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Abstract

Most of the descriptions of the boundary layer and surface transfer processes which are
used in numerical weather prediction models are based on the description of level homo-
geneous terrain. With heterogeneous terrain there remain many difficulties and unsolved
problems but recent work now offers some basis to extend current models. From the point
of view of the ease of adaptation of existing approaches, it is fortunate that studies of
flow over hills, perhaps surprisingly, find that concepts of effective roughness length and
displacement heights can be used in a variety of relevant cases. The basis of estimating
these quantities will be discussed. When the surface heterogeneity leads to variations in
the sign of the heat flux the effective roughness length approach fails and a more explicit
treatment of the various surface types is required. Such treatment is required in areas
with a mix of land and water surfaces. To provide the required parametrizations of gen-
eral heterogeneous terrain a combination of effective roughness lengths and an explicit
near surface model is recommended.

The suggested modifications are not minor in effect and lead to large increases in
momentum roughness length and decreases in temperature and scalar roughness lengths.

1 Introduction

Numerical weather prediction models describe motions averaged over areas and require
estimates of the corresponding area averages of the surface transfers of heat, moisture and
momentum. Apart from the influence of gravity wave generation upon the momentum
transfer, these processes are expected to be determined through the interaction of the
planetary boundary layer and the surface. Gravity wave generation will depend more on
the properties of the free atmosphere and will not be dealt with here. The underlying
concept will be to consider the application of some filter operation to the real terrain and
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atmosphere. This filter should separate the resolved model variables from the subgrid
processes and might have a scale of perhaps 2Az in a grid point model with a horizontal
mesh point spacing of Az.

2 Framework for Implementation

To describe the transfers over heterogeneous terrain we will seek to either extend and
modify existing descriptions over level terrain or, if this is not possible, propose alterna-
tives. Although not the present concern, we must note that the surface transfers depend
on a correct description of the whole boundary layer. For the surface fluxes to be correct
it will be a pre-requesite that transfers within the boundary layer and between the bound-
ary layer and the free atmosphere are correctly described. Gradients within the boundary
layer are usually small and the estimation of entrainment - effectively the boundary depth
is critical. In coarse vertical resolution numerical models this entrainment is poorly de-
scribed in consequence of the large vertical mesh spacings. This raises issues about how
the boundary layer is represented and cautions us against unwarranted detail in the sus-
face flux description. In spite of these difficulties we shall see some large influences which
should be significant within existing models.

3 Homogeneous Terrain and Flows

It is worth beginning with a few remarks concerning the representation of the boundary
layer over homogeneous terrain. Although this description will be based on our empir-
ical knowledge of atmospheric surface layer flow it is desirable to bound this empirical
description by some requirements. One requirement is for a rational behaviour in the free
convective limit. A second requirement is for the description to be formulated so as to
match the description of turbulence within the whole boundary layer. This is needed to
ensure that the surface fluxes are not sensitive to changes in vertical resolution. It also
provides a good basis for determining the interior description. If in the flow interior we
use an eddy viscosity v and an eddy diffusivity for heat vy then with the mixing length
assumption of local equilibrium we can assert

v = putrie |2 (1)
and o
vy = fu(Ri)e 3, (2)

where f); and fy are functions of the gradient Richardson number, £,; and £y are the
mixing length scales and |0u/0z| the velocity gradient. In a surface layer £ = xz where &
is the von Karman constant. .

To satisfy free convection scaling both fj; and fi must be x Ri'/? in the limit Ri —
—oo. For unstable flows we can impose this dependence for all Ri < 0 and still obtain
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a satisfactory fit to the observations. The different sources of observations do of course
show significant variation. The functions

far = (1 — cRi)*? (3)

fa = a(l — bRi)'/? (4)

with ¢ = 16, a = 1.4, and b = 40 provide a reasonable match with available data
(Mason and Brown 1992). For stable flows there are less strigent asymptotic requirements.
Theoretical arguments suggest that the length scale of turbulence may decrease roughly
linearly towards zero at a critical Richardson number. We can also note a need to modify
the Prandtl number fy/fa; and the implied stress energy ratio as the Richardson number
approach its critical value. The functions

far = (1 — Ri/Ric)*(1 — hRi) (5)

fir = a(1 — Ri/Ric)*(1 — gRi) (6)

Where Ric is the critical Richardson number, and 1/Ric is less than either g or k, can
provide adequate fits to observations. Values of Ric = 0.25, h = 1.75 and g = 2.4 are
typical (Mason and Brown 1992).

