure could not exist. i.e. transient behaviour was necessary.
This proves that other regimes of organisation can have a quite different momentum
flux profile, so a strong mean flow regime dependence must be allowed for in the

generalisation of the flux laws.

Herein, the conservative dynamics of strictly two-dimensional convection has
been addressed and is part of a long-term objective to develop a comprehensive
theory of organised convection parameterization. A general dynamical model of an
MCS was formulated by Moncrieff (1990) where it was shown that the macroscale
dynamics of MCSs can be expressed in terms of six nondimensional numbers — a
set of three Richardson numbers, measuring the ratio of the available potential to
available kinetic energy for each branch; a set of two Froude numbers defining the
density current nature of the problem and associated with cold air outflow and mean
flow stratification; and the parameter E whose physical interpretation has already been
defined. However, a parameter space of such complexity and nonlinear relationships
among the nondimensional numbers precludes a simple flux representation. The
hydrodynamical archetype is a first step in defining a rigourous dynamical approach

to flux theory for organised convection in a shear flow.

It is not obvious which aspect of the archetype need to be improved in the
content of parameterization because this depends on the resolution of the large scale
model e.g. limited area models are more sensitive to localised dynamics than coarse
mesh GCMs. The next steps in theoretical development of the flux formulae are to:
(1) include shear in the jump updraught inflow of the hydrodynamic archetype; (2)
extend the archetype approach to include the convective jump and non—conservative
models briefly summarised in sections 2.3.2 and 2.3.3; (3) partition the fluxes into the
mesoscale and convective scale components; (4) formulate anisotropic fluxes, which
is required by noting that the line-parallel fluxes are downgradient, as distinct from
the largely upgradient character of the line-normal fluxes (LeMone et al., 1984);
(5) explore the relationship of the closure hypothesis of section 3.5 to classical
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parameterization theory (if one exists); and (6) to include thermodynamic fluxes in
the theory. These considerations significantly complicate the mathematical problem

and the flux formulation but there is no basic reason why these extensions cannot be

realised.

General circulation model tests (both idealised and complex) should be performed
to assess the impact of convective momentum transport by organised convection on a
global scale c.f. orographic wave drag evaluation. Evidently, general circulation models
can be sensitive to convective momentum transport (M.J. Miller and Michael Tiedke,
private communications). There is no reason why the momentum flux formula could not
be applied in conjunction with an existing thermodynamic scheme (say using the closure
in section 3.5) to examine the sensitivity of GCMs to organised momentum fluxes. The
effect may be strong in synoptic regions where the low-level, large—scale shear is large
compared to that in the upper troposi:)here, say over large areas in the tropics and the

continents in summer.

Fine-scale numerical models, that can adequately span the several interacting
scales involved in this complicated sub-grid scale problem, is an obvious utility for
exploring the many aspects mentioned in the text. Indeed, analogous investigations
to those outlined for the theoretical development should be performed on fine-scale
model data sets. Both theoretical and numerical model flux analyses should be more
rigourously compared against the real atmosphere. In this regard, the few existing data
sets that currently exist are inadequate. New data sets that span scales O(10-1000 km)
will be very useful.
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