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PREFACE

by Jean Pailleux

The students of the French Weather Service (Ecole Nationale de 1a Météorologie, Toulouse) finish their
school period with a 6 month research study (small PhD) mostly in the French Weather Service. In
December 1989, Laurent Perron was the first one to come to ECMWF to perform this study here.

Laurent was integrated in the team working on the development of the variational analysis, and he studied
in more detail the aspects related to one observation type: the cloud winds or SATOB’s. When he left
in June 1990 he left a copy of his report (in French) which contains all the details of his work. This
report is available at ECMWF (ask me). Laurent was so kind as to provide a much shorter report
summarizing his work, which has been translated into English by Robert Bucher. I have edited this
translation to produce the present Technical Memorandum. I want to thank both Laurent Perron and
Robert Bucher for their work leading to this paper.



Abstract

The variational analysis (presently coded in research mode at the ECMWF and in the French Weather
Service) requires the calculation of a cost function which measures the distance between the model’s
vector variable and observations. We have calculated the contribution of SATOB satellite winds (derived
from cloud motions) to this function.

Two options were considered: The use of the wind components of the observed wind (in the form u, v)
or the direction and force (dd, ff). The latter is interesting in that it affords the possibility to use just one
of the two variables if the other one proves to be too poor. It also makes it possible to prepare ourselves
for the use of future observations containing only the wind force, such as those that will be produced by
a scatterometer flown on the ERS-1 satellite. '

Finally, to minimize the cost function we have determined its gradient with respect to the vector variable
of the model using the adjoint theory. Several minimization experiments were run, first in a 1
dimensional mode with just one observation, then in 3 dimensions on a 7x7 grid with 5 levels.

Key words: variational analysis, SATOB, cost function, adjoint.
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1. INTRODUCTION

One of the principal aims of a data assimilation is to provide numerical forecast models with an initial

state close to the real state of the atmosphere.

Currently, the data analysis systems provide the model with an initial state which is derived from
observations and the first guess (last available numerical forecast). For this, empirical or statistical
methods such as optimal interpolation are used. The limitations of the optimal interpolation technique

are described in Pailleux (1989 a). To overcome these limitations, present research in data assimilation

attempts:
o to make the analysis system less independent of the forecasting model;
. to use data that are closer to the genuine observed quantity measured by the instrument.

In order to improve present analysis systems, variational methods have been proposed by several teams,
such as Le Dimet et Talagrand (1986), Lewis and Derber (1985) or Talagrand and Courtier (1987). The
aim of the variational analysis is to calculate a cost function measuring the distance from the model vector
variable to the observations and the first guess while taking account of physical constraints. By
minimizing this cost function, it is possible to find the variable closest to the real state of the atmosphere

at the desired moment, and this variable is in harmony with the model equations.

The following are the main benefits which numerical forecasting can gain from a variational analysis:
. the possibility to treat the analysis, the initialization and the model as one coherent ensemble

enabling a fully four-dimensional variational assimilation;

. " the disappearance of data selection algorithms and therefore the absence of discontinuities in the
analysed fields;

. a better integration of physical constraints (such as geostrophy);

. a better use of new types of data, such as satellite data (radiances), at non standard observation
times.

Since the variational analysis requires the calculation of a cost function measuring the distance between
the model control variable and observations, it is necessary to calculate, from the model, values
comparable to observed values. Here must be introduced the notion of the observation operator: this is,
for a given observation type, the operation which produces from the forecast model a value similar to the

observed value.



It is not sufficient to calculate a cost function, one must still be able to minimize it. Since all standard
minimization schemes use the gradient of the cost function, in addition to its value, we need its gradient
with respect to the control variable. This gradient cannot always be calculated analytically. Luckily, the
" adjoint of the observation operator makes it possible to determine this gradient through an entirely

numerical approach (see Talagrand, 1989).

The study reported in this paper aims at calculating a cost function and its gradient for observations of
the SATOB type (satellite winds). The simplicity of the observation operator in case of SATOB winds
makes it possible to explicitly calculate the gradient of the cost function with respect to the control vector
variable of the model, i.e. we can verify the-results of the numerical calculation with an analytical
calculation. |

We will be treating two ways of representing an observed wind.:
. the first way breaks it down in zonal and meridional wind;

. the second uses a direction and a speed.

