WNANYJOWIW 1VDINHDAL

178

Four dimensional variational data
assimilation using the adjoint of a
multilevel primitive equation model

l am
A 4

J N. Thépaut and P. Courtier

Research Department

February 1991

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWF.

European Centre for Medium-Range Weather Forecasts
Europdisches Zentrum fur mittelfristige Wettervorhersage
Centre européen pour les prévisions météorologiques a moyen




Abstract

The aim of the paper is to demonstrate the numerical feasibility of 4-D varia-
tional assimilation using a multilevel primitive equation model. The experiments
consist in minimizing the distance between the model solution and the observations.
The gradient of the cost function thus defined is computed integrating the adjoint
of the model.

Here, assimilations are performed using model generated observations. In a
first set of experiments, assimilations are performed assuming that observations
consisting of a full model state vector are only available at the end of the assimilation
period. The numerical convergence of the method is proved and the results are
meteorologically realistic. The use of the Machenhauer non linear normal mode
initialisation scheme and of its adjoint turns out to speed the convergence and to
control to some extent the amount of gravity waves in the solution. We identify a
loss of conditioning of the minimisation problem with an increase of the length of
the assimilation period. The impact of the presence of horizontal diffusion in the
model is also discussed.

The second set of experiments evaluates the impact of observations distributed
over the whole assimilation period. Through different scenarios of sets of observa-
tions, we demonstrate the efficiency of the 4-D variational approach to extract the
information contained in the dynamics of the model together with the information
contained in the observations. In particular, observing only the small scales of the
flow leads to a good reconstruction of both the small scales and the large scales.
The observation of the mass field evolution leads to a good reconstruction of the
vorticity field in the mid-latitudes and to a poorer under the tropics.




1 INTRODUCTION.

In their review of the data assimilation problems in meteorology and oceanography, Ghil
and Manalotte-Rizzoli (1990) stated the already well known fact (at least since Kalman,
1960) that under the linear assumption the Kalman-Bucy filter has a least-square vari-
ational formulation and vice-versa. Furthermore, they explained how the current oper-
ational implementation of optimal interpolation can be seen as an approximation of the
full KB filter.

The line of work we are following is a direct consequence of the previous remark
associated with an identification of the major weaknesses of the current operational data
assimilation systems that have been used in the last five years. Most of the experience
accumulated by the authors comes from the ECMWF and METEO-FRANCE large scale
data assimilation systems (EMERAUDE for the latter) and with the mesoscale PERIDOT
operational at METEO-FRANCE. See the 1988 ECMWF seminar proceedings for a rather
extensive review.

ECMWF and METEO-FRANCE concluded in parallel that one of the potential so-
lution to the identified problems was the variational scheme either in its 3-D or 4-D
formulation (3-D differs from 4-D in that the time dimension is not taken into account).
A major code development project has been initiated in 1988 which led to the setting
up of a cooperation between ECMWF and METEO-FRANCE for the coding of a model,
an optimal interpolation, a variational assimilation (3-D and 4-D) and a Kalman filter
in the same framework. The project is named IFS for ”Integrated Forecasting System”
at ECMWEF and ARPEGE for ”Action de Recherche Petite Echelle Grande Echelle” at
METEO-FRANCE.

Within that cooperation a special joint effort is devoted to understanding the be-
haviour of variational assimilation. Courtier and Talagrand (1990) (referred to as CT90
in the following) presented results with a global shallow-water model. The main conclu-
sion was that it was possible to perform a 4-D variational assimilation on a 24 hour period
(with real observations) whose quality was similar to the quality of the operational data
assimilation as judged by the RMS error of a 24h forecast, and this despite the fact that
the operational assimilation has used a 15 level primitive equation model with far more
observations. In the light of these results, the aim of this paper is to demonstrate the
numerical feasibility of 4-D variational assimilation using a multilevel primitive equation
model with 19 levels on the vertical and a spectral horizontal discretisation triangularly
truncated at total wave number 21 and 42. The experiments consist in minimizing the dis-
tance between the model solution and the observations. The gradient of the cost function
thus defined is computed integrating the adjoint of the model.

In section 2, we present some insight into the motivation for the development of
variational assimilation. In section 3, we briefly summarize the main features of the
ARPEGE/IFS code. In section 4 we present the general framework of the assimilation
experiments performed.

In section 5, we perform assimilations assuming that observations consisting of a full
model state vector are only available at the end of the period. Within that section several
numerical issues are addressed like the conditioning of the minimisation problem and the



control of the gravity waves. The goal of the second set of experiments, presented in
section 6 is to evaluate to a certain extent the impact of using observations distributed
over the whole assimilation period. Through different scenarios of sets of observations,
we demonstrate the efficiency of the 4-D variational approach to extract the information
contained in the dynamics of the model together with the information contained in the
observations.



2 THE 4-D DATA ASSIMILATION PROBLEM.

Let us introduce the extended Kalman-Bucy filter (EKB filter) applied to a dynamical
system whose state vector is denoted by z in a phase space £ in which an inner product <
.,. > is defined. In the following we just summarize the main results. For a meteorological
introduction to KB filter one should refer to Ghil et al. (1981), Jazwinski (1970) for a
more mathematical background and Caines (1988) for more recent results. The time
evolution of z is governed by the equation :

dz
LoF@) ®

which after time discretization leads to a numerical model M :

z(t) — z(t+T) = Mt + T,t)z(t) (2)

We introduce the tangent linear equation which describes to first order the time evo-
lution of a perturbation éz in the vicinity of a trajectory z(t).

déz

— = Fay 62 (3)

whose discretised version, obtained by linearising (2), will lead to the tangent linear model

6z(t) — bz(t+ 1) = R(t + T, t)b=(t) (4)

As in Talagrand and Courtier (1987) , we introduce the adjoint of the tangent linear
equations :
dé'z .
— g = Fely - 82 (5)

and the corresponding discretised adjoint model :

