Migration of ECMWF'’s Operational Meteorological System

to UNICOS on the Cray Y-MP

J. K. Gibson and Otto Pesonen
European Centre for Medium-Range Weather Forecasts

Shinfield Park, Reading, U.K.

The ECMWF Meteorological Operational System (EMOS) contains approximately 150
separate Cray jobs, some of which are run up to 30 times each day. With the
decision to acquire the Cray ¥Y-MP, it became necessary to migrate this system to

run under the UNICOS operating system.

First, it was considered important to define the conventions to be
followed. They included proposals for:-

* user names and privileges

* file names and permissions

* operational libraries

* temporary files

* script conventions

* script and function utilisation

These were written into an internal document which has subsequently been updated
many times, and which will eventually be made available as a Meteorological
Bulletin. Possibly the most difficult part of this exercise was the definition
of a typical operational script. The EMOS system relies heavily on being able to
intercept all errors, and to report an ABORT state back to the SMS (Supervisor-
Monitor-Scheduler) management system, and hence to the attention of operators
and analysts. UNIX systems, being designed for interactive use, tend to report
errors as messages, then to continue with the next command; thus, the trapping

of errors in a batch script requires careful planning.

196



Next, the individual scripts for each job were written, the required codes
migrated, and each job step carefully tested. Since much of the source code had
been adapted over the years to isolate as far as possible operating system
dependent features, and since UNICOS supports the same FORTRAN compiler and
segment loader previously used on the Cray X-MP, many codes required little more
than re-compilation. Some specialised features, such as the fields data base and
some aspects of the MARS system, required code to be re-written and re-
implemented; in particular, the MARSINT interpolation package was re-written to

enable future support for higher resolution models.

Cray undertook the task of modifying the SMS system they had written, in co-
operation with ECMWF, for the VAX/VMS system to operate under UNICOS. Once this
was delivered, the necessary Jjobs to run data assimilation cycles and a 10 day
forecast were tested, and when working assembled as a test suite under the new
SMS. These were run on a daily basis from early October. As further Jjobs were
migrated, these were added, resulting in an almost complete operational suite by

late October.

The EMOS system relies heavily on MARS and ECFILE, and it was essential that
these components be available as early as possible. Thus, from an early stage a
MARS system was made available to internal users, so that it could be thoroughly

debugged by the time it would be required for operations.

By the 7th November sufficient confidence had been gained to move the delivery
of the operational dissemination products to those generated on the Y-MP.
Although there were some initial problems, every effort has been made to achieve
as smooth a transition as possible, and to make the changes as transparent as

possible for Member States users. Additionally, a series of planned "disasters"

197



were staged, while the X-MP was still available, including the complete
destruction of the Y-MP file base, to ensure that procedures for recovery were
checked out, and amended where necessary. These provided much useful information
which was subsequently applied to ensure the future robustness and reliability

of the service.

198



Annex. Recommendations for ECMWF’Meteoroloqical Operational System

UNICOS Scripts
The following is an extract from the conventions drawn up for the migration of
the ECMWF Meteorological Operational System (EMOS) to UNICOS. It is reproduced

in the belief that it may be of general interest.

A standard login script is used for each EMOS job; it contains 3 sections:

1) SMS inditialisation sequence
2) definition of environmental variables
3) definition of standard search paths, libraries, etc.

The SMS initialisation sequence, additionally, establishes a number of variants
with respect to the date/time, étored in environment variables
EMOS_TIME DIFF etc., where etc. includes M3, M6, M9, M12, M18, M24, P6, and P24.
These contain yyyymmddtttt values corresponding to the base time minus or plus
the increment indicated (eg, EMOS_TIME DIFF_M24 contains the yyyymmddhh for 24

hours before the base time).

In addition, the environment variables include:

SMS_NODE SMS_MONTH EMOS_MONTH
SMS_SUITE | SMS_DAY EMOS_DAY
SMS_FAM EMOS_SUBS EMOS_TIME DIGITS
SMS_TASK , EMOS_BASE EMOS_TIME STEP_H
,SMS_YEAR ‘ EMOS_YEAR ~ EMOS_TIME_STEP_M

Those values not directly presented via SMS micros are assembled from such
information within the login script:; the algorithms used differentiate between

old style family names and new style family names, and assemble the correct

199



information accordingly.- Note that CAPITAL letter are used for global
environment variables, lower case letters for variables local to a particular

script.

Since the basic UNIX system can be unfriendly and cryptic in appearance, the
usefulness of the system is based upon the local 6berating environment #nd the
accepted strategies. When many people access the same files and use the same
programs and scripts, it becomes very important that the users know how file
names and environment variables are defined, and how to get help from the

computer.