To derive transfers between the surface and the first mesh point of the model the
integrals of velocity and temperature between the surface and this grid point are required.
Monin Obukov similarity indicates that these integrated functions can be written as

=2 on (2) -ou(2) »

e o () on (1) o

where u, is the square root of the surface stress = divided by density, 6. = H/u,. where
H is the heat flux, and 6, is the surface temperature. 1)5; and ¥y are universal functions
of z/Lp; where Ly, is the Monin Obukov length u?/xB where B is surface buoyancy
flux. To obtain equations 7 and 8 we have assumed that the height scale z is measured
above a so-called zero plane displacement. The origin for z is of course arbitrary and
except for flow over a smooth level surface a correct origin is unclear and has to be
determined. This determination involves selecting a co-ordinate origin so as to give the
expected logarithmic variation of velocity with height in a neutral stability flow. This is
important for the analysis of observations but not of direct consequence to surface flux
parametrization in large scale models.

and

In principle analytic forms for ¥5; and vy follow from equations (3) to (6) but given
the choices made here, in particular the use of gradient Richardson number in fy and f,
such analytic forms are too complex to consider. For a practical application v¥,; and ¥y
can be obtained by numerical integration and use of either a look up table or a further
approximate functional fit.

The asymptotic assumptions for equations 7 and 8 to hold are essentially for a range of
heights z very much greater than the length scale of surface roughness elements and very
much less than the boundary layer depth. In this limit 15, and ¥y should be universal
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and zy and zyg (also 2y for moisture) should represent the surface roughness. These
roughness lengths are no more than values to constants of integration. The roughness
length for momentum z, is simply the height at which the velocity profile, obtained for
z in the asymptotic range, would extrapolate to equal zero. The roughness lengths for
temperature and moisture, zyy and zy are similarly defined relative to values of surface
temperature and moisture. Such surface values are in general impossible to measure
properly and it is usual to base zyy on the surface radiation temperature. The surface
radiation temperature is not of course equal to temperature at the top of the soil layer,
this is a further difficulty not resolved here.

For all except for the smoothest water surfaces practical values of z, are linked to
pressure forces on the roughness features of the surface. Except for deformable surfaces
such as water and to a slight extent some vegetation values of 2, are independent of
wind speed. In contrast to momentum, heat transfer from a surface always depends on
molecular processes and in general values of zpy will depend on wind speed - a Reynolds
number dependence. Observations over uniformly vegetated surfaces show the largest
ratios of zyp/zg to be ~ 0.1. For irregular surfaces smaller values are obtained and as
discussed below this is inherent in heterogeneous or undulating terrain. To avoid double
counting when dealing with the specific influence of surface irregularity we shall need to
ensure that observed values of 2y and zyy are for truly homogeneous surfaces and do not
already include some heterogenity..

In spite of the above comments we have a reasonable data base of observations of z, and
zgy over various uniform surfaces (Wieringa 1991). If we were to consider heterogeneity
or orography on a short horizontal scale then the asymptotic requirement of equation
(5) and (6) would hold. For more typical variations on scales of order kilometres there
is no guarantee that (5) and (6) will remain appropriate. In fact numerical simulations,
and limited observations suggest that equation (5) and (6) remain useful with z, and zyy
replaced by effective values. 2z ! and z;ji,f . This fortunate result may in part relate to
the usual robustness of dimensional arguments but it must also be a matter of some luck.
A major objective for small scale numerical models will be to progressively refine our
understanding and description of inhomogeneous flows. Some progress has been made

and in what follows this is surveyed.