§e(t+T) — §z(t) =R, t+T)o'z(t+T) (6)

to which it is necessary to add the inhomogeneous forcing term in order to compute
the gradient of any scalar function with respect to the initial conditions of the forecast.
Introducing this notation, the EKB filter consists of two basic steps. Firstly, a forecast
step in which the state z and the covariance matrix P of forecast error are transported
in time :

z(t+T) M(t,t+ 1)z (1) (7)
Pt+T) = RE+T,H)PHR (t,t+T)+Q (8)

Q describing the model generated errors. The "extended” character of the EKB is clearly
visible on this last couple of equations where the non-linear model M is used to transport
in time the state vector z, whereas it is the tangent linear model R which is used to



transport the covariance of the forecast error. The implicit assumption in (8) is the
good description of the forecast error evolution by the tangent linear model. It has
been shown by Lacarra and Talagrand (1988) on a channel shallow-water model that
it was a reasonable assumption. This has been indirectly confirmed by Courtier and
Talagrand (1987) and (1990) in spherical geometry with respectively a global vorticity
equation model and a global shallow-water model. To which extent the short range
forecast error evolution is governed by the tangent linear approximation is a key issue for
the understanding of the behaviour of modern data assimilation scheme.

Hollingsworth and Lénnberg (1986a and 1986b) have shown that the 6 hour forecast
error is comparable in magnitude to the observation errors, result confirmed by Mitchell et
al. (1990). In addition, a fundamental property of the dynamical system in meteorology
is the divergence of the trajectories on the attractor which means that the forecast errors
are amplified in time with a typical doubling time of 1 to 2 days. As shown in appendix
with a very crude analytical model those two facts are a strong indication that the term
@ of (8), the model generated errors, is smaller than the first term on the right hand side
of (8). This has to be understood in a mean statistical sense and has to be qualified by
the fact that it is likely not to be true when the weakest part of the model is the dominant
physical phenomenon like in a convective situation.

At some stage, an observation y; available at point 7 related to the model state variable
z by the observation operator linear or not H; is available :

yi = Hi(z) + & (9)

where €;, whose covariance matrix is denoted by O;, models the observation errors (repre-
sentativness errors, instrumental errors, errors in the observation operator H, see Lorenc,
1986 for a thorough discussion). Once such an observation is available, one performs the
analysis step :

To = T + Ki(y: — Hi(zy)) (10)

where z, is the analysed state, z, is the first guess (given for instance by a short range
forecast). The expression for K is given by the minimum variance optimality condition :

K; = P,H'H!P,H! + 0;)™" (11)
g+ 1 gt

where H| is the tangent linear operator of H; and P, the first guess error matrix (the
superscript ¢ denotes the matrix transpose). Again, one sees here the extended character
of the KB filter with the full non-linear operator H; used to compare the model to the
observations in (10) and the tangent-linear operator H; used for deriving the weights K;
given to the observations in (11). The covariance matrix of errors of the analysis state is
given by :

P, =(I - K;H)P, (12)

Using for z, and P, the result of the forecast step and z, and P, as initial conditions
for the next forecast, one has the implementation of the EKB filter.



As already said, the operational implementation of optimal interpolation is an approx-
imation of the EKB filter. The main approximations are :

i) The model is integrated for describing the temporal evolution of the atmosphere
whereas the covariance matrix of estimation error P is assumed to take the form P =
Variances x Correlations with the correlations constant in time, with a very crude
hypothesis on their spatial structure (separation vertical/horizontal, quasi horizontal ho-
mogeneity) and with a very simple law for the temporal evolution of the variances. The
validity of this assumption is often referred to as being the problem of deriving and using
flow dependent structure functions in the OI literature.

ii) The observation operator is simplified. As an example for the satellite radiances
data, the radiative transfer equation is weakly non linear in clear sky conditions and
highly non linear with respect to cloudiness. The direct consequence is that the informa-
tion content of a set of radiances is dependent on the meteorological scene, as shown e.g.
by Thépaut and Moll (1990). Currently most NWP centres use SATEM messages which
are retrieved temperature (and humidity) profiles. However, in order to take into account
the variation of the information content with the atmospheric scene, they should be as-
signed a covariance matrix of error which depends also on the atmospheric state. This is
not currently done in the operational analysis and would be rather tricky to implement.
Another approach operational since 1986 in the PERIDOT mesoscale data assimilation is
the direct use of radiances (Durand, 1985). If this approach has the advantage of using the
genuine information present in the radiances, for a not too cumbersome practical imple-
mentation in OI, the operator H' used in (11) has to be linear with constant coeflicients
since this operator appears implicitly in the analytical model used for the correlations
between the synthetic radiances and all the other observation types.

In addition there are some other probably minor simplifications like the data selection
which reduces the dimension of the linear systems to be solved.

The identification of the weakness ii) was the motivation for the development of the
3-D variational analysis at ECMWF and METEOQ-FRANCE. Indeed, the statistical linear
regression of (10) and (11) has a variational formulation which leads to the 3-D variational
scheme in which the observation operator is linear. On the other hand, the 4-D variational
scheme is equivalent to the full EKB filter on a limited time period [to, t,] and with a crude
assumption on the term @ of (8), either as in CT90 introducing a temporal weighting of
the observations, or neglecting it. With the latter, one obtain the following expression for
the cost-function :

J(z(to)) = D _(Hi(z(t:)) — 1:) O; * (Hi(2(t:)) — v:) (13)
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3 THE ARPEGE/IFS CODE.

The ARPEGE/IFS code has been developed along two main principles. First, the code
will be used for many different applications (temporal integration, 3-D variational anal-
ysis, 4-D variational assimilation, Kalman filtering, search for most unstable modes...),
each of which will require clearly identified inputs and outputs. Second, research studies
will require the use of relatively simple models, such as the vorticity equation model,
while NWP development studies will require a full multilevel primitive equation model.
Consequently, the code has been developed in such a way that the various applications
can be used on the various models (within the limits of course of the available memory
and computer time), by simply turning on or off appropriate switches.