When new tools are made, they should be documented immediately and made
available for other users. In order to automate the documenting system, UNIX
provides some tools, such as "man",'but additional tools need to be build
locally. Programs (FORTRAN, C ‘or SHELL) can be made self-documented; that is,
the documentation is written as comments, then extraqted and stored for the man
command. This is a logical extension of the DOCTOR type conventions. already used
throughout ECMWF for FORTRAN source code (Gibson, 1982). Since UNICOS man
command does not provide full search facilities, there should be separate man
pages to guide the users. The same manual pages should be available for

workstations using either the file server or automatic distribution.
Every effort should be made to provide neat, well documented scripts. Each

script should have at least the following information at the beginning of the

file:

200



* script name (possibly full path name)

* function

* interface how called

- environment variables

exit value(s)

* externals - other scrips, functions, programmes called
* method

* external documentation

* date of creation and last modification (modifier ID)

The body of each script shall be divided into sections, and, if necessary, sub-
sections, following the header described ébove. The only additional items of
documentation that should be necessary within the script are the section and
sub-section headings; however, documentation should be included to describe any
unusual or obscure statements (these should be few and far between, as they are

to be avoided wherever possible).

Scripts shall be given names which are meaningful, rather than cryptic. It does
not matter if the names are long - they are intended for batch, not interactive
use. The name should indicate clearly what the script is doing. This makes other
scripts more readable. The time spent searching for information concerning what
some cryptically named script actually does is often far greater than the ﬁime

saved by writing short names.
UNICOS 5 limits file names to 14 letters. Use them all! Don’t add .sh (for

Bourne shell scripts) as an appendage - it wastes 3 letters and is not

necessary. For example:-

201



exss ' - MEANINGLESS AND BAD

extractsubstr or extr sub_str - makes more sense!

There are two types of variables in scripts, local and global (or external). By
convention the local variables should be in lower case and EXTERNAL variables in
UPPER CASE. This makes it easy to read the script, since it is obvious which is
which. Variable names are not limited in length; s0 use names that really mean
something, for example:

string length or

str_len

NOT

sl.

Loop counters can be short, "i" is often used in "for" loops.

Attention should be given to the effectiveness of the use of functions defined
within an include file. A set of useful functions will be maintained in
/ec/emos_sms/.fungtions
Bourne shell provides an easy way of creating a simple task to be executed
INSIDE the current process by the function definition mechanism. This is similar
to the C-shell alias mechanism. It is not obvious when to use a script, a
function, eval or a program. The following guidelines are derived from Otto
Pesonen’s experience of UNIX programming. In most cases it is advisable to begin

by writing a script, then if necessary later move to a programme.

A function should be used:
* when the task is relatively small

* when the task should alter the calling process (environment

202



variables)
* when the task is called many times
NOTES :
1) Remember to use return instead of exit to terminate the function.

2) Test functions properly!

A script should be used:-
* when the task is complex
* when the task is new, or rarely used from other scripts
* when the task only needs to return exit status, and does not

alter the caller’s environment

"eval" should be used:-
* when the script (or program) needs to alter the caller’s
environment, such as computing an environment variable from given
parameters where the use of a function is not acceptable;

* this is the only way to pass arguments to another script and still

alter the caller’s enviionment.

NOTE:
When "eval" is used, the referenced script needs to output commands for
the shell to execute. This often requires scripts which are expected to be
used as targets of eval to contain two levels of logic; resulting scripts
can loock vary clumsy, and should be avoided where possible.

The . (dot) command should be used:-

* for startup files
* to include a file

NOTE: arguments cannot be used!

203



A C programme should be used instead of a script:-
* when the task needs character handling or something that is
very difficult using script(s) (eg mathematics)
* when the task is complex
* when the shell script takes too much time to run or gets too

complicated

NOTE:
The overhead of starting a small script is more than that of starting a C

programme.

Functions should be subject to similar naming conventions to scripts. Externally
defined names should be in UPPER CASE and local names (defined in the current
script) in lower case. Names should be readable and-they may be as long as

required - not limited to 14 characters!

When the script terminates itself due to a missing file etc, it should abort
giving the reason why, and also trace information concerning how the script was
called. A function is available to handle this. To facilitate the clarity of
batch job output, and to assist in locating run-time errors, it is necessary for
a script to outpu£ information of the progress it has made. The use of set -v
and set +v for this purpose are rather crude. A more elegant method is to use
the "echo" command, or by echoing comments from the current shell; alternatively
a simple function (info) is available to output additionally a trace of all the
names of scripts called. Such trace information can enhance the value of such
output, assisting the identification and location of problems. It is recommended
that the "info" function be used on entry to each script, and that an "abort"

function be specified to be called to present traceback and additional

204



information in abnormal situations. It is also recommended that a script header
sequence, and a section header for each section of the script about to be

executed, be passed to the log.

The functions should be gathered into a starting (profile) file to be included
into scripts, invoking them by the Bourne shell command . (dot).

. /some_path/start_funcs

Reference:

Gibson, J. K., 1982: The DOCTOR System - a DOCumenTary ORientated programming

system, ECMWF Technical Memorandum No. 52

205