4 Flow inhomogeneity

Before considering surface inhomogeneities it is useful to explore the influence of flow
inhomogeneities. A variation of wind speed in neutral conditions will, because of the
non-linear relation to stress, change the drag coeflicients e.g. consider a mean flow (U)
with a fluctuation u. The local stress will be given by

7= Cp((U) +u)? (9)
and the average by
(r) = Cp(1 + (u*)/(U)*N(U)* (10)

The effective increase in the drag coefficient by a factor of (1 + (u?)/(U)?) is typical of
this effect and would be expected to be of order a few percent. Variations of temperature
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in the flow area will also influence stability effects and as fluxes do not vary linearly
with stability they will also change drag coefficients. The fluxes increase with increasing
instability and there will be a bias of transfer coefficients towards unstable values. In
particular a positive flux will be produced in conditions which are neutral on average and
the transfers will not cease at the usual critical Richardson number. Possible modification
to transfer coefficients have been considered by Mahrt (1987). Such modifications require
estimates of flow inhomogeneities. Ideally these variations in wind speed and stability
should be based on local model gradients. The alternative is to estimate typical subgrid
scale variations and derive modified transfer coefficients. In principle equations 3 to 6
above could be subject to this process and revised functions derived. There is also an
opportunity to use mesoscale models and HAPEX type field experiments to quantify the
changes. We note that flow inhomogeneity will lead to an effective modification in values
of the f and v functions above but not in the surface roughness length.

5 Surface inhomogeneities

We now consider spatial variations in a surface whose local properties are well known.
For example an area of mixed forest and fields or land and water. Following a number of
theoretical and numerical studies there is now a firm basis for dealing with statistically-
homogeneous heterogeneous surfaces. Here statistical-homogeneity implies cyclic repeti-
tion in space. We seek to exclude the case of a single surface change such as a coast
line. It is difficult to represent a coast line with greater accuracy than the mesh spacing.
Anymore refined statement of local influence would clearly have to be dependent on wind
direction and in the case of sea breezes, time of day. We leave such developments for the
future and here deal with statistically-homogeneous circumstances.

The boundary layer response to cyclic variations on a scale L provides the basis for
understanding the response to surface heterogeneity. The influence of the surface will
diffuse upwards into the flow with a slope which is found to be ~ (u./U (2))?, This siope
is a matter of some controversy as linear asymptotic theory suggests values ~ u. JU(2).
Wood and Mason (1991) show that the non-asymptotic estimate of (u./ U(z))? does in a
practical simulation actually match the simulated height scale of the u flow perturbations.
A height scale, termed the blending height follows i.e.

& ~ 2 (E’(im)z L (1)

Well below £, the flow locally resembles that of the particular locally homogeneous terrain.
Well above £, the effect of the heterogeneity will have blended together and the flow
corresponds to that over an “effective” homogeneous terrain. Wood and Mason (1991)
found the u flow perturbation at £, to be 50% of the surface maximum and found the
horizontally averaged flow at £, and above to be well described by effective values of z,
and zyy. Above a height of several times £, the flow perturbations were small and the
flow corresponded to these values of effective roughness length.

The heuristic model proposed by Mason (1988) to describe these changes assumes that
at £, the flow is approximately both, in equilibrium with the surface and also indepen-

dent of flow position. This approximation leads to values of 2! and Zg}qu in very good
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agreement with those deduced from full numerical simulations. The essential physics of
the averaging process are captured in this assumption. The average transfer coefficients
are obtained by averaging fluxes derived consistent with the heuristic model.

Claussen (1990) notes that this model can be applied directly to estimate fluxes in a
large scale model. A typical value of 4, is chosen for each mesh spacing and the model
flow at this height is then coupled with separate near surface models for each surface type.