3.1 Features of the ARPEGE/IFS models.

The models already coded are a shallow water model, a barotropic vorticity equation
model and a multilevel primitive equation model on the sphere ¥ with variable resolution
(see Courtier and Geleyn, 1988 for the description of the variable mesh). The vertical
coordinate 7 is the hybrid pressure/sigma coordinate introduced by Simmons and Burridge
(1981). The models use the spectral representation of the fields based on the spherical
harmonics with a triangular truncation (Jarraud and Simmons, 1983). The time scheme
used here is an Fulerian semi-implicit leapfrog with an Asselin time filter. The option of
a collocation grid with a reduction of the number of points in the vicinity of the poles
has not been used in the experiments of this paper, neither the physical parametrisation
package, the semi-lagrangian scheme or the stretched coordinate.

Some experiments have used the following horizontal diffusion :

- the e-folding time 7 of the smallest resolved horizontal scales N is of 4 hours.

- it is proportional to the inverse of a standard atmosphere density and thus increases
in the stratosphere.

- for a given wave number n, the e-folding time is 7F(%) with F(z) = (Maz(0,2z—1))?
which is very close to the standard V* operator but which allows no diffusion at all for
the larger scales.

The adiabatic equations which govern the evolution of the wind ¥, the temperature T'
and the specific humidity ¢, over the sphere 3 are :

d—v—l- 2Q><v+RTV1np+V<I)—O (14)
dt S et
Coriolis  pressure grad1ent
dT w
—— kT'—- = 15
- kT » 0 (15)
S —
conversion
dq.,
= 16

with,



R = QaRa+QURu

Cp = qgcpa+QUcpu (17)
R

K = —
Cp

R, and R, are the gas constants for the dry air and the water vapour, ¢, and cpy
the specific heat at constant pressure for dry air and water vapour. V is the first order
differential operator over the sphere and A = V? the Laplacian operator. The geopotential
® is computed through the hydrostatic equation :

@i —_— EEQB (18)

I p 9n
from the orography @, which is taken in the ECMWF data bank for our experiments.

The adjoint of each individual routine has been coded for the simplest inner product,

i.e. the canonical Euclidean inner product, the only exception being the spectral trans-
forms for which we use Parseval equality which states that the transform is an isometry
for the L? norm. The adjoint of the spectral transform is then its inverse. As already said
in Courtier (1987), a change of inner product is easily handled by a matrix multiplication.
This feature is implemented allowing us to change the metric of the minimisation with an
automatic adaptation of the adjoint.

3.2 Numerical validation

The direct forecast model has been developed with both its tangent-linear and adjoint
versions. We have then performed the following validations :

- forecast model itself (in its adiabatic version).

- tangent-linear versus direct model.

- adjoint versus tangent-linear.

All these tests configurations have been implemented in the code itself in order to be
able to check any future modification of the model (direct, tangent-linear and adjoint) with
only a reset of an appropriate switch, thus allowing a comfortable scientific development
of the model.

3.2.1 The forecast model

The validation of the dynamics of the ARPEGE/IFS multilevel PE model has been done
through a comparison with the current operational ECMWEF model in its T21L19 version.
With the same values for the fundamental constants (this was necessary since the values in
ARPEGE/IFS are more up to date), the coefficient for the integration of the hydrostatic at
the last level (1 in ARPEGE/IFS, In(2) in the ECMWTF model), and the initial conditions
identical to 6 digits for packing reasons, two four-day forecasts have been performed in
which at least 4 digits remained identical in the forecasted fields, the worst beeing for the
divergence field. We concluded on that the code was correct.



3.2.2 The tangent-linear version.

We have checked that the tangent-linear version of the model is the linearisation of the

direct model in the vicinity of a given trajectory. For a state variable z and a perturbation
éz. The Taylor formula leads to :

M(z + bz), — M(z),

lim i=1 (19)

Sz—0 (R . 6(1})1
when the denominator is different to 0 and where the subscript 7 denotes the i** component
of a vector. In addition to the value of 1 for the limit, we check that this limit is reached
linearly which proves that all the linear part of the Taylor development is explained by
the tangent linear model, as expected. '

3.2.3 The adjoint version.

For a given inner product <, >, We check that the following equality holds to the accuracy
of roundoff errors for given z and y vectors:

<R-z,y>=<z,R"-y> (20)

We also test the validity of the gradient of the scalar function J(z) to be minimized

as detailed in Courtier (1987). The Taylor formula applied in the direction g:a)Ld J leads
to : ‘

—
hm J(z + agrad J) — J(z)

a—0

=1 21
< grad J, agrad J > )
and again, we check the value of 1 for the limit and in addition that the residual is linearly
reaching 0. In the previous formula, any direction could have been chosen instead of the
gradient direction. However this particular choice leads to a reasonable scaling of the
various components. We have insisted on the residual linearly reaching 0 and this on a
wide range of magnitude of « since if the major bugs have of course been found through
the value of the limit, the marginal bugs (marginal in the sense that they had no impact
on the result of the minimisation) have been effectively detected with this test. This test
is implemented using the same interfaces as the minimisation package allowing a control
of the gradient at the beginning and at the end of the minimisation. The authors have
found that it is very important to call this test each time a single line of code is modified
in order not to waste time in interpreting apparent ill-conditioning of the minimisation
only due to an incorrect gradient. "
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4 THE EXPERIMENTS.

4.1 General description.

As stated in introduction, the aim of this work is to evaluate the numerical feasibility
and the scientific potentialities of a 4-D variational assimilation in which the information
contained in the dynamical equations is fully and consistently used. Over a given time
period [tg,%,], the two available sources of information are a set of observations and the
dynamical equations of the model. We then try to find the trajectory of the model which
lies as close as possible to the observations.