The latter makes it possible to use either the direction or the speed of the wind in the analysis if one of
the twd variables is not good enough. This possibility is not available in the optimal interpolation
technique used at present by the ECMWF analysis. It is especially interesting for SATOB winds, which
systematically underestimate the strength of the jet streams.

Once the calculation of the cost function and its gradient with respect to the control vector variable of the
model is made, we apply an elementary minimization: in section 5 the model wind profile (in the vertical
of a SATOB observation) is modified so as to minimize the distance between the model conirol variable

and the observations.

In section 6 of this memo we move to a three-dimensional problem by minimizing the calculated cost
function on a 7x7 grid, which makes it possible to validate the code developed (SATOB routine) in the
framework of the IFS/ARPEGE project.



2. INTRODUCTION TO VARIATIONAL ANALYSIS

The present ECMWF data analysis system is based on a statistical optimum interpolation (OI) method.
The ECMWF assimilation consists of an ensemble "analysis-initialization-forecast model" which is not
as coherent as we would like it to be. The main reason for this lack of consistency is that the analysis
is too independent of the model: the OI analysis does not know anything about the model equations (all
it knows is a set of statistics on the 6 hour forecast errors); also the integration of physical constraints
in the analysis is not very good (for example the mass/wind balance is insured in the analysis only
through a crude geostrophic assumption on the increments through the OI statistics). Another weak point
of the current OI analysis is that it can only use values which are linear functions of the model variables.
This limitation becomes more and more important because of the development of new instruments
observing new quantities which are further and further away from the model variables. Several teams
have proposed to use variational methods to tackle these weaknesses (see for instance Le Dimet and
Talagrand (1986) or Talagrand and Courtier (1987)).

The variational methods minimize the distance between the model and the observations. It is called "cost
function" and written as J(X), X being the vector containing all the model’s variables at the starting point
of the assimilation period (see Pailleux, 1989 a).

For a given type of observation the process which produces from the model a value similar to the
observed value is called "observation operator”. The adjoint of this operator (Talagrand, 1989) makes it
possible to calculate numerically the gradient of the cost function J (Grad J) with respect to the forecast

model vector variable.

In practice, J(X) and Grad J are calculated, then passed on to a standard minimization algorithm as often

as necessary to converge towards a minimum of J.

2.1  Four-dimensional variational assimilation

The advantage of the variational approach is that the information contained in the model dynamics is fully

utilised, as we try to compute directly a model trajectory.

Figure 1 shows the model "trajectory”, which we try to compute in order to minimize J.



2.2 Calculation of the cost function in practice
The cost function J consists of the following terms: J,, the distance between the vector variable X of the

model and the observations; J,, the distance between X and the first-guess and J,, representing the physical
constraints on X (see Pailleux, 1989 b).

I=J,+J,+1
Assuming that the observation errors associated with two different types of observation are not correlated
(as for optimal interpolation, the representativeness error is included in the term "observation error"), it

is possible to break up J, into independent terms J, = J,ymp+J,,+J,g,p+me+...

For every type of observation, it is generally possible to separate the cost function into independent terms.
Let us look at radiosonde data for instance: assuming that the observation errors of different radiosondes
are not correlated, the contribution of each of them to J, can be calculated separately:

Jm = J!‘Bl + sz +Jm3'+ es

And you can go even further by separating:

Tt = Jaina + Jgeoporentiat + Jhumiaiy

for each radiosonde observation.

distance to minimize.
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Fig 1 Schematic representation of the 4D assimilation problem.
X: analysis vector variable



3. PRINCIPLES OF A STANDARD MINIMIZATION ALGORITHM: A FEW TESTS

3.1 Introduction

The experimental variational analysis which is currently coded at ECMWF requires the minimization of
a cost function measuring the distance from the model variable to the observations and the first guess.
Currently we rely on standard minimization algorithms developed outside meteorology by numerical

research groups and used for different applications.