B = E )

@=L () () w

are solved. Here T is horizontal coordinate and zy, u., 8y, and H are functions of space,
the over bar is an area average. In a practical case there might be several surface types
and calculation of the surface fluxes in this way is no more than three times the usual
computation. The lowest model levels may be below £, and this method of variables
implies interpolation to ¢, and subsequent reassignment of values at the lower levels.

and

If the surface variations involve distinct changes in heat flux such as is typical of
land/water changes then this multi-stream approach is essential. If the surface heat fluxes
are fairly similar, such as with variations in vegetation over land surfaces then explicit
use of the blending height model is not needed as the main influences can be captured
with effective values of 2, and zyy defined by

) o)~ B () oo
and

Bk () () e ) () 0

The consequences of equations 14 and 15 are shown in Figures 1 and 2 (from Mason
and Wood 1991). Figure 1 shows curves of z5’/ obtained by averaging different fractions
of rough and smooth terrain. The rough value is 1 m and smooth value is 0.01 m. f
is the fraction of the terrain which is rough and z, is an area weighted logarithmic
average of the local values o.e. 0.1 m. Corresponding values of zf;{,f are shown for the"
case when zpy is 0.1 of the 2z, values. The various curves are for varying stability and the
denoted values of wavelength. For A = 10° m the results are similar to those obtained
by averaging geostrophic drag coefficients, but for smaller values of A there are larger
departures from a simple logarithmic average (a logarithmic average is a straight line
from -1 to +1 as f goes from 0 to 1). Typically values of z2// are strongly weighted
towards the rougher values even when only a small fraction of the domain is rough. In
contrast the values of z5J/ can decrease by more than two order of magnitudes below the
smoothest values. This dramatic change to the values of 2/ arises in consequence of the
momentum transfer being subject to the strongly non-linear averaging process implied by
equation 14. Similar values of z(';{,f are obtained if H(r) and zy5(r) are assumed constant
in equation 15. In effect the mean air/surface temperature difference is not strongly
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Figure 1: Values of log,o(25"/zom) (solid lines) and log (2% / zotm) (dotted lines) derived
from the heuristic model for step function changes in roughness lengths (from zg,, 20ts to
Zor, Zotr ), Dlotted against f., the fraction of the domain covered by large roughness ele-
ments. Results are for L, 30m and for four values of wavelength, A, as indicated. The

form of the step change is as given in Eq. (25). Note: log,o(zor/2om) = logy(2otr/ Zotm) = 1,
10g10(20s/ Zom) = 10810(20ts/ Z0tm) = —1.
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disturbed by the large changes in momentum transfer. Unless these values of ztt] are
adopted the surface temperature will have errors of order several K for large magnitude
positive or negative heat fluxes. Below we shall note an analogous issue when topography
enhances momentum transfer.

Figure 2 shows similar curves to those of Figure 1 but with A fixed at 10° m and curves
for different Va.lues of heat flux as implied by the value of Monin Obukov length. Whllst
the values of z// are not strongly influenced by the heat flux, the values of zuH are
strongly changed, and become smaller with stable heat fluxes. To capture this behaviour
z}{ cannot be assumed a constant and rather than make it a function of L direct use of

equations 12 and 13 may be more straightforward.

Direct use of equations 12 and 13 also provides a framework to allow for the conse-
quence of heteorogeneity in other surface factors such as soil type and stomatal resistance.

6 Flow over orography

As noted above the transfer of momentum between the atmosphere and all surfaces,
except for the smoothest sea surface, is dominated by pressure forces acting on the surface
roughness elements. Provided these roughness elements are very small compared with the
depth of the boundary layer, then, the description provided by equation 7 and 8 should be
valid. For larger scale hills and mountains the pressure forces will remain important but
the validity of equations 7 and 8 must be questioned. Theoretical arguments to support 7
and 8 are not available, but as noted by Grant and Mason (1990) there are observational
and numerical results to support their use with values of effective roughness length.

To obtain such values of effective roughness length it is useful to start with the pressure
forces themselves. Two regimes can be recognised, gentle slopes and steep slopes with
flow separation. The latter will be more important in consequence of the larger forces but
the influence of gentle slopes should not be neglected. In general the pressure force on a
hill will be given by

Fp = 0.5Cp AU? (16)

where Cp is a non-dimensional factor, a drag coefficient, A an measure of frontal area
and U, a velocity scale. For gentle slopes with a wavelength A a flow perturbation will

extend into the flow a distance ~ A\/27 and u. can be taken as at least proportional to-

any velocity scale. With small slopes Cp is proportional to the slope, as expected from
linear theory, and equation 16 could be written as