We only consider here the adiabatic problem, the specific humidity variable is then
not used. We assume that at the times #; a full model state cz:Tef(t) is available as an
observation vector. (13) then becomes :

V3
J(IE) = 2 < (E(ti) — :I),-ef(ti), m(t,) — $ref(ti) > (22)
i=0
which measures the misfit between the model state (;) and the observations zef(t;) over
the entire assimilation period. All the experiments we perform consist in minimizing such
a cost function in the space of the model state at the initial time %o of the assimilation
period. The model state z consists of the vorticity field ¢, the divergence field D, the
temperature field T and the logarithm of the surface pressure field In(7). As inner product
<..>Weuse:

_l ! -1 -1 -1 -1 24 Cp o dp
<oz >= Q/O/E(VA (- VAT +VATD- VAT D + R (Inw) + 285 )dn
(23)

which is a quadratic invariant of the linearised primitive equations in the vicinity of a
state of rest defined by a uniform surface pressure 7, and a constant reference temperature
profile T, (Talagrand, 1981). The choice of an energy form for the cost function defines
a physical distance for comparing atmospheric fields and this natural weighting ensures a
proper and reasonable scaling. From section 2, we see that the statistical interpretation
of this choice is that the observations errors are supposed to have an equally distributed
energy in between the different fields. A direct consequence of the invariance of a scalar
product by a linear set of evolution equations is that the normal modes of this set are
orthogonal for this particular scalar product. The Rossby modes and the gravity modes
being the normal modes of the linearised primitive equations are then orthogonal.

This scalar product is also used for defining the metric in the minimisation space. One
should note that this choice is the best in the sense that it is identical to the inner product
defined by the hessian of the cost-function, firstly in the trivial case of a null length for
the assimilation period and secondly in the vicinity of the state of rest used. There is no
reason for this metric to remain optimal in the vicinity of a realistic atmospheric state and
indeed the numerical results will show the contrary. However with no a priori knowledge
on what could be optimal, this choice is very reasonable.

11



4.2 The ”observations”.

The easiest way to evaluate the numerical efficiency of a 4-D variational assimilation
and the quality of convergence of the minimisation algorithm is to know the solution
one wants to find and the value of the cost function at the minimum. The identical
twin experiments where the ”observations” are generated by the model itself provide the
appropriate framework. We have then only to specify the starting point of the reference
run over the assimilation period and also the initial point which will be used for starting
the minimisation process. We have proceeded as follows :

- First, starting from an initialised analysis of 12 July 1989, 12 UTC taken from
the ECMWEF data bank (called z,.¢(t_43)), a 48 h forecast is produced and the result
Zref(to) is considered as the starting point of the reference run used as ”truth”. The
"observations” are then produced by the model integrated from z,¢¢(tp). In the same
way, starting from a 24 h ECMWTF forecast valid for the same date as above 12 July 1989,
12 UTC (called z;(t_45)) we produce a 48 h forecast which constitutes the initial point
z;(to) of the minimisation process.

Such a generation process of the fields allows on the one hand to get rid of most of
the transients due to the inconsistency between our adiabatic model and the analysis and
on the other hand to start the minimisation process with a difference between the initial
point of the descent and the reference state corresponding to the order of magnitude of a
24 h forecast error. ‘

For studying the problem of gravity waves, section 5.2, we constitute z,.;(to) and the
subsequent ”observations” as well as z;(to) differently using respectively the uninitialised
analysis of 14 July 1989, 12 UTC and the 24 h forecast valid for the same date.

This particular date of 14 July 1989 has been chosen for historical reasons, its univer-
sality ensuring us the generality of the results.

4.3 Minimization package.

The minimisation algorithm we use is a mixed quasi-Newton/conjugate gradient type
(Buckley and Lenir, 1983). Navon and Legler (1987) provide a detailed review of the
minimisation packages available for the meteorological problems and a description of the
Buckley and Lenir algorithm. Complementary results showed that it is one of the most
efficient presently available algorithms (Navon, personal communication).

The first descent steps are performed following the Quasi-Newton method, as long as
the memory allocated for the storage of the approximation of the inverse of the Hessian is
not full. As soon as there is no spare memory, it switches to a conjugate-gradient method,
but preconditioned by the last approximation of the Hessian inverse, thus changing the
metric as to make the cost function more spherical.

Unless stated otherwise, the minimisation process was stopped after 30 iterations
which required 31 computations of the cost function and its gradient, all of them in
quasi-Newton mode.

12



5 INVERSION OF THE MODE]L.

The principle of the experiments is very simple (see Fig. 1) : over the given time interval
[to, tn] and starting from the reference field z,.; (o), one produces a reference forecast. One
assumes then that the observations consist of the complete atmospheric fields (vorticity,
divergence, temperature and surface pressure) at time t,, called z,ef(t,). Starting the
minimisation from the initial point z;(¢o), one produces a forecast at t, and we minimise
the following cost function :

J(z) =< 2(tn) — Tres(tn), 2(tn) — Tres(tn) > (24)

< .,. > being the inner product defined above. In other words, we perform a variational
assimilation in the space of the model state at time ¢y but assuming that observations are
only available at the end of the period of assimilation. Let us call z.nq4(to) the final model
state after minimisation of the cost function (basically 30 iterations).

5.1 Basic experiment

In the ”basic” experiment we describe (see Fig. 1), we perform a variational inversion of
the model over a 6 h period (¢, = tg). No horizontal diffusion is applied in this experiment.

In Fig. 2 we present the variation of the cost function with the number of iterations in
the minimisation process. A first remark is that the method numerically works. Indeed,
after 30 iterations, the cost function is reduced by 6 orders of magnitude and the norm of
the gradient is also reduced by 3 orders of magnitude.

More interesting for the validation of the method is the decrease of the difference
z(to) — Tref(to) during the minimisation process since it measures the ability of the varia-
tional inversion to recover the reference field. Fig. 3 presents the variation of the distance
< z(to) — ref(to), (to) — Zref(to) > with the number of iterations. The decrease is almost
of 3 orders of magnitude.

