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1. INTRODUCTION

’I‘lle impact of TOVS data on the analysis and forecast has always been large and positive in the Southern

Hemisphere. However, the results in the Northern Hemisphere have never shown any clear positive impact
of TOVS data. Since 1979, many impact studies have been carried out to assess the impact of TOVS data
on analyses and forecasts, (Halem et al. (1982); Gilchrist (1982); and Gallimore and Johnson (1986)). At
'ECMWEF, a comprehensive set of experiments on the quality and impact of TOVS data is documented in
Andersson et al. (1991) and Kelly et al. (1991). The impact of TOVS in the Northern Hemisphere is neutral
on average, but some cases of positive impact are found, as well as some cases of negative impact which can
often be traced back to "misuse” of the satellite data: (Kelly et al. (1991), Kelly (1990)). This is somewhat
disappointing, taking into account the volume of TOVS data and the potential information which it contains.
The clear signal from most of these impact studies is that the TOVS are not used in an optimal way in most
operaiional analysis schemes. The reasons for this "sub-optimality" are, to a large extent, understood.
Generally the satellite information is passed to the analysis in the form of retrieved profiles (usually called
SATEMs) which are only a crude representation of the genuine satellite information and also contain rather
inaccurate auxiliary information (such as statistical information or an initial profile which often has a strong '
component of climatology), Pailleux (1988). Then, the Optimal Interpolation analysis using these retrieved
profiles, cannot extract the radiance information correctly. A few attempts have been made to use the
radiances directly in Optimal Interpolation (see Durand, 1985); these attempts were limited by the necessity

of an assumption of linearity between radiances and temperatures.

Since May 1991 no TOVS data have been used in the tropics or in the Northern Hemisphere troposphere
within the ECMWEF operational analysis.

A linear Optimal Interpolation analysis cannot extract properly from the observations any quantity non-
linearly related to the forecast model variables. This is a strong limitation, both for currently available data,
such as TOVS, and also for many future observing systems, such as scatterometer observations. Not even

all current conventional data can be used by OI; for example, an observed wind speed cannot be used on its



own, without an observed wind direction. The natural tool to cope with this non-linearity is a variational

analysis based on the notion of an adjoint operator (see Pailleux, 1988).

The direct use of radiances in a three-dimensional variational analysis, together with all the other observation
types, through a direct radiative transfer model and its adjoint, is a natural and attractive solution. Another
approach, which is also under test at ECMWF, consists of using the 6 hour forecast to perform a variational
retrieval in the vertical (1D-VAR), before using these retrievals in the Optimal Interpolatidn analysis.

Historically, the adjoint operators were first studied in meteorology in the context of 4 dimensional

assimilation (rather than three-dimensional analysis): the adjoint of a forecast model is the appropriate tool
to fit a model "trajectory” to observations over a time period (z,, ¢,), and so provide a "clean" solution to

the general four-dimensional continuous assimilation problem. These four-dimensional aspects are
documented in Lewis and Derber (1985), Le Dimet and Talagrand (1986), Talagrand and Courtier (1987),
Courtier and Talagrand (1987). Compared with a 6-hour intermittent assimilation system (such as that
currently operational at ECMWF and in many other forecasting centres), a four-dimensional continuous
system presents many potential advantages: observations may be used in a way fully consistent with the
model equations, full use can be made of observations reporting with a high time frequency, additional
- possibilities exist to tackle "spin-up" problems. The ability to investigate these aspects thrdugh four-
dimensional experimentation is a strong motivation for developing a global variational assimilation scheme
able to Work both in a three-dimensional and a four-dimensional mode. A four-dimensional assimilation

scheme is likely to be expensive in computer resources, as it has to iterate a calculation which includes a

direct integration of the forecast model from time ¢, to ¢;, and a backward integration of the adjoint model

from ¢, to ¢,. In addition it requires the storage of the model trajectory. Experimentation is required to

answer the question whether operational assimilation can be done in a four-dimensional mode. A key issue
is to evaluate, in a quantitative way, to what extent the model dynamics can help the assimilation by, for

example, reconstructing some typical features of the atmosphere.

The Optimal Interpolation scheme cannot work operationally without a data selection algorithm. Two data
selection strategies have been used. The point data selection strategy chooses a limited number of observed
data around each grid-point and for each analysis level. In the box method used in the ECMWF system
(Lorenc, 1981), an observation set is selected to analyze a whole volume through one Optimal Interpolation
linear system of equations. In any case the data selection algorithm generates some noise in the final analysis
because different observations are used from one point to another to correct the first-guess. Although we do

not have any quantitative assessment of the degradation coming from the data selection scheme, a global



analysis using all the data in one calculation is attractive because it would remove this deficiency and, at the
same time, simplify the analysis code. It would perhaps also give an opportunity to assess the impact of data

selection.

The need to study these three-dimensional and four-dimensional assimilation issues in a consistent way
(together with other requirements, e.g. the use of a tangent linear model to investigate the time evolution of
errors), led ECMWF and METEO-FRANCE to develop, in common, a new system called Integrated
‘Forecasting System (IFS) at ECMWF and "ARPEGE" in France. The main féatures of IFS/ARPEGE are
described in section 2. They define the framework in which the variational assimilation work has been
carried out. In section 3, the different variational assimilation developments which have been made in the
IFS are documented. The results of the different experiments which have been carried out are given in
sections 4 and 5: section 4 for three-dimensional experiments, section 5 for four-dimensional experiments.
Some remarks about the different minimization algorithms which have been used for this work are given in
section 6. Section 7 concludes the paper and describes the prospects and plans at ECMWF in the area of

variational assimilation. We also indicate other applications of the IFS system.

2. GENERAL FEATURES OF THE "INTEGRATED FORECASTING SYSTEM" (IFS)
The development of the IFS/ARPEGE system began at the end of 1987. It was designed from the beginning

to provide all the modules needed to perform three-dimensional and four-dimensional variational assimilation

with real observations and also with simulated ones ("observed" fields either in grid points or spectral space): -

o A forecast model and its adjoint (for four-dimensional assimilation).

° The observation operators needed to compare the model with observations and to compute an
observation cost function (J,: metric of model minus observations distance) and its gradient. |

o The first guess operator needed to compare the model with a guess and to compute a guess cost
function (Jg: metric of model minus guess distance) and its gradient.

° Mass/wind balance operators.

. General minimization algorithms.

Talagrand (1988), Pailleux (1988) and Pailleux (1990) discuss the role of these modules in a variational

assimilation.

The IFS/ARPEGE system includes a normal operational forecasting model. It is planned to have a version
of the ARPEGE model operational in France by the end of 1991 and for the IFS model to be operational at
ECMWEF in 1992. The main forecast model of the IFS/ARPEGE system is a multilevel primitive equation



spectral model with the option of a variable resolﬁtion in the horizontal (Courtier and Geleyn, 1988), and a

hybrid coordinate in the vertical (Simmons and Burridge, 1981). Options have been prepared for:

o Semi-Lagrangian scheme.
*  Reduction of the number of grid points near the poles on the collocation grid.
° Rotation of the pole (this option, combined with a stretching factor making the horizontal resolution

higher near one chosen point, may enable the system to provide the functions of current limited area

models).

An Optimum Interpolation analysis is also included in the IFS/ARPEGE system in order to meet the French

operational requirements.

The IFS/ARPEGE system also incorporates several research related tools: -

° Vorticity equation and shallow water equation models.

° Tangent linear models which are useful to study the time evolution of model errors (though they are
not needed as such for four-dimensional assimilation experiments).

s Kalman filtering (also a key technique for assimilation, not described in this paper).

o Validation tools for testing the correctness of an adjoint code or the correciness of a’gradient.

The code has been developed in such a way that the various applications can be used in combination with
the various models by turning on or off appropriate switches. The dynamical part of the forecasting models '
was developed first, together with their corresponding tangent linear and adjoint versions: (1987-1988). The
strategy which has been followed and the tools which have been used for validating these developments are

described in Thépaut and Courtier (1991). The code development work has continued in several parallel

streams: -

° Rotation of the pole, normal mode initialization, reduced grid near the poles.

° Code for Semi-lagrangian advection (mainly done in France).

° Incorporation of ECMWF and DMN physical packages.

° Development of the variational analysis code (mainly done at ECMWF),

o Development of an Optimum Interpolation scheme (in France; ECMWEF has no plans to change its

Optimal Interpolation code).

