Simple Data Base Structures at ECMWF

J. K. Gibson, M. Dragosavac and B. Raoult
European Centre for Medium-Range Weather Forecasts (ECMWF)

Reading, U.K.

REPORTS DATA BASE

1. INTRODUCTION

The ECMWF requirements for the management of observational data are
relatively simple. In particular:

« data are required for complete observations, or for sets of complete
observations over a small time/area domain;

¢ a standard, self defining representation form should be used;

¢« the principle, time critical access to the data is that required for
the support of data assimilation, and as such is well defined.

The data representation form chosen to meet the middle requirement is FM 94
BUFR; observations which have been pre-processed and converted to this form
are called reports; the structure used to retain reports on-line is called
a reports data base (RDB).

2. REPORTS DATA BASE DESIGN

2.1 Conceptual Model

A three level model (see fig. 2.1) is used to define the major aspects of
the data base design; the following principles influence this choice:

s« a "report", defined as a data structure representing either a single
observation, or a set of observations over a small time/area domain,
is the basic unit of access;

s« reports may be grouped by type and/or sub-type, representing sets of
similar reports, and providing a typical unit of collective access;

+ within a given type, the set of reports for a given range of valid
times is a typical unit of access required in support of ECMWF'’s data
assimilation scheme;

¢ time and type have greater significance in terms of data access in
support of ECMWF’s forecasting system than area, because the area of

interest is global.

Thus, conceptually the reports data bases may be considered to have data
base, type and time levels.

115

REPORTS DATA
DATA BASE
BASE LEVEL
7
1 \
[
/ \
Reports | | - REPORTS REPORTS
TYPE 1 TYPE N LEVEL
;o) A
VA A - \
/ 1 Iy
/ ! \ / \
REPORTS
TYPEN | TYPE N TIME
TIME 1 TIME M LEVEL

Fig. 2.1 Three level conceptual model

2.2 General Conceptual Design

At the DATA BASE level:

s one data base is required for each major implementation (operational
system, test system, etc.)

e data base storage and access is supported by a single software
package;

e write permission is restricted to selected, validated processes.
At the REPORTS TYPE level:
e one message type is mapped onto a distinct set of reports types:

« feedback information are classified by type to reflect both the type
of data and the generating application;

At the REPORTS TIME level:

e each reports type is sub-divided into a set of reports times,
comprised of reports of that type valid for a set range of times;

¢ the set range of times is chosen according to the reports type, and
with relation to the requirements of the data assimilation system.

2.3 Data Management Consequences

The above conceptual design requires that the reports be organised in such
a way that the smallest addressable object is a report, and that the
smallest addressable collection of objects be a set of reports for a given
time range of a given type within a given system.

116

The extraction of data for the data assimilation sub-system requires all
reports for a given time range. The data assimilation may further require
that different processes by presented with different report types. Since
the most efficient extraction method is to read or copy complete files, it
follows that the data collections at the reports time level should be
individual files.

Such a solution is also effective with respect to the pre-processing. There
exists one pre-processing task for each data type within the message data
base; the concept of one message type being mapped onto a set of reports
types thus results in each pre-processing task reading from, and writing to
files which are distinct from those addressed by other pre-processing
tasks.

It is both desirable and necessary that individual reports be identifiable
and accessible. This is achieved by the generation of identification
information called "keys". It is also desirable to retain certain
processing, monitoring, or "housekeeping” information, such as the time of
receipt of a report, the inclusion of various parts within a report, etc.
Much of this information will need to be processed without reference to the
data contained within the report itself, so should be separately
accessible. At ECMWF such information is stored with the keys, which are
then called "extended keys".

An additional consequence of the above is that the key information
associated with any one file is likely to be small. Thus, provided the
support software is run on a machine with a reasonable memory size
considerable advantages would result from reading the keys into memory (or
retaining them in memory), and performing searches on the memory resident

copy.

Thus, the data management requirement of the physical implementation of a
Reports Data Base is:

reports, grouped in files according to type and time;
s« key information, to identify each report;
e housekeeping information, to supplement the key information;
e access software.

3. IMPLEMENTATION

3.1 Introduction

RDB systems have been successfully implemented on two different platforms -
on Digital Equipment Corporation machines running the VMS operating system,
and within a Network File System under UNIX. Many of the basic principles
followed are the same for both systems.

3.1 VMS Version

The physical implementation follows closely the conceptual model. The data
base level is a master directory for the data base. The reports type level
is a sub-directory for each type. The reports time level is a file for each

range of valid times.

" In order to make as much use as possible of the facilities offered by the
operating system, files are indexed sequential in type, accessible by key

117

(see fig. 3.1). Keys for reports are defined to identify uniquely each
report. Special keys are defined to identify a set of special records which
contain the extended keys, as defined above.