Fp = Ci6%uA, (17)

where C; is a function of z,/A, § is the slope of terrain and 4, a horizontal surface area.
For sinusoidal hills with  defined as the maximum slope and values of z,/A ~ 107
numerical studies find C; to be ~ 6 (Newley 1985). C; depends on the velocity profile
above the surface and Belcher (1990) provides an analytic form for the dependence of
Cr on zy/A; this agrees well with Newley’s numerical results. Typically C; varies nearly
linearly with (€n(zy/)))~! between ~ 4 for zy/A ~ 1078 to ~ 10 for z,/) ~ 107",
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Figure 2: As for Fig. 1 but the wavelength of the variations is fixed at A = 1000m and
L,, is varied as indicated.
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To relate this pressure force to a value of z, we need to know how to relate the
mean surface shear stress u? to the external flow speed. Given that the influence of the
orography only extends a height of order A/27 into the flow a relationship with the velocity
at this height would seem appropriate. Theoretical studies (e.g. Belcher 1990) show other
somewhat smaller length scales may characterise the drag generating dynamics but the
practical consequence of using such smaller scales would be small. We therefore assert
that with a flow speed U, at A\/27 the total surface stress is given by

1 A - 1 A\
2 - = 2 —_
% (Fu log (27rzeff)) Us (H log (2#20)) * /A (18)

Here the left hand side of equation 18 is the definition of z5/ and the right hand side is
the sum of the undisturbed surface stress and the average pressure force per unit surface

area. Noting that u? = U ( log ( ))—2 we obtain,

2wzp

) - () e o

which can be simplified for small values of Cy6%. For slopes of § ~ 0.2, A ~ 10° and
zo ~ 0.1lm we obtain zoff ~ 0.2m. Such an increase in z; of a factor of 2 is typical of
largest increase which can occur before the alternative steep slope calculation must be
considered.

For steep slopes and their associated flow separation the pressure force on the orog-
raphy is expected to be given by equation 16 with Cp nearly a constant, A is the frontal
or swept area of the obstacle and U, a flow speed typical of this local bluff body flow.
Uy = U(h/2) where h is the obstacle height would be a reasonable choice. For smoothly
shaped obstacles numerical solutions (Newley 198 ) suggest Cp ~ 0.3 but real hills are
not so smooth comparisons of denved values of z;’/ with atmospheric observation sug-
gest that and a slightly higher value of Cp may be appropriate. To relate this steep slope
pressure force to a value of z5’/ we need to make a nonlinear assertion to derive U (h/2).
We assume U(h/2) is not the velocity prevailing in the undisturbed flow but that of the

25! profile. Use of thlS smaller value of velocity provides good agreement with numerical
solutmns where z5// can be derived from both the velocity profiles as well as from the the

observed forces. To derive zof 7 we assume

U (h/2) = (w./6)In (h/225'7) (20)
and  F,=0.5Cp (U (h/2)) A. (21)
Where wu, is related to the total surface stress including the pressure forces and the surface

shear stress u’gis assumed to be that due the undisturbed value of z, and the value of U
in equation 20 i.e.

U(h/2) = (u.s/&)In(h/22,) (22)
The numerical solutions (Wood 1991) suggest that this slightly underestimates the shear
stress contribution to the drag but the error is slight. Taking an area average we have

Su? = $0.5C,A (U (h/2))* + SCn(U(h/2))? (23)

where S is the surface area considered, Cy = x%/ (In (h/22,))? and the summation includes
all obstacles in the area. From these relations we obtain

(in (R/2257))" = K*/ (ZC44/S + C.) (24)
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This expression should be used for terrain with values of peak slope # greater than about
0.2 and in such cases inclusion of the C, term is a small correction. Figure 3 shows the
curve obtained with this equation compared with values of ze!! derived from various field
studies and numerical simulations, C,, has been neglected and Cp = 0.4 has been chosen.
The general agreement is encouraging and provides confidence in using the relation. The
predicted values of 22! vary between 10m for 300m high hills 2 or 3 kms apart to 100m
for 1000m high hills (mountains) 2 or 3 kms apart. There is now good observational
support to these values (Grant and Mason 1988, Hopwood 1991 ). Other more empirical
proposals for estimating 2z, (eg Lettau 1969), in consequence of their empirical derivation,
give reasonable agreement with equation 24 but do not seem able to fit such wide ranges
of data.