The last two modules have been developed with common observation operator routines: for both variational
analysis and Optimal Interpolation one needs to interpolate the model both in the horizontal and the vertical
in order to compare it with the different observed quantities. The model fields used for this comparison are

either the control variable (updated at each iteration of the variational analysis) or the guess (for Optimal



Interpolation). This follows our general policy to avoid coding the same computation or the same operator
twice, thus improving the internal consistency of the IFS/ARPEGE system. The bulk of the analysis code
development took place in 1989-90. Since the beginning of 1991, the variational analysis has entered the
debugging and testing phase.

The first goal of the analysis code tests was to make sure that each different contribution to the cost function
of thé variational analysis had a correct gradient, including the contributions of different model variables toJ,
and the contributions of the different observation types and different variables to J,. The standard validation
tool is the gradient test option (Thépaut and Courtier, 1991), Having developed the code for computing a
given contribution J(X) to the variational analysis cost function and its gradient V J, one can test that the

vector V J is the correct gradient of the function J(X) with respect to the control variable through a check
based on the Taylor formula:

¢ = lim .I(X+¢SX)—J(X)=1
8%~ 0 <VJ 8X>

8X is a perturbation to the control variable X. In the standard gradient test algorithm, 8X is chosen
proportional to the gradient: 8X = -a V J, as this choice normally leads to a reasonable scaling of the
various components. This choice is arbitrary and, in some circumstances, it was found more convenient to
choose 8X propofﬁonal to X (i.e. 8X = aX). The gradient test checks that the above ratio tends to 1,.

linearly in a, over a wide range of magnitude of o.. The example shown in Table 1 evaluates the gradient
of the TOVS radiance cost function from 1200 simulated observations with respect to all the model variables
in spectral space. The linearity can be visually checked, as shown in table 1, by the number of decimals
equal to 9 or to zero in the value of the above ratio, printed for different values of & increasing by a factor
10 from one line to the next. We have found that the test is a powerful debugging tool. Most of the time,
a lack of linearity in the gradient test was due to small bugs. However, in a few tests related to some
observation operators, this lack of linearity was found to be due to a "small amount of non-differentiability"

in the operators.



a t
1.00 E-13 1.3545476596041
1.00 E-14 1.0267112532746
1.00 E-15 1.0026520613185
1.00 E-16 1.0002650049736
1.00 E-17 1.0000258019939
Table 1: Gradient test function for different values of a which specifies the size of the

perturbation. The cost function being tested corresponds to the contribution of 1200
simulated TOVS radiances, and we are checking its gradient with respect to all the

model variables in spectral space.

3. VARIATIONAL ANALYSIS IN THE IFS
In the global data assimilation problem one has to find a model trajectory which fits "reasonably" the

observations available on an assimilation period (¢,, ¢,), and which also fits "reasonably” the most recent
forecast valid for ¢, (first guess). This trajectory is entirely determined by the vector X containing the
ensemble of model variables at time ¢,: once the required X has been computed, the required trajectory will
be obtained by an ihtegration of the forecast model from "state X" at time ¢, to time ¢,. X may be taken .

as control variable of the following global minimization problem: minimize the cost function J(X) = Jg +dJ,

where

Jg is defined as the distance from X to the first guess Xg

J, is defined as the distance from X to the observations:

In the four-dimensional problem the model has to be integrated from ¢, to the appropriate observation time
in order to compare X with the observation, then the adjoint model has to be integrated back to #, in order

to obtain the appropriate gradient with respect to X.

A three-dimensional variational analysis can be designed like a general four-dimensional system in which the

model integrations are switched off: one then compares X directly with the observations made at time £, (or

around ¢ ). It can be shown (Lorenc, 1988), that a global Optimal Interpolation is equivalent to the

" minimization of the cost function:



JX) = J + T,
with  J, = (X-X) P! (X-X))

J, = (KX-d) O"{(KX-d)

where X o is the first-guess, P the covariance matrix of first-guess errors, d is the vector containing all the

observed data, K is the product of the operators transforming the control variable X into the equivalent of

each observed quantity, O is the covariance matrix of observation errors (which also contains the

representativeness error).
Minimization of J(X) with respect to X requires the following steps:

a) Provide an initial estimate for X.
b) Compute J(X) and its gradient with respect to X.

c) Pass X and J(X) to a minimization scheme which computes a more accurate estimate of X.

d) Iterate on b) and c) until a reasonable convergence is achieved.

In general the cost function may have any number of terms -
J=Jg+Ja+Jc +uue
where J, for example, may contain balance constraints. The use of a J, , is one technique to ensure a proper

mass wind balance.

The variational analysis part of the IFS/ARPEGE system reduces to the computations of J p Jg, J, and their
gradients. The gradient of J is given by

Jy = VI =V, +d, +J, +.)=2 P!'X + K'O! KX-d)) + VI, + .,
and the minimizing solution is found by setting this expression to zero. For example, considering on1ng

and J,

YoJ,=P'X + K'OY (KX - d) = 0.

In methods of steepest descent the search direction is the direction of the local gradient Jy. This can be

~ inefficient in the region of steep valleys in the cost function. A better approach is the quasi-Newton, or



~ variable metric methods. In such an approach the local gradient is pre-multiplied by Jyy !, the inverse of

the Hessian matrix of J. If J is a strictly concave quadratic function then pre-conditioning in this way
ensures the minimum will be found in a single step. In other cases it is still a great improvement on steepest

descent. In this approach one effectively takes a second order rather than first order local approximation to

J. In the case when X is a linear operator (independent of X) Jxx is given by

% J, = P+ K'OIK.

For a linear problem this will result in optimal pre-conditioning of the minimization. However the inverse
of the Hessian is difficult to compute and store, involving as it does all the observational operators as well

as the guess operator. As a starting point it will be assumed that the observation error operator has the same

form as P!, This may not be too bad an assumption as the prediction errors in an assimilation will be

closely related to the analysis errors. With this assumption the Hessian is proportional to P1.

P! is a square matrix with dimension given by the number of degrees of freedom of the forecast model.
In the current code P! only includes the model state variables and is block diagonal. Thus forecast errors
are assumed uncorrelated between variables in spectral space, which corresponds to an isotropy assumption

on the sphere. Further, separability is assumed between the ’vertical’ and *horizontal’ components of P-1, .
Even so, for one of these block components, such as the vorticity field at a particular model level, the size

of the block matrix is far too large to store. Thus, Jy, as a whole cannot be passed to the minimization
algorithm. At the moment only the diagonal component of the Hessian is provided to the minimization. This

means that the minimization will perform best when P! is nearly diagonal.

3.1 Guess Cost Function

The guess cost function is given by
-1

Jo= (X - Xg)‘P X - X))
where, as mentioned above, separability is assumed between the ’horizontal’ and ’vertical’ components of
P:-

t y-lg-1

Jo=X-X) V'H X - X,).

The formulation of H™! and V! is described in Appendix A. For the moment, note that H contains within

it the covariance matrix in spectral space of the first-guess errors within model levels; V¥ contains the



correlation matrix of first-guess errors between model levels, and the latter is assumed to have no

geographical variability. All of the spatial variability, both horizontal and vertical is contained within H.

Jg may be reformulated in terms of the normalized departures of the models variables from the first guess -

t
;XK (XX
- 8 o ]

where the o’s describe the spatial variability of the forecast errors (see Appendix B). A diagonal form may

be assumed for A~! (which is now a correlation matrix), but not for ¥V-!. The form of #~! is chosen such

as to give isotropy and homogeneity of the correlation function on the sphere.

Since the forecast errors, G, are defined in physical space and the cost function is calculated in spectral space

the division by forecast errors involves a sequence of operations -

1) Difference X and Xg in spectral space

2) Convert from vorticity, divergence to winds D!
3) Transform to grid-point space §1
4) Normalize with respect to forecast errors ¢ N
5) Transform to spectral space S
6) Convert from winds to vorticity, divergenée D

x=DSNS'D'(X-X)
Jo=ax'V'hlx
a is equal to 1 except for vorticity, divergence, when it takes on the form (-1/C,), where C, are the

eigenvalues of the Laplacian operator on the sphere. This uses the Green’s formula:-

K0 = -2 X ([G,F + [8,P).