It should be pointed out that due to the choice we made for the inner product, this
distance is the energy of the difference between the two meteorological flows. This energy
can even be split in its different contributions, rotational kinetic energy, divergent kinetic
energy, potential energy with its temperature and surface pressure contribution.

Worth noticing is that the convergence as seen from Fig. 3 is not fully achieved with
30 iterations whereas the cost function is reaching 0. The dynamics of the model is the
reason for the loss of conditioning of the problem. As stated in section 4.1 the metric has
no reason to be optimal for the cost function considered. The consequence is that the
shape of the cost function can become strongly elliptic with respect to the metric used and
the gradient can even become almost orthogonal to the direction of the minimum. This
explains the difference in reduction for this distance at time ¢ (3 orders of magnitude)
compared to the better reduction (6 orders of magnitude) observed at time tg for the cost
function.

However, the decrease of the distance is meteorologically acceptable as we can see
from Fig. 4. This figure presents the difference between the reference and the analysed
vorticity (left) and temperature (right) fields for the northern hemisphere at 500 hPa.

13



t0 | tn

model
init. Xi(t,) > X(t,)
model
- X(t,) >  X(t,)
model
ref. xref(to) > Xref(tn)

Fig. 1 Inversion of the model. The "model-generated" observations are available only at the end of
the period of assimilation,
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cost function

initial gradient norm : 3.388x10°
final gradient norm : 3.184x10°
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Fig. 2 Variation of the cost function with the number of iterations of the minimisation process.
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Top panel shows the difference before minimisation and bottom the same difference after
30 iterations. The RMS of the differences with the "truth” are significantly reduced both
for vorticity and temperature. Moreover, the differences are reduced homogeneously all
over the sphere and for all the fields.

The reconstruction of the fields is also efficient regardless of the model levels and of
the scales as we can see from respectively Fig. 5 and Fig. 6. Fig. 5 represents the
contribution to the energy of the differences at each model level before minimisation (full
curve) and after 30 iterations (dashed curve and here not lisible) for the vorticity (top
panel) and the divergence (bottom panel) in J/kg. Fig. 6 represents the same distance
but with respect to the total wave number n.

This experiment validates the numerical feasibility of a 6 h variational assimilation in
the most difficult context where information is available only 6 hours later than the time
at which the initial conditions are to be reconstructed.

5.2 Gravity waves control.

In the previous experiment no attention was paid to the amount of gravity waves contained
in the solution. If the observations contain gravity waves, the result of the minimisation
will also contain gravity waves. We shall now tackle the problem of finding a model
trajectory which best fits the observations and lies on the slow manifold.

Following the idea of CT90, we run the same experiment as the basic one but with
a non-linear normal mode initialisation NNMI (see Machenhauer, 1977) applied before
the integration of the model both for the construction of the observations and during the
course of the minimisation for comparing the trajectory of the model with the observations
(see Fig. 7). 5 iterations of the Machenhauer scheme on the first five vertical modes are
performed to ensure that the initialisation is close to a genuine projection on the slow
manifold. We denote by z'(ty) the initialised field. As described in CT90, the adjoint of
NNMI is applied at the end of the adjoint integration.

Fig. 8 presents in full line the variation of the distance between the uninitialised fields
< z(to) — Tres(to), ©(to) — Tref(to) > with the number of iterations and in dashed line the
distance between the initialised fields <-z'(to) — @}.4(to), z'(to) — z%,;(to) >. The latter
measures a distance on the slow manifold so it represents the ability to recover the Rossby
part of the reference field.

The distance between the uninitialised fields decreases by less than 2 orders of mag-
nitude. However, as stated above, a NNMI is included in the assimilation process. The
NNMI is very close to a projection operator parallel to the gravity modes and then it
is not invertible along the gravity modes direction (in fact, NNMI since it is iterative is
only a contraction in phase space and as such the invertibility is ill conditioned). In other
words it is impossible to recover satisfactorily with the 30 iterations of the minimisation
algorithm performed the gravity modes information lost in the NNMI. The full line curve
is then not intrinsic and the level of saturation depends on the amount of gravity waves
present in z,ef. This is confirmed by the dashed curve which shows that the Rossby part of
the flow is well reconstructed and by almost 3 orders of magnitude which is comparable to
the basic experiment. The inversion of the model under the constraint that the trajectory
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Fig. 7 Inversion of the model. A NNMI scheme precedes now the direct integration of the model.
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lies on the slow manifold is then as easy to realize as without the constraint. Moreover,
the comparison of Fig. 3 with the dashed line of Fig. 8 shows that the rate of convergence
is better when using the constraint, especially at the beginning of the minimisation.

However, CT90 have faced a difficulty to impose as a strong constraint the solution to
lie on the slow manifold because of partial invertibility of NNMI. In order to evaluate this
problem in the multilevel context, we run the same experiment as the previous one but
with the reference and the initial point of the minimisation built as explained in second
part of section 4.2 : z,.;(to) is the uninitialised analysis of 14 July 1989,12 UTC and
zi(to) the 24 h forecast valid for the same date. As in the previous experiment, we include
the Machenhauer process before integration of the model at each step of the minimisation
algorithm. :

As already said NNMI is almost a projection of the entire phase space (point A) onto
the slow manifold S (point B) along a direction parallel to the gravity modes subspace,
and can be schematically represented by the now standard diagram introduced by Leith
(1980) (see Fig. 9). A state vector z is here represented by its gravity part G and its
rossby part R. The tangent linear of NNMI is then a projection onto the subspace S’
tangent to the slow manifold at point B, along a direction parallel to the gravity mode
subspace. And, by definition, the adjoint of NNMI projects the gradient of J on the
orthogonal of the gravity modes, i.e. the Rossby modes, along a direction parallel to the
orthogonal of S’. As a consequence, the gradient of the cost function with respect to the
gravity components is 0.