3.2 The minimization module M1GC2
The minimization software used in our experiments is called M1GC2. It was developed by INRIA from
work of A. Buckley. The module M1GC2 solves the optimization problems of the following type: find

the vector X which minimizes J(X).

It is necessary to provide M1GC2 with the value of the function J and its gradient with respect to the
vector variable X: the computation of J and its gradient are called "simulation" in optimal control

language.

The aim of M1GC2 is to make the best use of the computer (depending on the memory available) to

minimize J.

If the user allocates sufficient memory space, M1GC2 calculates at every iteration an approximation of

the inverse of the Hessian matrix

&) .
(axi-av)"’

This is the quasi-Newton method.

If memory is insufficient, M1GC2 starts by an approximation of the quasi-Newton techniques. At every
iteration an approximation of the Hessian matrix is updated. One continues with the algorithm of the
conjugaie gradient precondiﬁonéd by this matrix. This method is likely to be used for all the "real size"

experiments performed with the variational analysis.

3.3 Routines to be written by the user of M1GC2
Before calling the minimisation routine M1GC2, two routines must be declared in EXTERNAL:




* SIMUL calculates the value of the function to minimize and its gradient. Each calling of
SIMUL is called "simulation".
. PROSCA calculates the scalar product of two vectors. This scalar product is not

necessarily Euclidean as a better choice accelerates the convergence.
These two routines must be written by the user following the documentation on M1GC2.

34 Acceleration of the convergence

The enormous size of the variable of the numerical forecast model (it would be around 10° with the
present ECMWF operational model) does not allow for a great number of iterations (probably less than
10). Therefore the convergence must be accelerated by passing the ad hoc scalar product routine to

precondition properly the minimization.

If M is a symmetrical matrix close to the secondary derivatives of the function to be minimised J, one
can use the scalar product

(a, b) = a'Mb
without forgetting to feed M1GC2 with M VI instead of V1.

In this case you have indeed dJ = VJI'X:
d) = MVIMX) = MVI)MX = VI'X

and M VJ is close to the Newton direction.

3.4.1 Choice of the scalar product

For déﬁning our scalar product, the ideal solution would be to use the matrix of the second derivatives
(Hessian matrix) of the function to minimize. Unfortunately the introduction of a Hessian matrix
dependent on the model variable would need too much computing time and memory (in the above
example a 10°x10° mairix). In order to accelerate the convergence with reasonable computing times one
can ask oneself whether it is sufficient to pass to M1GC2:

a) the approximation of the Hessian matrix diagonal at the initial point of the minimization.

b) the approximation of the Hessian at the initial point of the minimization.

The use of the diagonal of the Hessian matrix alone does not necessarily accelerate the convergence
towards the minimum: this has been shown by performing simple numerical tests, with simple cost

functions in a low dimensional space (Perron, 1990).



What matrix can we take to define a scalar product capable of accelerating the convergence towards the
minimum of the cost function J? The ideal one would be the inverse of the variances/covariances matrix
of the analysis error (as it is the Hessian of J), but it is not available before the minimization. It is
possible to use that of the preceding analysis, assuming that this matrix varies little from one analysis to

the other, but with changing observation networks, this idea is not very good either.

To tackle this problem, we can use the matrix of variances/covariances of the forecast error P, which is
supposed to be close to the covariance matrix of the analysis error. The cost function to minimize is
broken down as follows:

1 =1, +J, + I, (see section 2) with J, = (X-X)' P! (X-X,). P is already used in the calculation of Jg,
it is by construction a symmetrical matrix defined positive definite which can be used for the definition
of the scalar product. P! will have to be tried for preconditioning the minimization routine via the scalar
product in the hope of accelerating the convergence towards the minimum of the cost function J. This

is by no means ideal as the observations are then not used.

The importance of the initial point of minimization varies according to the type of function for which one
wants a minimum, If the function is quadratic, the initial point is of little importance and convergence
will be reached in one iteration as long as M1GC2 is fed with first and secondary derivations of the
function. If on the other hand the function is not quadratic, the initial point can be of great importance:
it is crucial to start as close as possible to the final solution. Several academic numerical experiments,

illustrating these aspects are available in Perron (1990).