5 mm

This ensures that the normalization which is applied to the winds in physical space resulis in suitably

normalized vorticity and divergence fields in spectral space. The gradient with respect to x is given by: -
V. J,=a Vhalx.

In order to obtain the gradient with respect to X the adjoints of the above operations have to be applied in

everse sequence.



Vi Jg= (D) (S)*'N*S"D*V, g,

Where * denotes an adjoint operator.

In general the operator N cannot be considered a quadratic term and the Gaussian grid is insufficient to avoid

aliasing. However, as described in Appendix B, care is taken in the specification of the o values so as to

ensure that aliasing errors are reduced to acceptable levels.

3.2 Control of noise, and balance constraints

In the assimilation context, one is interested in finding an analyzed state which is close both to the
observations and to the slow manifold. Within the variational approach it is possible to include balance

constraints in a number of different ways.

Two approaches have so far been considered :

i) The cost functions may be formulated in terms of initialized model fields, NMI(X), so that
J, = (NMI(X) - X)f P71 (NMI(X) - X))

J, = (KINMI(X)) - d)* 07! (R(NMI(X)) - d)

This involvés a change of variable by performing a non-linear normal mode initialisation (NMI) on
X, the adjoint of which is needed in calculating the gradient of the cost function with respect to X.

Implementation is straightforward as the NMI and its adjoint are simply operators which are applied

at the appropriate points in the chain,

ii) The second approach consists of introducing a cost function J, which contains a penalty term on the
tendency of gravity modes G
J, = a |dGldt|*

This is carried out by computing the tendency of the gravity modes of the analyzed state through one

time-step of the model; and the adjoint through one time step of the corresponding adjoint model.

It has been found in Courtier and Talagrand (1990) and Thépaut and Courtier (1991) that the first approach
acts to speed the convergence (since the minimization is performed in a reduced space). However, if the
number of iterations increases, the NMI process is inverted by the minimization and the minimizing solution

contains gravity components. This is discussed further in section 5.1.

10



The second solution is the only one which really constrains the solution o be free of gravity waves, but the
convergence turns out to be slow. A combination of the two approaches has been found beneficial in a four-

dimensional context. Both approaches have been coded.

A somewhat different solution has been adopted in the variational analysis which became operational in June
1991 in the National Meteorological Center of Washington (Parrish and Derber, 1991). The model variables
are constrained in order to stay close to the equilibrium of the linear balance equation applied on the model
‘levels. This is achieved by a choice of control variable which takes into accouht the balance equation. The

NMC analysis variables are:

. Departures to the 6 h forecast for vorticity and divergence;

. Departures to the balance equation solution of the temperature departures to the 6 h forecast.
By assigning appropriate statistics to the errors on these variables, a balance is achieved which is good
enough to obviate the need for normal mode initialization. The variational analysis of specific humidity is

performed separately.

3.3 Choice of control variable and the influence of balance constraints.

- Let us first consider the simple case with no vertical coupling: V! is a unit matrix. In this case J, has the

t
S (XexY L (x- X
g o o

where k! is diagonal.

form

Since the o’s are spatially varying the P matrix will be far from diagonal, and the problem is not well
conditioned if a diagonal form for the Hessian is supplied to the minimization. If the ¢ values are taken as

constant over n levels, P is diagonal, and exact minimization of J, alone can be accomplished in 1 iteration.

If, however, the control variable is re-defined as

-5

11



(or as x = X/g), then the Hessian is simply k-, which is diagonal. Such a change of control variable

improves the pre-conditioning. Indeed, in a two-dimensional calculation (where V! is a unit matrix) the
~ exact solution for J, alone is found in a single step, even with full geographical variability of the forecast

CITOIS.

The addition of balance constraints as outlined in section 3.2 complicates the minimization issue. For the
most efficient minimization one should include the Hessian of the NMI (and of J.., which will be similar)

in the pre-conditioning. No attempt to do this has so far been made.

3.4 QObservation Operators

The general strategy for setting up the observation operators has been outlined by Pailleux (1989) which is
the design document for the use of observations in the variational analysis. The plan is to first develop the
operators needed to use the data which are already used in the ECMWF operational Opﬁmal Interpolation
analysis, in a way which reproduces the Optimal Interpolation assumptions as far as possible. Then, in a
second step, these operators will be varied to do research on the use of observations; and new operators will
be developed for new data as required. An exception has been made to this strategy for TOVS, as will be

explained later.

The operators which are common to all observations are:

. The inverse spectral transforms from spectral fields to grid point representatidn.

o the horizontal interpolation from the grid points to the observation points; this is always applied
before the vertical part of the operators, consequently the horizontal interpolation is performed
directly on the model variables in the hybrid coordinate. The current interpolation scheme is bi-linear

interpolation in latitude/longitude from the four nearest grid points.

3.4.1 Conventional Observation Operators

All the operators corresponding to observations which are used in the ECMWF operational Optimal
Interpolation analysis, with the exception of 10 m wind and 2 m relative humidity data from SYNOPs, SHIPs
and buoys, have been developed in the IFS/ARPEGE system, as well as their adjoints which are needed for

the gradient computations. To be precise, the following observations are used at present:

. From surface observations (SYNOPs, SHIPs, DRIBUs), surface pressure data is used at the station

level or reduced to mean sea level, or geopotential.

12



. From radiosondes (TEMPs), the data used are geopotential heights, wind components and relative

humidities. Temperature operators have been developed as well, but no attempt has yet been made

to use all the significant level data.

» From PILOTSs, wind components are used.
. From AIREPs, wind components are used (not temperatures).
. From SATOBs, wind components are used.

The vertical part of a typical observation operator K usually consists of vertical interpolations'from the hybrid
model levels to the observation level. The vertical interpolation is performed using the standard
postprocessing routines whose adjoint and tangent linear routines have been developed. The version of the
routines which have been developed is currently based on the simplest assumption: all the variables are
interpolated linearly in p between two hybrid levels. Special treatments are made at the bottom and the top
of the atmosphere. The development of the variational analysis was actually the first opportunity to validate
the adjoint vertical postprocessing routines in the context of a real size application. Having only one set of
vertical interpolation routines (+ adjoint + tangent linear), and using them for all applications (variational
analysis, model postprocessing, model dynamics), is consistent with the policy that only one routine is used

to perform one particular function in the IFS.

Since it is reasonable to assume that the observation errors are not correlated between observation types,J, .
can be split into different contributions according to each observation type: '

Jo = sznap + ‘]Rs + Jsat toen
Moreover, for most of the observation types, the errors can be assumed uncorrelated in the horizontal (e.g.

it is natural and common practice in Optimal Interpolation to assume that the observation errors of two

different radiosondes are independent). Most of the time J, is then the sum of the different contributions
from each individual observation. These contributions can be computed independently: the corresponding
quadratic forms are still in the form (KX-d)® O~ (KX-d), but the size of matrix O is very small (it is only
of dimension 1 when there is only one observed datum). For a single radiosonde which observes height Z,

the wind W and humidity RH, the cost function can also be split into J+d T g

In order to make the computation efficient on a vector computer with several processors, the vertical part of
the observation operators is not performed observation by observation. Observations.of the same type are
first collected in "packets” or "sets". Each observation set can contain up to 200 observations of the same

type (e.g., 200 radiosondes, 200 SYNOPs). Then different sets can be treated in para];el on different

13



processors. On each processor, the vertical processing is normally vectorized, the size of the vectors being

the size of the observation sets.

The conventional observations entering the variational analysis have previously gone through all the
operational quality control checks. The variational analysis experiments are thus performed with the same
observed data as the operational ECMWF analysis, which makes the use of the Optimal Interpolation analysis
as a reference easier. Also all the quality, and other "event" flags are passed to the variational analysis, which

“makes the final choice of data in the variational analysis fully flexible.

3.4.2 TOVS Operators

Ideally, one should use the TOVS raw radiances directly in the variational analysis. However, accurate

computation of the model equivalent of raw radiances (from X) requires a good description of the clouds
(which cannot be provided at present). For this reason we will instead use the cloud-cleared radiances instead
of the raw radiances in the variational analysis. This is a realistic operational scenario, as the cloud-cleared
radiances produced operationally in NESDIS (Washington) are available to ECMWF (together with the
NESDIS retrieved profiles) with a 120 km resolution in the horizontal. Because the cloud-cleared radiances
do not undergo the Optimal Interpolation quality control, a special quality control algorithm has been
developed (called PRESAT). PRESAT has been in operation at ECMWF since May 1991 and the cloud-
cleared radiances will be checked by this algorithm before entering the variational analysis.