A poorly explored aspect of momentum transfer over hills is its stability dependence.
Limited observations by Grant and Mason 1990 for moderately unstable and stable buoy-
ancy effect showed a good match with equations 7 and 8 but further work is needed.
The effect of orography on heat and moisture variations is also not well explored. Some
deduction can however be made for near neutral conditions. Numerical solutions of flow
over hills show that the parallel to surface average value of flow speed near the surface
only changes slightly even when there is flow separation (Wood 1991). We can thus assert
that scalar transfers from the surface will be, on average, unchanged. These transfers
depend linearly on the scalar and velocity differences between the surface and the near
surface region and this is a clear implication that the scalar transfers will, to the first
approximation, be unaffected by the orography. This does not imply no change to zg{,f
but as with an anelogous effect in heteorogeneous terrain, a reduction in the ‘effective’
value. Unless zo is reduced the heat transfer efficiency will be increased erroneously by
its dependence of z&//. We may write

(T —Ts) = Ho (ln ? ): A (ln "‘ff> (25)

KU, ZoH KUe ZoH

where T and T are horizontal averages, zoy is the smooth surface value and u., is the
square root of the true surface shear stress whilst u.. includes the pressure force. We can
also approximately assert that

U (2) = v (111 zi) Y (m ;-%) (26)

4]

which leads to the result that

»() =1n(zfg>1in(§3) o

29H

This leads to dramatic reductions in zZ{,f and is strongly recommended as an interim

adjustment to ensure , the first approximation result, that heat transfer is unaffected by
orography.

One further important aspect of flow over orography needs to be parametrized. Ow-
ing in particular to flow separation there is a tendency for the flow to be lifted over a
greater height than the mean height of the mountains would imply. This effect is a phys-
ical counterpart to the envelope orography used in some large scale numerical weather
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Figure 3: Plots of 2o/ H as a function of A/S. After Grant and Mason (1990) but with
extra data points from Hignett and Hopwood (1992). The open symbols are results from a
second-order closure model for flow over sinusoidinal orography with zy; = 0.1 and 0.3m.
The filled symbols are various experimental observations. Details are given in Grant and
Mason 1990 but the points P and C are from Hignett and Hopwood 1992. the two points
C are for different wind directions.
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prediction models. Unfortunately this displacement has proved too difficult to measure
in observational studies and has only been estimated approximately in numerical work
(Newley 1985). Values of displacement height of about 0.2k where & is the peak - trough
height were found for steep sinusoidal orography.

7 Suggested procedure

To implement the combined influence of heteorogeneous terrain and orography requires
some care. If the averaging over heterogeneous terrain is carried out explicitly by apply-
ing equation 12 and 13 to each terrain type then orography must be combined with each
uniform surface to give effective values of z; and zoy prior to use of 12 and 13. Similazly if
distinct changes in heat flux are ignored the orographic influence should be combined with
changing surface type prior to averaging. Note that with the procedures recommended
there are only slight differences between dealing with different regions of orography sep-
arately and then combining with heterogeneous terrain rules, to simply including all the
diverse orography in a single calculation. The former procedure is physically sounder
should be most accurate. With these rules it is possible in principle to provide the re-
quired parametrizations for heat moisture and momentum. Adequate information on
actual surface characteristics and the local roughness lengths remains a problem. De-
tailed orographic data sets adequate to give reliable estimate of A/S are not available
and available parameters such as height variance must be translated to A/S with some
assumption of slopes.

8 Conclusions

The combination of numerical simulations and some confirming observational studies is
providing increasing confidence to parametrizations of boundary layer flow over complex
terrain. There is now a firm basis for improvements to current surface parametrizations
and future work can be expected to make steady progress in providing wider validity and
more accurate specifications.
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