However, as emphasized in CT90, in its implementation NNMT is an iterative algorithm
stopped after a finite number of iterations, NNMI is then only a contraction in phase space
and remains invertible. The condition || ‘fl—f ||= 0 cannot in practice be exactly enforced
and the minimum of the cost function remains theoretically unchanged. However, the
retrieval of the gravity part of the flow is a badly conditioned problem, the ill conditioning
increasing with the number of iterations of NNMI Our purpose is here to evaluate this
invertibility. ‘

We present in Fig. 10 the variation of the distance between the analysed state and
the reference state at time to when no NNMI is applied before direct integration of the
model (full line) and when the integration of the model is preceded by five iterations of
the Machenhauer process (dashed line). ‘

We can see that when we do not include the NNMI process the distance decreases
significantly. The minimisation method can effectively use all the degrees of freedom
of the problem, including the gravity modes, The solution matches thus the reference
situation perfectly well. Our reference being an unitialised analysis, our solution contains
thus a large quantity of gravity waves.

If we assume that the NNMI performed before the integration is a projection, the
minimum changes since it is located on the slow manifold and only the Rossby part
of the field is reconstructed (see section 5.1). Confirming the result obtained in the
first experiment of this section, using a NNMI scheme speeds up the convergence. The
dimension of the slow manifold (as defined by || & ||= 0 ) is 23232 and smaller than
the dimension of the space (28072 at truncation 21). This explains the fact that at the
very beginning of the minimisation, the distance decreases faster when performing NNMI
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Fig. 9 Schematic representation of the normal mode initialisation (from Leith, 1980 and Courtier and
Talagrand, 1990).
R and G represent the two subspaces respectively associated to the Rossby and the Gravity
modes. Considering that the Machenhauer algorithm is a projection, a point A will be
projected through this algorithm on the slow manifold S (point B). S’ is the tangent of S at
point B.
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(—) : no NNMI is used.
(.....) : NNMI is used before integration (5 iterations).
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before integration.

Another insight on the efficiency of this constraint is to look at the term I %% I
of the analysed state during the minimisation process (see Fig. 11). In full line we
represent the energy of the gravity tendency of the reference state at time %, and for
the first vertical mode. This energy will be denoted by BAL (for degree of balance) in
the following. The other curves represent the variations of BAL for the model solutions
during the minimisation process for different numbers of iterations in NNMI. Starting the
minimisation from a 24 h forecast, BAL is only 25% of the value in the reference state.

On the curve corresponding to 1 iteration in NNMI, BAL has almost reached the value
in the reference after 3 minimisation steps. In that case, NNMI is practically invertible.
Increasing slightly the number of iterations seems only to delay the step at which the
minimisation process starts the reconstruction of the gravity part of the reference state.
This is only when 10 iterations of NNMI are applied that it appears not to be invertible
(as far as the minimisation algorithm is concerned). This result consistent with what was
found in a shallow-water model by CT90 leads to two main remarks :

- Firstly, we can expect that when dealing with real observations and starting the
minimisation process from a background field free of gravity waves, the use of NNMI at
each step of the minimisation will to some extent force the solution to lie close to the
slow manifold, providing the ratio of the number of NNMI iterations to the number of
minimisation descent steps is large enough. However, mainly for cost reasons, it seems
unrealistic to use more than 3 iterations in a NNMI scheme. As in CT90, one will have
to consider combining this approach with the use of a weak constraint to penalize the
distance to the slow manifold. The weak constraint will change the minimum and the
introduction of NNMI will speed up the convergence. .

- Secondly, if we restrict the model space to two dimensions (R,G), R being the
Rossby component and G the gravity component, NNMI considered as a contraction
admits as eigen values respectively 1 and €. ¢ gets smaller as the number of iterations
of the NNMI increases, from the evolution of BAL during NNMI it typically loses one
order of magnitude at each iteration. This gives us an indication on the number of
iterations necessary for the minimisation to retrieve the information corresponding to the
eigenvectors of the Hessian matrix of a given eigenvalue. If 3 iterations are necessary for
1 order of magnitude, 18 are necessary for 5 orders of magnitude, 25 for 8 and 30 are not
sufficient for 10. The statistical interpretation of this result is that a dynamic range of 5
orders of magnitude in the variances of analysis can be reached in 18 iterations without
any work on improving the conditioning of the minimisation problem. However such work
is necessary either to reduce the number of iterations or improve the dynamic range.

5.3 Impact of the length of the assimilation time interval.

All the experiments performed now are using 5 iterations of NNMI since the rate of
convergence obtained was better with NNMI, 5 iterations of the Machenhauer process
not leading to any major inversion problem. The observations are build like for the basic
experiment but with NNMI applied before the integration of the model on [to,%,] (see
Fig. 7).
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Producing the experiment with observations available at 3, 6, 12 or 18 h, we studied
the impact of the length of the assimilation on the conditioning of the minimisation
problem. Fig. 12 shows the variation of the distance < 2(to) = Tref(t0), (to) — Zref(to) >
with the number of iterations for variational inversion periods of 3, 6, 12 and 18 hours
respectively. We are looking here at the distance before initialisation. We have seen in
the previous section that it was arbitrarily dependent on the amount of gravity waves
present in z..;(o) but the construction of z,.;(to) (result of a 48 hour model integration)
ensures it to be close to the slow manifold.

In all cases, we observe that an acceptable solution is reached in 30 iterations. How-
ever, when the interval between the time when ”observations” are available and the time
at which the reference state has to be reconstructed increases, the rate of convergence
decreases. As stated previously, the shape of the iso-J surfaces is crucial for the efficiency
of the minimisation algorithm, the main difficulties of convergence being linked to the
fact that the condition number of the Hessian matrix (ratio between the greatest and the
smallest eigen values) becomes large. Indeed, as long as the time length of the assimila-
tion increases, the iso-J surfaces become more and more elongated in certain directions
and contracted in some other, depending on the directions in which the dynamics would
amplify or contract a perturbation.