4. CALCULATION OF A COST FUNCTION AND ITS GRADIENT FOR THE SATOB WIND
OBSERVATIONS

4.1 Use of the observed wind in the form u, v

We treat the case where the observed wind is broken down into zonal and meridional wind in the form
u, v. The two components cannot be treated separately: it would not be logical to use only the zonal or

meridional component of an observed wind.

4.1.1 Calculation of a cost function and its gradient with respect to the variables u, v and Ps

We now calculate the contribution of SATOB observations to the cost function. Each SATOB wind
observation must be compared to the model’s wind interpolated at the observation point. The observation
operator is therefore very simple and permits an explicit calculation of the gradient. The gradient

calculated with the adjoint operator can thus be verified.

Observation Operator:

From the model wind profile at the vertical of the observation a vertical interpolation (linear in pressure)
is performed (by the routine PPUV in the set of ECMWF postprocessing routines). This interpolation
produces the interpolated wind at observation point.

Cost Function for one observation

7 - [%% 2 . (Yo 2
¢ su sv

u, observed zonal wind

where

v, observed meridional wind

u, interpolated zonal wind at observation point

v, interpolated meridional wind at observation point

s, standard deviation of the zonal wind observation error

s, standard deviation of the meridional wind observation error.

Gradient with respect to u,:



al,
-é;ﬂ - -2(u,~u)/s;}

P

Gradient with respect to the variable u:

. obtained with the adjoint interpolation routines:

The adjoint of the observation operator is the adjoint of the interpolation routine (PPUV). It is sufficient
to feed it with the gradient of J, with respect to interpolated wind as an input argument to obtain as output
the gradient of J, with respect to the zonal wind at all model levels (in the vertical of the observation).

aJ aJ
—2 -+ PPUVAD - —2 (at all levels)
au, ou
. Explicit calculation:
- If the observation is below the model top level (level 1):

Let k and k-1 be the model levels bordering the SATOB observation,
p, and p,, their pressure in the vertical of the observation,

u, and u,; their zonal wind in the vertical of the observation, then

a, aj, ouw, aJ,

'a';: = EZ 'Ek' = aup (p pk-l)l(pk pk-l)
&, aJ, ou, aJ, S

e E'u_, . - 5, @D Oy Py.y)

Since the other levels are not used in the interpolation, the corresponding gradients are zero.

- If the observation is above the model top level (linear extrapolation to obtain u,) the gradient

equations are similar to the previous ones (with k = 2).

Gradient with respect to the variable v:
The calculation is similar to the one of the gradient with respect to the variable u.

Gradient with respect to the variable p,:
The surface pressure at the vertical of the observation is connected to the interpolated wind at observation
point through the position of the model levels. This feature is generally neglected in the analysis schemes.

However, it is easy to take it into account in the present context. Neglecting it would lead to an



approvimation on the aradient computation which would make it impossible to check.

. Gradient obtained with adjoint interpolation routines:
Let us see in which way the surface pressure P, is related to the interpolated wind at observation
point (up, Vo) ‘ '

From p, we calculate the model level pressures with the routine PPPRES. Then we initialize the
tables necessary for interpolation with PPINIT. Then we interpolate with PPUV.

All we need to do is to call the adjoint routines in the opposite order to obtain the gradient of J,
with respect to pg:

%,

al
- PPUVAD, PPINITAD, PPPRESAD -~ 5"

3

‘Hg, I ee 'Hg)

° Explicit calculation:

QD
8

L= (i) (Bi1-Py + Bp;_,-P)/ (Pk’Pk-l))z

Where: k and k-1 are the levels bordering the SATOB observation, p, and p,, the pressure of
these levels, B, and B, , the coefficients defining the vertical coordinate of the model.