To compute the distance of the model to the radiances, we need the inverse spectral transforms and the
horizontal interpolation, as mentioned in the previous section. We also need a radiative transfer model T,
to compute the model’s equivalent of TOVS radiances from a model temperature/humidity profile at each

TOVS observation point. T, must be preceded by a vertical interpolation from the model levels to the
pressure levels which are required by the radiative transfer model. The adjoint T, is also required to carry
- the gradient components from the "radiance space” to the "temperature/humidity space”. As T, is non linear,
these gradients are profile dependent, and the computation of T, uses the latest estimate of the proﬁle» as it

comes from X at the current iteration of the minimization scheme. This technique is equivalent to
incorporating the retrieval scheme into the three-dimensional analysis. The retrieval scheme can, thereby,

automatically benefit from all the information available to the analysis: the first-guess and other observations
types which are around the satellite observation point. The gradients computed by T, tell the minimization

scheme the amount of information to be extracted from each radiance channel for each TOVS observation.

This information is profile dependent (or air-mass dependent): to achieve the same result in an Optimal

14



Interpolation analysis, one would need a set of observation error statistics associated to each observation.
The direct use of radiances has the key advantage of avoiding the use of any rather inaccurate information

coming from a separate retrieval technique.

The radiative transfer model T, for TOVS radiances and its adjoint T, are documented in Eyre (1991). T,

has been developed not only for three-dimensional and four-dimensional variational assimilations, but also
for performing retrievals at ECMWF (1D-VAR). It uses as input the temperature and humidity on 40 "TOVS
levels" from 1000 to 0.1 hPa.

The cost function for satellite radiances is defined as:

Tt = Rypg = RY 07" Ry - R)
(R4 radiance vector computed from X; R,: observed radiances). The compuf:ation of J, is less
straightforward than for most of the other observation types, because the radiance errors may be correlated
in the horizontal. Consequently the matrix O is far from being diagonal, and a special numéﬁcal technique

is needed to compute J_,. A practical solution is based on the following two remarks:

a) J ., can still be split into contributions coming from different satellites NOAA10, NOAA11, ...) and

from different TOVS types (clear, partly cloudy, cloudy).
b) Assuming the observation error correlation can be split into the product of an inter-channel
correlation and a horizontal correlation (usual separability assumption), J_, can be split into

contributions coming from the different eigen-vectors of the inter-channel error correlation matrix of
TOVS.

Then, instead of inverting O directly, we apply a technique identical to the one described in Appendix A for
J,» except that we have only one parameter (radiance) to cope with. Because of the potential horizontal

correlation of TOVS errors, the TOVS operators are organised in a different stream from other observation
types. The TOVS sets currently consist of up to 1000 TOVS observations belonging to the same category:
same satellite, same cloud-clearing path, same surface type. As with conventional observations, one can
multitask the TOVS operators by sending different sets to different processors. The vertical interpolation of
thermodynamical variables from the model hybrid levels to the 40 TOVS levels is vectorized on the number
of TOVS (up to 1000). The radiative transfer model treats up to 50 profiles at once. To compute the cost
function in radiance space, one needs to invert several horizontal correlation matrices, which may be of order

1000 x 1000. Preliminary tests have shown that the radiative computations are quite fast. Several hundred
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TOVS operations per second are treated on one processor of the Cray Y-MP8 and the computer time
requirements for TOVS operators should not be a problem in the context of three-dimensional or four-

dimensional variational analysis.

The NMC variational analysis is quite different in the way TOVS data are used. NMC kept all the
observation operators linear, and they use retrieved profiles rather than radiances. The retrieved profiles are
moved first to the model levels to be compared with the model. NMC plans to use, in the future, "interactive
tetrievals” (which are similar to the ECMWF 1D-VAR) in the variational analysis, whereas the ECMWF
strategy consists of trying in parallel 1D-VAR in Optimal Interpolation, and radiances in 3D-VAR.

4. THREE-DIMENSIONAL ANALYSIS EXPERIMENTS

4.1 Experiments with no J,

The effect of the choice of control variable and balance constraints is most easily seen in the two-dimensional
context and in the absence of observations as 1) we then know the solution precisely, and 2) we can then

expect to solve the minimization problem under certain conditions in a single step.

We shall take as X . an initialized analysis from the operational ECMWF assimilation system for 12UTC

14/07/89 and truncated at T21. Since the IFS model used here differs from the operational ECMWF model,
this is not a *balanced’ field as far as the IFS is concemned. As starting point for the minimization we shall
take the operational uninitialized ECMWEF analysis for 12UTC on 15/07/89, again truncated to T21. In the

absence of observations and any balance constraints the solution is X = Xg, where Jg = 0, and VJg = 0.
When balance constraints are included the solution is no longer J, = 0,but VJ = 0 is still the goal (where

J=J, +J).

The forecast error field has considerable horizontal and vertical variability - as is necessary for proper
representation of the forecast error variances. When the model state vector in spectral space X is chosen as
control variable, then even for Jg alone, convergence is achieved rather slowly. This is because it is not
possible to precondition the minimization sufficiently well simply by specifying the diagonal elements alone
(see section 3.3). If, however, x, the departure of the model state variables from the guess, normalized by
the forecast error standard deviations, is chosen as control variable then (again, for Je aione) exact

convergence is achieved in a single step of the minimization scheme as in this case the Hessian is diagonal

and the correct pre-conditioning may be applied .
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For this reason we can treat the full spatial variations of the forecast error variances only when x is used
as control variable. When X is chosen as control variable the forecast error variances are horizontally
averaged and vary only in the vertical. In both cases exact convergence for Jg alone is then achieved in one

step of the minimization.

For these two choices of control variable it is useful to examine the effects of including non-linear normal
.mode initialization (NNMI) in the cost function and of adding the J, term on the balance of the final state.

These terms also affect the pre-conditioning as exact convergence can no longer be achieved in a single step

of the minimization simply by specifying the diagonal component of the Hessian.

1)) Effect of NNMI in the cost function.
As described in section 3.2 (i), for both Jg and J, it is possible to evaluate the cost function in terms of a
distance from the slow manifold -

J, = (NMIX) - X)) PYNMI(X) - X)), J, = (KINMI(X)) - af 0! (K(NMI(X)) - d).
This leaves a certain amount of ambiguity in the control variable itself since both X and x in general contain
gravity wave components. The minimization will attempt to fit the slow compohent of X to Xg through
modification of the control variable. In practice X seems to reach the slow component of X o rather quickly,

within 5 or 6 iterations. Thereafter the minimization has difficulty in reconstructing the *fast’ components

inX - and in the case of a 'noisy’ X , may never succeed.

Fig. 1 shows an example where the first guess, Xg, and the starting point for the minimization, X, are two

initialized analyses 24 hours apart. These have been truncated to T21 from T106. Both fields have been
diabatically initialized, whereas the IFS currently only uses adiabatic initialization, therefore the fields are not
fully 'balanced’ in the IFS sense. The control variable used for this example is X (with horizontally constant
forecast error variances). Fig. 1a shows the effect of the NMI on the cost function itself. One iteration of

NNMTI resulis in slower initial convergence, but with enough passes through the minimization the NNMI

process can be inverted and X approaches X , more closely. With two or more iterations of NNMI only the
’slow’ component of X, is recovered. Fig. 1b shows the effect on the gradient - the more iterations of

NNMI the lower the final gradient reached. Finally, Fig. 1c shows the effect on noise control. It is clear

that, with only one iteration of NNMI, the amount of gravity wave activity increases rapidly. Two iterations
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of NNMI is sufficient to control it to a reasonable level. Comparing with Fig. 1a it is clear that the gravity

wave activity only increases when the minimization attempts to fit the fast components of X "

As can be seen in Fig, 2, the choice of x as control variable is insensitive to the number of iterations of
NNMI used. Fig. 2 shows the results obtained by varying the number of NNMI iterations between 1 and
8, the lines can almost be overlayed on each other. It is not clear at this stage why it should be so
insensitive. Convergence is much improved compared with the use of X as control variable and there is no
evidence of increasing noise. As in the X case, convergence is most rapid in the first S or 6 iterations of the

minimization, suggesting that beyond this the minimization is trying to fit the 'fast’ components of X,.