Fig. 12 shows an interesting behaviour for the 3 h and 6h inversion experiments. We
observe that the convergence is fast at the beginning, but after some descent steps, the
distance at time ty starts increasing while the cost function continues decreasing (not
shown). It is in particular obvious for the 3 h experiment where the phenomenon occurs
after 12 iterations.

This effect can be explained by the schematic Fig. 13. The iso-J curves on Fig. 13
are elliptic and during the minimisation, the point in phase space can move from A to B.
The cost function J has decreased from A to B, but the distance to the reference at time
to has increased. In the course of a minimisation, such a behaviour appears generally at
the separation between two clusters of eigenvalues of different order of magnitude.

In the case of Fig. 12, the ellipticity of J can be due either to the dynamics or to
the NNMI. It is likely that the latter is the explanation for two reasons, firstly we do not
observe this behaviour when no NNMI is applied and secondly because we have seen in
section 5.2 that the minimisation algorithm starts to invert the NNMI algorithm at about
this number of iterations of minimisation. NNMI has effectively clustered the eigenvalues
of the Hessian in two groups, one for the Rossby modes and one for the gravity modes.
The reason why we do not observe the same behaviour for the 12 h and 18 h cases could
be that the dynamics has then spread the eigenvalues enough so as not to have such a
clear separation between the two-clusters.

5.4 Horizontal diffusion impact.

We have mentioned in section 3 that the model is used in its adiabatic version without any
physics. Only a horizontal diffusion of vorticity, divergence, and temperature is available.
We describe now the impact of this dissipation on the ability of the variational inversion
to recover the initial conditions.
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Fig. 12 Same as Fig. 3 but for different time periods of assimilation.
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iso - distance at t,

Fig. 13 Schematic 2-D representation of the cost-function and of the distance between the model
solution and the reference state at time £, The inner product (for which the iso-distances at
time ¢, are spherical) has no reason to be the Hessian of the cost-function since the dynamics
have no reason to conserve this particular inner product. The iso-J are then elliptic if we
assume the validity of the tangent-linear approximation and can even be more complex. It
is then possible to minimise J e.g. from A to B whereas the corresponding distance in phase
space at time z, increases.
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We perform exactly the same experiment as above for a 6 h assimilation period but
switching the horizontal diffusion on in the model. Fig. 14 shows the variations of the
distance between the analysed field and the reference field with the number of iterations
of the minimisation. The experiment with horizontal diffusion is represented in full line
and the basic experiment in dashed line (already shown in Fig. 8 and Fig. 12). The
convergence is much slower and the accuracy of the retrieval of the reference field is
strongly affected.

Due to horizontal diffusion all the trajectories are converging toward the same solution
and there is a loss of information in the course of the integration of the model. The problem
of inverting the model is then ill conditioned in the same way that the heat equation is
ill posed while integrated backward in time. Fig. 15 shows that the efficiency of the
inversion is more altered for the upper levels of the model and for the small scales, i.e.
where the horizontal diffusion has the strongest effect.
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6 OBSERVATIONS DISTRIBUTED IN TIME.

The second set of experiments consists in studying the impact of having a set of obser-
vations distributed in time on the quality of the assimilation. Indeed, this context allows
the evaluation of the ability of a full 4-D variational assimilation to use the information
contained in the dynamics. The experiments presented below follow the same framework
as those described previously. The reference state and the initial state of the minimisation
are the same as in the first part of section 4.2. We perform an assimilation over a time
period [to,t,] with the cost function given by (22).

6.1 Impact of the number of observations.

Starting from the experiment presented in Fig. 7, we have studied the impact of three
different sets of observations :

- observations at t3 and tg,

- observations at tg, {3 and g,

- observations every hour.

As expected, the more we add observations, the smaller the saturation level in the
reconstruction of the reference field is. In particular having observations at time to before
NNMI has a dramatic impact on the decrease of the cost function since information on the
whole field is effectively available and not only the Rossby part. The difference between
the experiment with observations available at to, ¢5 and tg and the one with observations
every hour is small. In both cases, the minimum of the cost function is reached in about
20 descent steps. Moreover, the distance at ¢y between the reference state and the result
of the minimisation decreased by almost 4 orders of magnitude compared to 2 in the
inversion experiments. The RMS of the differences is small for all fields (e.g. for the 500
hPa vorticity field it is equal to 1078s71).

6.2 Information of the scales observed.

The scientific interest of the previous experiments is limited since all the fields are sup-
posed to be observed everywhere and at different times. We shall study here the ability
of 4-D variational assimilation to use the information contained in the dynamics together
with observations of the fields. In this set of experiments, we assume that we observe only
a limited part of the spectrum of the fields.

In the first experiment, the small scale features between total wave numbers 11 and
21 are observed every hour and we shall concentrate on the ability of the assimilation to
recover the large scales. In Fig. 16 we present the differences by wave number at time %,
between the model solution and the reference state for the vorticity and the divergence
fields. The first remark is that, as could be expected the small scales are completely
reconstructed by the assimilation. More interesting is that the large scale differences have
decreased significantly for the vorticity field as well as for the divergence field.

In the second experiment, only the large scales are observed and in Fig. 17 we see
that if satisfactory recovery of the large scale is achieved, the recovery of the small scale
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6 OBSERVATIONS DISTRIBUTED IN TIME.

The second set of experiments consists in studying the impact of having a set of obser-
vations distributed in time on the quality of the assimilation. Indeed, this context allows
the evaluation of the ability of a full 4-D variational assimilation to use the information
contained in the dynamics. The experiments presented below follow the same framework
as those described previously. The reference state and the initial state of the minimisation
are the same as in the first part of section 4.2. We perform an assimilation over a time
period [to,,] with the cost function given by (22).