P = Ap +; B;. P

4.12 Test of the calculation of the cost function and its gradient by the subroutine SATOB

The computation of the observation cost function for one SATOB, as developed in the previous section,
is involving one of the simplest examples of observation operators. Because of this simplicity it was
possible to do the full analytical calculation of the gradients, and to verify the results ageﬁnst the results
provided by the chain of adjoint routines: PPUVAD, PPPRESAD, ... This analytical computation has also
been in this case a way to validate these routines (routines which will be used in many other places of

the variational analysis code).
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For most of the observation types, the observation operator is more complicated, and it is impossible to
validate the adjoint code by a full analytical computation. However, there is a standard technique to
verify the gradient (which has already been developed in the variational analysis code): it is using the
Taylor formula, and it has been also applied to our SATOB operator.

H being the observation operator and X the control variable, the Taylor formula can be written
H(X + e8X) = H(X) + H + ed8X + O(e)*
The function

HX + e8X) - HX)
H - e8X

A(e) =

must be linear and must tend towards 1 when e tends towards zero and when 8X is proportional to A,
if H' is the correct gradient. We have verified our SATOB gradient by computing the function A(e) for

different values of e varying from 10° to 10 (logarithmic variations) as shown on the following table:

O A
0.1 E -05 0.99999920
0.1E-04 - 0.99999212
0.1 E -03 0.99992123
0.1E -02 0.99921232
0.1E-01 0.99212325
0.1 E +00 0.92123255
0.1 E +01 0.21232550
01E+02 -0.68767518

4.2  Use of the observed wind in the form dd, ff

The observed winds can have the form dd,ff, i.e. a direction and a force. The interest of this

representation compared to the form u,v lies in the possibility to use only the direction or the speed in

the analysis if one of these two variables is too poor.

The optimum interpolation analysis, contrary to variational methods, does not have this possibility,

because there is no linear link between the direction or the speed of the wind and the model variables.

11



4.2.1 Calculation of a cost function and its gradient with respect to the variables u, v and Ps

’Ihe cost fllnction iS: Jo = Jod(dlrecﬁon) -+ Jof(speed)

d -d)\
(%3]
4

]

The following notations are used:

d. direction of the observed wind (measured with the positive sign in the trigonometric
sense) from the Eastern direction;

fo: speed of the observed wind;

dy direction of the "postprocessed” model wind, vertically interpolated to the observation
point;

£, speed of the model wind;

uy: zonal wind interpolated to the observation point;

Vpr meridional wind ....;

8- observation error standard derivation on the direction;

Sg observation error standard derivation on the speed.

The direction and speed are linked to u, and v, by:

2 2
fo = \tp * V5

. vp -f N 0
dp—a:csm }_—- i u, >

P
»
LV,
d = 7w - arcsin £ if u <0
P f2
j

Gradient with respect to variables u, and v,

o, a, o

J=Jd+Jf 50 o.M, o

° aup aup aup
ria;l‘l’-_zu b}
Ou,, sz fo
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Eﬁ'--zm_fp) 2

%y s N
If u,2 0 then
a’d -2 do"dp\ _‘VE
%, G )%
and a’“’-z d"_zdp\ﬁ
&, s f}:
Ifup<0then
Vi | _ o[- %
aup s: f:
and  ed _ d""zdf' L
. avp ' Sq f:

At this point a similar computation to the one performed in 2.1.1 can be made. This is true also for
the gradient of the cost function with respect to p,.

42,2 Test of the calculation

Compared 1o 4.1, the only extra operator to consicer is the one performing the computation of (d,, f,
from (u,, v,). In terms of code development it is only a few lines of Fortran to add at the appropriate
place in the direct and adjoint routines. The simplicity of the analytical computation gives the
possibility to make the cross-check of the results. The standard test of the gradient described in 4.1

has also been performed successfully when working with the direction and speed of the wind.

13



S. MINIMIZATION TESTS OF THE COST FUNCTION

The computations described before have been put in the form of a "SATOB" subroutine fully
consistent with the development of the ECMWF variational analysis. Several versions of the
subroutine SATOB are actually available: one of them is using fhe wind components, another one is
using direction and speed. Before including and testing the SATOB part in the real size variational
analysis, it is worth testing it in a very simple 1D problem reduced to one simulated SATOB
observation, and one simulated model profile at the observation point. Such a variational problem is
strongly under-determined (because one observation is much too little to determine the whole model
profile), however it is worth running such a simplified 1D variational analysis for at least two reasons:
i) to validate this part of the variational analysis;

ii) to check how the minimization is working (code M1GC2 described before).