In summary, the effect of using NNMI in the cost function results in X moving towards the slow component
of X . fairly quickly. Use of at least two iterations of NNMI ensures that X is kept fairly noise free. Beyond
this point (5 or 6 steps of the minimization) little progress is made with X as control variable, althoughx
continues to converge for some time, although at a reduced rate. It should be emphasized that this
formulation of the cost function does not ensure a balanced X, merely that the minimization acts in a

subspace of X (the slow modes) so that convergence should be quicker.

ii) Effect of J,

As mentioned above, use of NMI(X) in the cost function will not automatically provide a balanced final state,
but it may speed up the initial rate of convergence. Balance considerations are addressed through a further,

weak constraint J_ as described in section 3.2 (ii). This J, is a constraint on the gravity mode tendencies
and can be thought of as a progressive NNMI applied to X. J, complements the use of NMI(X) in the

computation of the Jp and J, cost functions by introducing a constraint on the fast modes which is absent

from these terms.

As can be seen in Fig. 3, initial convergence is generally slower than when NNMI is used in the cost function
(because minimization is no longer primarily Vacting on the slow modes) but, when used in combination with NNMI
in the cost function, convergence is not unduly affected. It does, however, act to progressively dampen the
gravity wave tendencies and introduce a degree of balance into the fields. (Note Fig. 3 is not directly
comparable to Figs. 1 and 2 as different initial conditions were used for these tests). This result is consistent

with the findings of Courtier and Talagrand (1990) using a shallow water model.
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4.2 Experiments with J, only

In this set of experiments we try to minimize the observation cost function J, only, without any guess or
constraint cost function. This does not correspond to any realistic scenario as this is equivalent to performing
an objective analysis without any guess. The minimization of J, generally leads to an under-determined

global problem with some "local redundancies” in the areas where observations are dense and where the

minimization has to achieve "a compromise" in order to fit the model variables to the observed data.

The reason for running this set of "J, only" experiments is to check the performance of the minimization.
The minimization has been preconditioned in the way described in section 3 and used in section 4.1; this

preconditioning is based on the Jg cost function only, hoping that it is acceptable for the total cost function.

It is then crucial to check to what extent the minimization is efficient in minimizing J , when no observation

operator has been introduced in the preconditioning.

Table 2 summarizes the result of an experiment performed with the T21/L19 version of the IFS, and with
the conventional observations for 12Z, 15 July 1989. The starting point of the minimization has been taken

equal to the 6h forecast valid for the same date. The control variable x (the normalised model variables, see

section 3) has been used for results presented in table 2.

It0 It 10 It 25 It 50 Ratio Final/Initial
J, 88 000 63 000 52 000 43 000 0.49
VT P 1.75 x 10° 2.04 x 10° 7.70 x 10* 3.40 x 10 0.02
o

Table 2: Observation cost function and square of the norm of its gradient, as a function of the number of
iterations in a minimization starting from the 6h forecast valid for the same time as the observations used
as the control variable.

The same experiment, performed with the un-normalized control variable X, shows similar results with a
somewhat slower convergence. The figures of table 2 indicate that the convergence works reasonably well.
The steady decrease of the cost function and its gradient norm also shows that convergence is not reached
after 10 iterations, nor even after 25. We do not even know from the results of table 2 to what extent the
convergence is reached at iteration 50, as we are no longer in the situation of experiments 4.1 where we knew
the value of the cost function at the minimum; this minimum is not O because of the local redundancies

mentioned before.
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~..One way to know more about the efficiency of the minimization is to vary the initial point of the

minimization algorithm: as the final solution is not dependent on the choice of the initial point, we should
end up with the same final cost function value if the convergence was perfectly achieved after 50 iterations.
Table 3 shows the results corresponding to three different initial points: the 6h forecast as before, the
initialized analysis for the same time, and an initialized analysis for 10 days earlier (analysis of 12Z, 5 July
1989).

Ito It 10 It 25 It 50 Final/Initial

6h forecast J, 88 000 63 000 52 000 43 000 0.49

Analysis J, 73 000 56 000 47 000 41 000 0.56

15/07/89 ) 7.10x 10° | 990 x 10* | 3.80x 10* | 1.82 x 10° 0.26
IV,

Analysis J, 600 000 214 000 115 000 65 000 0.11

05/07/89 I P 8.13x 10" | 2.52x 10° | 553 x10° | 226 x 10° 0.003
o

Table 3: Observation cost function and square of the norm of its gradient, as a function of the number of
iterations, in ‘a minimization starting from three different initial points.

The interesting feature is the behaviour of the cost function when the minimization is started from a solution
which is very far away, i.e. the 10-day old analysié: the initial cost function which is about 8 to 10 times
bigger than when one starts from the analysis or the 6h forecast, and it is reduced in 50 iterations to a value
which is about the same as in the two other cases. Although the convergence is not perfect, even at iteration
50, this is a good indication of the efficiency of the minimization scheme in an extreme case when one starts
very far away from the initial solution and nothing is done to precondition the problem in an optimum way.
The square of the gradient norm has been divided by about 300 in this case, which is also a good sign.
However, one negative aspect is the increase of the gradient norm from iteration 25 to iteration 50, when the

starting point is the analysis of 15/07/89; this may be interpreted as a symptom of poor preConditioning.

All the previous experiments have been run at T21 with fields extracted from the ECMWF operational
archives and truncated at T21. The same set of experiments has been run at T42/L19, but instead of
truncating the archived fields at T42, a T42 multivariate Optimal Interpolation analysis was run with the
ECMWEF operational system to provide the T42 fields. The T42 Optimal Interpolation analysis was run with
only conventional data, in order to provide a clear reference for variational analysis experiments. Only partial

results are available at the time of writing. The T42 results:
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- confirm the superiority of x over X for the choice of control variable;

- show a somewhat smaller value for the J , cost function, compared to T21; this is explained by the

higher number of degrees of freedom to fit the observed data;

- show an occasional increase of the gradient norm which can again be interpreted as a sign of bad
preconditioning; as in T21 this does not prevent a good reduction of the cost function when the

minimization is started from the 10-day persistence analysis.

Experiments with radiance data have been perfonned separately so far. The radiance operators are the only
ones which can lead to a cost function which is far from quadratic. It is interesting to see how the
minimization behaves when it is started from a state far from the observed radiances, when there is a
maximum risk of finding multiple minima. A T21/L19 experiment has been performed to minimize the
radiance cost function corresponding to more than 3000 TOVS observations of 00Z, 9 February 1989. This
experiment is even further away from a realistic operational scenario than the experiments with conventional
observation, as the minimization is started from the analysis of 12Z, 15 July 1989, which is five months
apart! Because we start from a summer situation to assimilate TOVS radiances of a winter situation, the
TOVS channel departures are often 10 to 50 K in terms of brightmess temperatures, before the minimization.
However, the minimization reduces these departures to a few degrees K in less than 30 iterations, in most
of the channels. Because of the crudeness of this experiment, this is very encouraging. However, some‘

humidity channels and stratospheric channels show a lack of convergence and require further investigation,

4.3 Full experiments: J, J, and J,

These experiments correspond to a realistic operational scenario, and can be compared to the operational
Optimal Interpolation analysis. Only partial results are available from these experiments at the time of
writing, and no complete comparison variational analysis versus Optimal Interpolation has been performed

so far,
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It0 It 10 It 25 It 50 Final/Initial

6h forecast J 88 000 66 000 63 000 52 000 0.589
as guess
and

initial point V72 1.75 x 10° | 1.12 x 10° 5x 10° 1.60 x 10 9x 10°

Table 4: Cost function J = J, + Jg, and square of its norm, as a function of the number of iterations
in a minimization starting from the guess (i.e. the 6 h forecast).

The results shown in table 4 have been obtained at T21 with the conventional observations of 12Z, 15 July
1989, used together with the corresponding 6h forecast (truncated at T21) as guess. The reduction factor

(9 x 10®) which has been achieved on IVJ]? in fifty iterations is a sign of good convergence. This is

confirmed by T42 experiments (not shown). However, no definite conclusion can be drawn before a detailed

examination of the resulting variational analyses with strict comparison with Optimal Interpolation analysis.