The support software reads or retains in memory the extended keys while a
RDB file is open for access. In this way, operations which require access
to extended key type information may be performed without the need for
input/output. Facilities are supported to enable combinations of conditions
with respect to key information to be generated, then used to access only
those reports which satisfy those conditions.

Where whole files of data are required (eg. extraction for data
assimilation) the key information may be ignored, and the file copied using
the faster sequential form of access.

3.2 UNIX Version

The UNIX directory structure is used to represent the data base and reports
type levels as described above. Since this operating system does not
normally support indexed sequential access, the reports time level is
comprised of two files for each valid time range - one containing the
reports, the other an index file containing the extended keys.

The extended keys are further extended to contain byte location information
for the corresponding report within the file of reports.

In this case, the support software includes routines which can read a given
number of bytes beginning at a specific location within a file. As before,
the extended keys are read or retained in memory to enable search
operations to be optimised.

Where whole files of data are required, since the reports themselves are

physically separated from the index file they can be used directly, or
copied if necessary.

118

The data representation form chosen to meet the second requirement is FM 92
GRIB; products from other centres which have been pre-processed and
converted to this form have also been merged to produce fields covering as
large an area as possible; the structure used to retain fields on-line is
called a fields data base (FDB).

5. FIELDS DATA BASE DESIGN

5.1 Conceptual Model

A three level model (see fig. 2.1) is used to define the major aspects of
the data base design; the following principles influence this choice:

e a field, as defined above, is the basic unit of access;

» fields may be grouped by the verification time for which they are
valid, qualified if necessary by the generating application (eg
analysis, initialised analysis, forecast based on specific initial
data, etc.) providing a typical unit of collective access; such a
collection can be likened conceptually to a file containing the
appropriate fields;

s such collections, or files may be grouped according to the system
from which they were generated (eg. operations, operations test
system, research experiment, generating centre, etc.);

Fig. 5.1 Three level conceptual model

Thus, conceptually the fields data bases may be considered to have data
base, file and field levels.

119

5.2 General Conceptual Design

At the DATA BASE level:

» one data base is required for each major implementation (operational
system, test system, etc.)

« data base storage and access is supported by a single software
package;

+ write permission is restricted to selected, validated processes.
At the FILE level:
+ fields for each verification time are mapped into separate files;

+ distinction between generating application (forecast, analysis, etc.)
with respect to the same verification time is achieved at the file
level;

At the FIELDS level:

+ each field is identified according by parameter, level type, and
level;

+ the field is the smallest unit which may be accessed.

5.3 Data Management Consequences

The above conceptual design requires that the products be organised in such
a way that the smallest addressable object is a field, and that there be
access to index type information indicating which fields are potentially
available.

The products generation applications require fast access to the global
fields resulting from the forecast system, coupled with the ability to
store the generated products in such a way that they can subsequently be
combined to enable all products for a given verification time to be passed
to the dissemination sub-system. The conceptual design satisfies these
needs.

Such a solution is alsc effective with respect to the pre-processing. There
exists one pre-processing task for each data type within the message data
base; the concept of one message type being mapped onto a set of reports
types thus results in each pre-processing task reading from, and writing to
files which are distinct from those addressed by other pre-processing
tasks.

It is both desirable and necessary that individual fields be identifiable
and accessible. This is achieved by the naming structures used at the data
base, file, and field levels.

Not all research experiments generate the same set of products; it is thus
important that there be a mechanism to identify which data bases are in
being, and what each contains in terms of files and fields. It is also
necessary to remove data no longer required, or which are time expired, and
to support a back-up of important operational data; the data are large in

120

volume, so the management of their retention must be effective and
efficient.

Thus, the data management requirement of the physical implementation of a
Fields Data Base is:

o« fields, grouped in conceptual files according to verification time
and generating application;

s information, to identify each field;

« access software.

+ management software.

6. IMPLEMENTATION

6.1 Introduction

The current FDB implementation replaced an earlier system when the ECMWF
Cray computer system moved to the UNICOS operating system. Many lessons
learned from the previous version have been taken noted. In particular,
there were considerable problems relating to the maintenance of index
information with the previous version which needed to be avoided. The
approach used was to utilise, where feasible, the de facto standard
features of UNIX, and to plan for future extensions which would allow
access to data within a Network File System from any UNIX platform.

6.2 Implementation strategy

The physical implementation follows closely the conceptual model. The data
base level is a master directory for the data base. The files level is a
sub-directory for each conceptual file. The fields level is a file for each

field.

In order to make as much use as possible of the facilities offered by the
operating system, naming conventions are

121