5.1 Wind Observation in the form u,v

Fig.2 summarizes one of these simple simulated 1D experiments. It shows that the minimization is
working towards a profile which is consistent with the (u,v) observation: one solution among an
infinity of possible solutions as a problem is undetermined. The model profile is shown for each wind
component by the solid line, the observation is marked by a cross (+). The left-hand diagrams in the
figure show the profile before the minimization starts. The convergence is obtained in 1 iteration ,

i.e. in the most efficient way, as expected due to the spherical property of the cost function.

52 Observed wind in the form (direction dd, speed ff)
Starting from a simulated initial state and a SATOB observation given in the form (dd,ff), we

minimize the cost function which uses:

i) direction and speed (figure 3)

ii) speed only (figure 4)
iii) direction only (figure 5)

Figures 3, 4 and 5 show the behaviour of the minimization in the horizontal plan of the wind
observation. The full line arrow represents the wind observation, and the dashed one the model wind

(control variable) interpolated to the observation level.
Using only the speed, or only the direction, is not usual in current operational analysis schemes. As

explained before it is actually impossible in the current ECMWF OI formulation which works with
the wind components and the geopotential height. It is still interesting for SATOB winds, as it gives

14



possibility to use the observed direction only when the observed speed is known to be too poor (like in
the jet streams where the cloud winds are famous fbr being underestimated). Such a feature is also
interesting for preparing the use of future observations, such as those that will be produced by a
scatterometer flown on future satellites like ERS 1: a scatterometer is able to get a measure of the wind

speed near the surface, over the oceans, but cannot determine the direction with certitude.
Figures 3, 4 and 5 show that in all three cases i), ii) and iii), the minimization converges towards the
expected minimum. The number of iterations in the minimization has been found between 2 and 6

(instead of 1 iteration when we used u and v). This is likely to be due to the shape of the cost function:

the shape is not spherical as it was in the (u,v) case, due to the operators "Arcsin" and " SQRT " which

are introduced for computing (dd,ff) from (u,v).

15



Observation pressure = 9000 Pa

Observed wind: zona! component = 20m/s
meridional component = 10m/s

Before minimisation
Cost function = 145.45

ps - 100000 Pa
Niveau no. '
or

After minimisation

Cost function = 1.616 1026
1 iteration — 2 simulations

ps — 99999.99990 Pa
Niveau no.

or

20 530 @y 20 7626 36— 20" Y
Niveau no. Niveau no.
0 0[-

5 |-

10}

15
20—y 2oLty

Fig 2 Minimization of a SATOB cost function written with u and v.
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¥ Analysed wind

Observed wind

»Zonal wind

AFTER MINIMISATION
Meridional wind
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Observed wind
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Fig 3 Use of direction and speed of the observed wind.

Before minimization : Meridional wind
Zonal wind
Analysed wind
Observed wind.
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BEFORE MINIMISATION
AMeridioncﬂ wind

¥ Analysed wind

Observed wind

»Zonal wind

AFTER MINIMISATION
Meridional wind

X 4 Analysed wind

Observed wind

0 I I »Zonal wind
0 10 20

Fig4 Same as fig 3 but using observed speed only.
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BEFORE MINIMISATION
AMeridioncll wind

,¥ Analysed wind
*

Observéd wind

»Zonal wind

AFTER MINIMISATION |
Meridional wind

_-¥ Analysed wind

-
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Observed wind

T » Zonal wind
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0 10 20
Fig 5  Same as fig 3 but using observed direction only.
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6. MINIMIZATION TESTS IN THE 3 DIMENSIONAL SPACE

The ideal 3D tests of the SATOB operator will be performed in the context of the real size variational
analysis, once it is fully developed. The experiments reported in this section have been made in a
simplified 3D context (wpich is still much closer to the real variational analysis than the previous 1D
problem). | ' |

We take a 7x7 grid with 5 lgvels in the vertical and 100 km mesh.