These results were obtained without the use of any balance requirement neither through J, nor through the

use of NNMI operator.

On the other hand, the following experiments have been performed with the use of the constraint J, and the NNMI
operator, as described in section 3. They are TOVS radiance experiments: the same radiance set is used as
before, together with the standard Jg and J_ cost functions, but without any conventional observations. The

minimization starts from three different solutions: the 6h forecast (FG), the uninitialized analysis (AN) and
the initialized analysis (IA) (all valid for 00Z, 9 February 1989, the same time as the TOVS observations).

J, (10%) J, (109 J, (x10% T IVIP

Initial Final | Initial Final | Initial Final Final/Initial |  Final/Initial
FG | 253 140 68 119 | 190 4.6 0.56 0.048
AN [244 140 |364 T2 450 8.9 0.34 0.044
IA | 244 141 363 73 18.7 10.7 0.36 0.152

Table 5: Initial and final values of the different terms of the cost function after 10 iterations of the
minimization, The normalized control variable is used.

The behaviour of all the cost functions is normal in table 5, except the J, contributions when one starts the

minimijzation from the guess (1st line in table 5): J, is small before the minimization and stays small after

10 iterations instead of becoming similar to what it is in the two other experiments. This is an indication of
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lack of convergence after 10 iterations. Before looking into more details of this problem, it is intended to
tune the statistics on observation and forecast errors used in J, and J,» as they are very crude in all these

experiments.

5. FOUR-DIMENSIONAL ASSIMILATION EXPERIMENTATION

5.1 General description of the experiments

The aim of the 4-D experiments is to evaluate the scientific potential of a four-dimensional variational
‘assimilation technique in which the information contained in the dynamical equations is fully and consistently
used together with the observations. They are not intended to represent a realistic operational scenario. A
series of four-dimensional experiments have been carried out using the IFS/ARPEGE system at both ECMWF
and METEO FRANCE; they are documented in Thépaut and Courtier (1991) and Rabier and Courtier
(1991). They address the following questions:

D Can the description of the atmosphere at one time be obtained by observations at a different time Y,

or by a chronological series of observations, used consistently with the model dynamics?

if) Can some variables be described indirectly by the observation of other variables, or by a time series

of other variables, through the model dynamics?

iii) Can some spatial scales, or typical features, be described indirectly by the observation of other scales

or features, or a time series of them, through the model dynamics?

iv) Can we get a model trajectory reasonably free of gravity waves and still accurately fit the

observations?

Three four-dimensional experiments by Thépaut and Courtier (1991) and Rabier and Courtier (1991) are
summarized in section 5.2. The experiments have been performed with a T21, 19 level model, with no
stretching and no pole rotation, without any physical parametrizations and without specific humidity. They
are all performed with simulated observations in the form of spectral coefficients. The observations are

produced by a run of the IFS/ARPEGE forecast model which is also used as the assimilating model so the
experiments are identical twin experiments. In all the experiments the model generated "observations” d(f)

are assumed to be perfect, as they are part of the preliminary reference run XD Starting from a different

model trajectory X(f) reasonably far away from X0, we try to minimize the distance:
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n

JX = ¥ < KX@) - da, KXE) - d) >.

i=0

However, since the simulated observations d(f) are model state variables, d(t) = me(t,), the operator X is

the identity operator so J(X) is simply:

(D JX) =Y <X@) - X (1), X(t) - X, () >

i=0

where n is the number of time steps, <, > is the scalar product and X(=X(z))) is the control variable. The

scalar product is defined by:

@

C
<X, X> =12 folffz(v&l E-valE+vald -vald +R T(ogp) + ?”-Tz)dEg—ﬁdn

r

which is a quadratic invariant of the linearised primitive equations in the vicinity of a state of rest defined
by a constant reference temperature T,; § and 3 are the vorticity and divergence fields. This scalar product

is also used for defining the metric of the minimization space.

The minimization algorithm used in these experiments is a mixed quasi-Newton conjugate gradient type

(Buckley and Lenir, 1983). More information is given in section 6 on minimization algorithms,

5.2 Results of three typical experiments

5.2.1 Inference of the initial state from the final state of a 6 hour forecast

One assumes that the observations consist of the complete atmospheric fields (vorticity, divergence,

temperature and surface pressure) at time #, which is the end of a 6 h assimilation period:

t,=t,+ 6h

Then, one tries to reconstruct the model state at time £, using these observations at time ¢,, i.e. one tries to
"invert" the 6 h forecast. The cost function to be minimized is:

JX) = <X@t) - X, (), X¢,) - X, [t)>

The control variable is X = X(¢,), and we start the minimization from an initial state X, (z.).
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The observations and the initial state of the minimization have been constructed in the following way: the
IFS model has been integrated for 48 h from the ECMWF operational initialised analysis of 12 July 1989,

12Z. 'The resulting forecast valid for 14 July 1989, 12UTC is taken as the initial state X, (t,) of the

reference run. The initial point of the minimization X,,(¢,) has been produced in the same way by integrating

for 48 h the ECMWEF operational 24 h forecast valid for 12 July 1989, 12UTC. The four-dimensional
assimilation experiment has been performed on the 6 h time period [14 July 1989 12UTC, 14 July 1989
18UTC]. Such a generation process of the fields allows one to get rid of most of the transients due to the

inconsistency between the adiabatic IFS model and the operational analysis and to start the minimization
process with a difference between the initial point X n(t,) and the final solution Xnd(ta) correspondmg to the

order of magmtude ofa24h forecast erTOr.

Fig. 4 shows the variation of the cost function J(X) with ﬂ;e number of iterations in the minimization process.
Since we know both the solution (X = X, [t,) and the value of the minimum ((X) = 0), in this idealized
expén'ment, it is easy to check that the experiment ;work.s. After 30 iterations, the cost function is reduced
by 6 Iorders of magnitude and the norm of the gradient by 3 orders of magnitude. The distance betweenX
and X,At,) at the initial time of the assimilgtion period is interesting to examine since it measures the ability

of the minimization to recover the reference field through the model dynamics. This distance is presented
in Fig. 5: it decreases by about 3 orders of magnitude\in 30 iterations. This decrease is meteorologically
acceptable as shown in Fig. 6, which presents the difference between the reference and the analysed vorticity

(left) and temperature (right) for the Northern Hemisphere at 500 hPa. Comparisons between top and bottom
-panels show to what extent the difference X(z,) - d(t,) has been reduced by the minimization for vorticity

and temperature.

This experiment validates the numerical feasibility of a 6 h variational assimilation in the extreme (most
difficult) context where information is available only 6 hours later than t,. This particular experiment has

been performed without any horizontal diffusion. Other experiments made with varying diffusion coefficients

showed that an increased diffusion coefficient makes the inversion of the model more difficult.

5.2.2  Reconstruction of wind field by assimilating mass observations

Several four-dimensional experiments have been performed in which only some of the meteorological fields
were 'observed’. Inone of them, the full mass field is assumed to be observed every hour on a 6 hour period
(temperature + surface pressure). Fig. 7 shows to what extent the vorticity field is reconstructed at the

beginning of the assimilation period. The vorticity difference fields at 500 hPa between the model solution
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and the reference state are dramatically reduced in the mid-latitudes, but the minimization is inefficient in
_ the tropical belt.

The result shown in Fig. 7 has been performed with non-linear normal mode initialization at time t,, but the

same experiment performed without normal mode initialization gives similar results. They both show the
ability of the four-dimensional assimilation to reconstruct the vorticity field from the mass field in mid-
latitudes but not in the tropics.

As far as the reconstruction of divergence is concerned, an important reduction of the differences has also
been noticed. This reduction is likely to be due to the sequential observation of the surface pressure, which

gives indirectly through its tendency some information on the divergence.

523 Reconstruction of a baroclinic wave from the evolution of the zonal flow
The reference run X,.{7) in this experiment is an academic situation described in Simmons and Hoskins

(1978), where a wave pattern develops and interacts with the basic zonal flow. The purpose of this particular

experiment is to assess the potential of a four-dimensional assimilation scheme in the context of a rapidly

developing weather system. In practice, the reference run XD is constructed as follows:

i) A baroclinic wave on the sphere is set up as in Simmons and Hoskins (1978): the basic flow is.
chosen symmetric around the equator with a baroclinic zone centered at 45° latitude and characterized
by a horizontal temperature gradient. This ﬂow is then perturbéd by the most unstable mode at zonal
wave number six. This mode is scaled so as to give 1 hPa maximum amplitude for the surface

pressure.

ii) The IFS model is integrated for 15 days starting from the previous situation. In the integration the
perturbation develops like in a real weather system. After nine days of growth, the minimum value
of the surface pressure has dropped from 1008 hPa to 972 hPa; one can then see a decay of the wave.
The most intense cyclogenesis occurs between days 6 and 8 and the assimilation experiment has been

made on the 24 h period starting at day 6.