6.1 Impact of the number of observations.

Starting from the experiment presented in Fig. 7, we have studied the impact of three
different sets of observations :

- observations at t3 and tg,

- observations at tg, t3 and tg,

- observations every hour. :

As expected, the more we add observations, the smaller the saturation level in the
reconstruction of the reference field is. In partlcular having observations at time 2o before
NNMI has a dramatic impact on the decrease of the cost function since information on the
whole field is effectively available and not only the Rossby part. The difference between
the experiment with observations available at tg, t3 and t¢ and the one with observations
every hour is small. In both cases, the minimum of the cost function is reached in about
20 descent steps. Moreover, the distance at t, between the reference state and the result
of the minimisation decreased by almost 4 orders of magnitude compared to 2 in the
inversion experiments. The RMS of the differences is small for all fields (e.g. for the 500
hPa vorticity field it is equal to 1078s71),

6.2 Information of the scales observed.

The scientific interest of the previous experiments is limited since all the fields are sup-
posed to be observed everywhere and at different times. We shall study here the ability
of 4-D variational assimilation to use the information contained in the dynamics together
with observations of the fields. In this set of experiments, we assume that we observe only
a limited part of the spectrum of the fields.

In the first experiment, the small scale features between total wave numbers 11 and
21 are observed every hour and we shall concentrate on the ability of the assimilation to
recover the large scales. In Fig. 16 we present the differences by wave number at time g
between the model solution and the reference state for the vorticity and the divergence
fields. The first remark is that, as could be expected the small scales are completely
reconstructed by the assimilation. More interesting is that the large scale differences have
decreased significantly for the vorticity field as well as for the divergence field.

In the second experiment, only the large scales are observed and in Fig. 17 we see
that if satisfactory recovery of the large scale is achieved, the recovery of the small scale
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features is weak, specially for the divergence field. '

These results show that the cost function measuring the distance of the small scales is
sensitive both to the small scales and to the large scales whereas in the second experiment
the cost function measuring the distance of the large scales is sensitive to the large scales
but far less to the small scales. This is consistent with the fact that the small scale
structures behave over 6 hours to first approximation as passive tracers with little feedback
on the large scale structures. The characteristic time for the small scale information to
contaminate the large scales is larger than this period of 6 hours, even if the fact that it
has been possible to improve to some extent on the vorticity field shows that there are
some interactions. It is also worth mentioning that the observation of the small scale
structures correspond in the physical space to more observations than the observation of
the large scales. '

These results validate the efficiency of the 4-D variational approach to use the infor-
mation contained in the dynamics together with observations to infer components of the
flow which are not directly observed. We have shown here an example of complementarity
between small scale observations and dynamics to retrieve the large scale of the flow.

6.3 Information of the fields observed.

In connection with the previous experiments, we have performed several experiments in
which only some of the meteorological fields were supposed to be observed.

For instance, we have performed an assimilation over 6 hours, the observations con-
sisting in temperature and surface pressure fields every hour. We represent in Fig. 18
and Fig. 19 the differences between the reference state and the model solution at 500 hPa
before and after minimisation and for respectively the vorticity field and the divergence
field. Tt is worth noticing that, concerning the vorticity field, the differences are dramat-
ically reduced in the mid-latitudes, whereas the minimisation is inefficient in the tropical
belt. Two factors contributes to this result.

Firstly for the first five vertical modes, there is a one-to-one relationship between the
mass and the vorticity field because of NNMI. Secondly, as already shown by Talagrand
(1981) with a simpler data assimilation scheme and a simpler model, the knowledge of
the mass field evolution is sufficient to recover to a certain extent the vorticity field in
the mid-latitudes whereas the interaction between the two fields is reduced due to the
nullity of the Coriolis force. In addition, we have performed the same experiment but
with no NNMI and we obtain a similar result, i.e. observation of the mass field in the
mid-latitudes is sufficient to reconstruct the vorticity part of the wind field. This clearly
shows that this information is contained in the dynamics and is consistently used in our
4-D variational scheme.

As far as the divergence is concerned, we can also notice an important reduction of the
differences. This reduction is likely to be due to the sequential observation of the surface
pressure, which gives indirectly through its tendency some information on the divergence.

Another scenario consists of observations only in the troposphere. The results show
that for an assimilation of 6 hours, the differences are reduced in the stratosphere. How-
ever, the period of assimilation was too short for the vertical coupling to be efficient and
the reduction remains small.
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9 APPENDIX.

We intend to estimate the order of magnitude of the two terms on the right hand side of
(8) given the experimental fact described in the text that the magnitude of the forecast
errors in operational practice is similar to the magnitude of the observation errors. As the
dynamics of the atmosphere shows an amplification of the errors with a typical doubling
time between 1 and 2 days, we model the atmosphere with a single variable x governed
by the linear dynamics :

"t = Az" + e (25)

where ¢ is a random variable which describes the model generated errors. Considering
that z"*! is six hour later than z®, X verifies the inequality : ¥/2 < A < v/2. (8) becomes

PP = NP 4+ Q (26)

Assuming we have one observation of x every six hours, which is reasonable over the

continents comparing the scales resolved by the model and by the observational network,
(12) becomes :

(P =(Fy)T 0T (27)

Combining (26) and (27), one gets the following recurrence formulae :

P = {(P7t 407} 4Q (28)
and the limits P* of Py satisfies :

_ _41-1
Pe=x3{(P=)"+07} +Q (29)
Using the experimental fact P;° = O, one gets the ratio between the two terms of (8) :

N(FP) A?
20  2- )
for the values of A given above this ratio lies between 1.46 and 2.41. The amplification
of the initial errors explains then something in between 60% in the worst case and 71%
in the best case of the second hand of (8). The model generated errors explains only

between 29% and 40% of (8). In a situation where the forecast errors were 50% greater
than the observation errors, the amplification of errors would explain only between 47%

and 57% of (8).

(30)
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