The control vector variable comprises:
- the zonal and meridional wind at each grid point at every level; -

- the surface pressure.

Therefore the control variable has the following dimension: -
7x 7 x (5x2 +1) = 539. '

If we use only the cost function J, based on the observations, the problem is under-determined.

To get rid of the indetermination and also to set up a problem closer to the real analysis one, we add a
cost function J, measuring the distance between the control variable X and the first-guess X,;. Then we
try to minimize
CI=l+1

Calculation of J;

I = (XX e PT o (X-X,)
P is the matrix of the variances/covariances of forecast errors and has dimension 539 x 539. We construct
it as follows: ;
- We assume that in 3D:

correlation = vertical correlation x horizontal correlation,

i.e. r =1, X 1, (usual separability assumption made in most of the OI systém)

- For the vertical correlation we take the following statistical model:

20



withK =15
- For the horizontal correlation we take between two points A and B distant by d metres:

r,,-e—'gz— a = 500km
2a2

- The standard deviations of the forecast error are equal to 1 m/s for all winds and 100 Pa for
the surface pressure.

We use one single observation assumed to be at grid point 4 x 4 and 100 hPa.

Observation: Zonal wind is 26 m/s
Meridional wind is 32 m/s

The standard deviation of the observation error is 1 m/s for both zonal and meridional wind. The first
guess is a uniform wind field. The starting point of the minimization is taken as equal to the first

guess; we use the observed wind in the form u,v.

Figure 6 shows the results of such a 3D test at 100 hPa (the observation level). The test is successful
and encouraging in the sense that both the J, and J, terms seem to play the réle we expect from them
in the variational analysis: the J, term is forcing the wind field to draw to the observation at point
(4,4), and J, is "spreading” smoothly the observation information in the horizontal. By looking at the
vertical profile of the wind, we also checked that the information is correctly spread in the vertical (it

was not the case in the 1D tests because of the lack of a J, term).

However, some numerical problems have been noted in the convergence of the minimization in some
cases, which were solved by increasing the diagonal of the P matrix (i.e. assuming that the horizontal
correlation function for forecast errors has a discontinuity at the origin). The exact explanation of
these numerical problems could not be clariﬁed. This will have to be reconsidered, probably in the
context of the real size variational analysis with a 3D discretization closer to the operational sizes and
resolutions. Some technical aspects related to the J; computaﬁon are described in Moll et al. (1988).
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Fig 6 Impact of a single wind observation at 100 hPa on a variational anaysis (observation = dashed
arrow). The first guess field is a uniform wind field (top). The variational analysis is shown in
the middle together with the observed wind. The differences "Analysis - First Guess"
(increments) are the bottom diagram.
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7. CONCLUSIONS

The SATOB observation operators have been developed with the aim to incorporate them in the
variational analysis code currently developed at ECMWF. The traditional use of a wind observation
through its components (u,v) has been considered first; then the direct use of observed directions and
speeds has been treated as it opens interesting possibilities not only for using cloud winds, but also

other observing systems.

The gradient computations have been developed following the adjoint technique and following the
general rules for the development of the variational analysis. The gradient computations have been
validated by using the standard tools (Taylor formula). Also, because of the simplicity of the operators
in the SATOB case, it was possible to carry out the full analytical computations of the gradient.

The gradient of the cost function (for a wind observation) with respect fo the surface pressure p, has

not been neglected although it is extremely small. This non-zero gradient component means that the

P, value of the model can be modified (slightly) by a wind observation through the position of the
-model levels (which are dependent on p,).

Simple 1D and 3D experiments have been run to test the SATOB operators. They show that the
minimization is working satisfactorily and according to what we know of the minimization algorithm
MiGC2.

The real size variational analysis is not ready yet to have the SATOB operators tested in their final
environment. The more interesting tests are expected to be made in the real size variational code

together with other observation operators.
Let us finally note that the SATOB observation operator is one of the simplest. Much more work has

to be done for other observations. On the other hand the SATOB operator can be used for any

observation type reporting a single level wind datum in the free atmosphere.
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