In this assimilation experiment, the observations are all zonal wave numbers except m = 6, which
characterizes the synoptic weather system that we try io reconstruct through the assimilation. As the initial
point of the minimization the reference state at day 4 has been used. In summary we try to recover the wave
number 6 of the reference state at day 6, from the observations of other wave numbers in the period [day 6,

day 7] starting from the reference state at day 4.
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Fig. 8 clearly shows the decrease of the cost function, and the paradoxical increase in the distance between
the result of the minimization and the reference. The explanation can be seen in Fig. 9. The eddy intensity
of the result of the assimilation process is approximately correct, but the pattern is totally out of phase. The
dynamics included in the assimilation method are able to infer the development of the system from the
temporal evolution of the zonal part of the flow. However, due to the symmetry of the problem, the feedback
on the zonal part is independent of its location. The location of the system given by the initial point of the

minimization (day 4) is kept unchanged (i.e. wrong by two days).

This result shows an example of how information present in the model dynamics (development of the system)
is well used by the four-dimensional assimilation, and an example of information which is lacking in the
observations and which cannot be inferred. In another experiment, where part of the surface pressure is
included in the observations (including for m = 6) the assimilation manages to reconstruct the system at the

right place.

5.3 Summary of the results in mid 1991 and short term plans

Several four-dimensional experiments performed with simulated observations and an adiabatic version of the
IFS at T21/L19, have demonstrated the potential of a four-dimensional assimilation scheme for using
consistently the model dynamical information together with the observations. The inversion of the model
(2.1)ona6h period worked very well. More iterations of the minimization schemes were needed when
the period was 12 or 24 h (results not shown). This is an indication that the preconditioning of the
minimijzation will be the key efficiency issue when implementing a four-dimensional operational scheme.
The control of gravity waves works if we use a technique similar to Courtier and Talagrand (1990) and
described in this paper (see section 3.2 and 4.1). The ability of the four-dimensional assimilation to recover
some fields or some features through the model dynamics has been demonstrated in examples such as the

two experiments presented in 5.2.2 and 5.2.3.

The next step, starting in mid 1991, is to perform four-dimensional variational assimilation with real
observations, using the observation operators documented in section 3. Then, the effects of including physical
parametrizations in the model will have to be considered. Once these two aspects have been studied, some
attention can be given to the practical aspects related to a possible operational scenario: particularly computer

cost in relation to the preconditioning problem mentioned before.

6. MINIMIZATION ALGORITHMS
No developments in minimization algorithms have been made at either ECMWF or METEO FRANCE. The

results presented before have been obtained by using minimization packages from Institut National de la

27



Recherche en Informatique et Automatique (INRIA) and used as "black boxes". These packages, called
"M1GC2" and "M1GC3", are different versions of a mixed quasi-Newton/conjugate gradient algorithm
(Buckley and Lenir, 1982). Navon and Legler (1987) provide a detailed review of the minimization packages
available for the meteorological problems and a description of the Buckley and Lenir algorithm.

The first descent steps are performed following the quasi-Newton method, as long as the memory allocated
for the storage of the approximation of the inverse of the Hessian is not full. As soon as there is no further
- memory, it switches to a conjugate-gradient method preconditioned by the latest approximation of the Hessian

inverse.

In addition to the two packages from INRIA, MI1GC2 and M1GC3, another package is available at ECMWF
and METEO FRANCE: LBFGS (Limited Broyden Fletcher Goldfarb Shanno) coded by L Liu and J Nocedal
at Northwestern University. Some experiments have been carried out at ECMWE in order to compare the
different packages regarding computer time, memory size and accuracy of the solution. We have chosen a
minimization problem whose solution is perfectly known: the four-dimensional assimilation experiment
consisting of inverting the model at T21/19L and documented in 5.2.1.

In the LBFGS method, quasi-Newton corrections are stored separately and when the available memory is used
up, the quasi-Newton matrix is updated by dropping the oldest information and replacing it with the newest
information available to produce a step direction. Therefore the quasi-Newton approximation of the inverse |
Hessian matrix is continuously updated. Three different options of LBFGS have been considered, but only
the one in which the Hessian matrix is initialized by the identity matrix and is rescaled automatically at each
iteration actually worked.

The results showed first that M1GC2 and M1GC3 have completely identical performance. Then LBFGS and
M1GC3 have been compared under two sets of conditions; 11 updates or 38 updates of the initial Hessian
matrix. The different results are shown in Fig. 10 in terms of the decrease of cost funcl:ion~ with respect to
the number of iterations. The four algorithms perform in a very similar way up to iteration 20 and even up
to iteration 50 if we exclude M1GC3 with only 11 updates which is slightly less efficient above iteration 20.
The algorithms with 38 updates use up to 3 million words of memory, three times more than the algorithms
with 11 updates. The CPU time of the four algorithms is the same, except the LBFGS algorithm with 38
updates is slightly faster than the others.

7. CONCLUSION
~ Based on the concept of an adjoint operator, a variational assimilation has been developed in the context of
the IFS/ARPEGE system which is common to ECMWF and METEQ-FRANCE. This variational assimilation
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can work in three-dimensional or four-dimensional mode; it can use real observations as well as simulated
ones in the form of spectral or grid-point fields. The code has been developed and tested for all the
conventional observations currently used in the ECMWF operational analysis, and also for the TOVS clear
radiances. Two options have been developed for choosing the control variable: in the first one the control
variable is the ensemble of model variables; in the second one it consists of the model variables normalized
by the forecast error standard deviations. The mass/wind balance is treated by two developments: one is the
use of normal mode initialization and its adjoint, the other one is a penalty term which keeps the tendency

of gravity waves small.

Several three-dimensional variational experiments have been performed with a preconditioning of the
minimization which has the property to be optimal for Jp- These experiments performed with J, only, and/or
with J, + J,, with or without balance constraints, have demonstrated that the minimization was working
reasonably well in all the configurations. This is an indication that the real size variational analysis (which
obviously contains J , Jg and J) is feasible in practice, at a reasonable computer cost, without much extra

work on optimizing the minimization.
This last point still needs to be fully proved before planning the details of an operational three-dimensional
variational analysis. It is hoped that this step can be reached in Autumn 1991. The work to be done then

in order to reach an operational implementation (one year later) consists of:

- technical developments in order to cope with operational resolutions; this implies Input/Output

developments and technical choices, especially for the minimization schemes;
- tuning the different elements of the variational analysis, especially all the statistics;

- decide exactly what data to use/not to use (e.g. implement the boundary layer operators which are

not developed yet; - decide what TOVS channels to use);
- perform the final experimentation/evaluation of the three-dimensional variational analysis.
The operational implementation of a three-dimensional variational analysis is certainly not the last step of
the project. Further developments are likely to occur in this operational scheme, such as using more

observations, or improving the use of current observations. Also more detailed studies on the operational

feasibility of a four-dimensional variational scheme will be performed.
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A series of four-dimensional assimilation experiments have been performed with simulated data in spectral

space. They showed that it is possible to "invert" the forecast model through a variational four-dimensional
assimilation performed in a 6 hour period (z,, ¢,): in other words it is possible to reconstruct the model at
time ¢, from observing the model state at time ¢,. This inversion is becoming more and more difficult when
diffusion is increased in the model, and/or when the time period (¢,, ¢,) is increased from 6 to 12 or 24h.

In other experiments it has been shown that the information available in the model dynamics is sufficient to
reconstruct several model fields from the observation of other model fields. The reconstruction of an

idealized baroclinic wave has also been simulated with promising results.
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APPENDIX A Formulation of the prediction error covariance matrix P.
In gene;al, Jo-&X - 1{3)‘ Pl x - X))
'where X and Xg are vectors of the spectral coefficients of the model state variables.
Separability will be assumed in the horizontal and vertical, so that
Jo = X-X)' L H' &-X)
where V is a correlation matrix and H is a covariance matrix. Normalizing (X - Xg) by the forecast error

standard deviations one obtains,

=

g - g

where ¥!, and g™ are both now correlation matrices, containing within them the vertical and horizontal

t
components respectively. Note that, in general, H! = (l) B! (-1—), the relation between h and H is not
o o
simple. From now on we shall work entirely in terms of j.
X-X 1 11
Let, x = g then, J, = x" ¥ bl x and V. J =2V b g
o

Lett E=h'x G=-YV'F, then J, = x* G, V. J, =2G

The vector x contains the normalized departures of the model state variables from the guess field

(
glovel
E)I;wll
level2
£ “)
]
x = | I |, where for example £ =
level2
q En
In p_
B
levelL
& )




E, 8, T, g contain the (N) spectral coefficients of the normalized departures of the model state variables

from the guess field at each model level.

If we assume that the cross correlations between errors in model variables are zero, we may define a block

diagonal matrix j!

-h-e 0 0 0 O

0 gﬁ 0 0 O
pt-| 0 0 B 0 O
£ T

0 00 b O

q
0 0 0 0 &
\ “inp,)

(h 0 O )
g,
0 0
g,
210 0 &
L
\ /

With similar matrices for 45’ h r h . For _lgblp, there is only a single level.
q

Since A! is operating on x, which has been normalised by the forecast errors, o, it is reasonable to assume
that ! is homogeneous ie éa - Qn - - l_za which are diagonal in spectral space. We shall further

assume that

h
~El -8l =11 ql ~inps n

where foreach level & =

a matrix of dimension N: the number of spectral coefficients.
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Where I is a unit matrix of dimension N and ij = £,3,T.q.n D,

’=st i
P e
ey
oy
| et

ER

'}- g g !

zﬁq
|

_ZE Inp,
KD np,
KT Inp,
Zﬂ"h

1)

For simplicity it is assumed that the cross correlations are again zero - the off diagonal blocks W =0 for

i#].

Then G=V'F

(ZEE g_h\
P g
Ll i
il

h
\In 7,

V,J, - 2G and J, - x* G.

All that remains is to define the matrices Y€, p%8, y77, y

(

. 0 - » -
0

0
ky
0

0O O

hy

Specification of the ’horizontal’ error correlation matrix h

The assumption built into the horizontal prediction error correlation matrix 4 is that the structure functions
» 4
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{2
(on the gaussian grid) are homogeneous and isotropic on the sphere. In physical space, we have then taken: h(r) = e (2“2)

where r is the distance between two points on the sphere and a is the radius of influence (600 km). This

hypothesis of homogeneity leads to a diagonal error correlation matrix in the spectral space (Courtier, 1987).

Specification of the vertical error correlation matrix ) 4

. ¥ is a block diagonal matrix with block elements square matrices of dimension NLEV, one block for each

of the 3-D state variables. As a starting point these vertical correlation matrices have been closely modelled
on those used operationally within the OI analysis. The vorticity correlations have the same form as those
used for streamfunction in the O, the divergence follow those of velocity potential in the OI. Temperature
correlations have been derived from the height correlations used in the OI. Specific humidity follows that

of the OI form for relative humidity.

These represent a crude first step and will be refined in the future. In particular, deriving temperature
correlations from those of height introduces undesirable 'negative lobes’ in the correlation structure. Specific
humidity correlations need to be properly derived from those of relative humidity, or determined in their own

right.
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APPENDIX B
B.1 Calculation of forecast errors within the OI

Forecast errors are estimated within the ECMWF operational OI assimilation as follows: -

Estimates of the rms forecast errors of u, v and h (E® , EF , E*,) have been statistically determined
through verification of the assimilation scheme in data dense regions. (Hollingsworth and Ldnnberg, 1986).
Smooth, global, three-dimensional fields have been generated from these results. The independent Ef“m are

used close to the equator. Away from the equator, they are calculated as:

Ef - _ 8 gr

uy ‘/-sz uy

where L is a horizontal length scale and is the Coriolis parameter.

Modification of the mean errors Ef"‘u v4 18 mecessary to reflect spatial and temporal variation in data density.

This is carried out through the following steps: -

i) A global three-dimensional field of analysis errors E“u_v ;18 available as a by product of the OI

analysis. These are used to modify the climatological forecast errors to reflect data availability for

the specific forecast.

1 3 N Eai,;‘
N X A

-1 1 EF

ed =

where i = 1,2,3 is u,v,h respectively, and j is a sum over levels. e is a global 2-D field.

ii) Climatological variances are available from station statistics e.g. Oort and Rasmussen. These are

used to provide E°, ,»» Which provides a climatological error factor.

. 1 3 N Ecij
€ —3—,;,2:2 —

1 1 EF,

iii) Error growth factor. Let e® grow to the error level of a random state in time Az ..
g rand

At
e™d - ga e

(V2 e - e?)
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At .4 = 6 days in mid-latitudes, 2 days in tropics. Atfc = 6 hours.
iv)  Apply a 2-D filter to ™,
V) EFf = gmd  EF

. Finally, these forecast errors are saved during the ECMWF OI analysis for use within the variational analysis.

B.2 Treatment of the forecast errors within the IFS

As described in A.1 an estimate of the rms forecast errors of E*¥* is available from the operational OI

analysis on a 6° x 6° lat/long grid at 7 pressure levels ( 1000, 500, 300, 200, 100, 50 and 10 hPa).

i) Horizontally interpolate Eu,v 5 10 the gaussian grid of the IFS.

ii) Vertically interpolate the E .1 the n-levels of the IFS, using the first-guess surface pressure to
define the levels. |

iii) Generate error fields for the variables used in the IFS: contra- and co-variant components of the wind,
T, In p, and g. mms forecast error fields used in the IFS
Contra and co-variant wind. |
O, = E, cosine(lat)
Temperature.
op = a |El
The vertical covariance matrix, described in Appendix A, is used to provide the vertical structure of

the temperature variances (). Horizontal structure is introduced by using these to scale the

normalized height errors |E,|| (i.e. the height error field from the OI is used to provide the horizontal

structure for the temperature errors).

Surface pressure.
0y, = ng,l,

pg Eh,
D,

o].n(p,) =

Specific humidity.
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o - (1 - @’e,R; ( Ar
(@ -e)R, (100)

where currently Ar = 10% (which may be optimistic).
For p < 200 hPa, E, =125x 10° kg/kg.

Options exist for further processing of the rms errors, such as setting G's to constant values over n-levels,
‘and spectral smoothing of (1/g). The latter is necessary to avoid too much aliasing in the calculation of the
cost function.
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Fig. 1 Convergence for the guess cost function Jg alone with the model variable vector X as contro! variable
a) decimal logarithm of the ratio of Jg at each simL_Jlation (of the minimization scheme) to its initial value. The
number following "NMI" in the line labels indicates the number of iterations of NNMI used in the
computation of Jg.

b) As a) but for the gradient of Jg.
¢) Decimal logarithm of the energy in gravity modes normalized by its initial value, at each simulation.
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Fig. 4 Variation of the cost function with the number of iterations of the minimization process, in a 4D-assimilation
experiment consisting of "inverting” the model integration on a 6 hour period.
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Fig. 5 Variation of the distance between the reference and the model state at the initial time of the assimilation period,
during the same experiment as in Fig. 1.
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Vorticity (left) and temperature (right) difference fields at 500 hPa:
Top: difference between the starting field for the minimization and the reference.
Bottom: difference between the final point after 30 iterations and the reference.

The contour interval is 0.4 10°° s for the vorticity field and 0.4°K for the temperature field.
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Fig. 7 Vorticity difference fields at 500 hPa before and after the minimization, when only the mass field is observed every
hour. '
Top: difference between the starting field for the minimization and the reference.
Bottom: difference between the final field after 30 iterations and the reference.

The contour interval is 0.5 10° s,
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Fig. 8 Variations of the cost function and of the distance to the reference at the initial time of the assimilation period.
in this 4D experiment, one tries to reconstruct a baroclinic wave from the observations of the time evolution of
the rest of the flow.
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Fig. 10 Variation of the cost function normalized by its initial value with the number of simulations of the minimization
scheme, comparing different versions of the minimization scheme. Note that, except M1GC3 with 11 updates,
the three other versions show exactly the same performance.
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