THE METEOROLOGICAL OFFICE UNIFIED MODEL FOR DATA ASSIMILATION,
CLIMATE MODELLING AND NWP AND ITS IMPLEMENTATION ON A CRAY Y-MP

R.5.Bell and A.Dickinson

Metecrological Office

Bracknell, England

1. INTRODUCTION

The Met Office, as a national meteorological service, carries out
operational weather forecaéting using a varilety of models of the
atmosphere. These range from a global model with a horizontal resolution of
90Km down to akfegional mesoscale model covering just the British Isles
which uses a gridleﬁgth of 15Km. Because of the time critical nature of the
work and the amount of data processing involved, such numerical weather
prediction (NWP) models have always demanded the largest most powerfuly
computers available. Nowadays, this means using a multi;processor

supercomputer.

The Met Office i1s also at the forefront of the international effort in
climate research, through the setting up of the Hadley Centre for Climate
Prediction and Research. The growing international concern about the threat
of global warming due to the steady increase in atmospheric concentrations
of greenhouse gases has led to renewed efforts to predict the effects of
climate change. This research requires coupled models of the complete
atmosphere-ocean system to be integrated forwards a century or more ahead.
Although these models use much lower spatial resolutions than forecast
models, the cost of one such experiment equates to many thousands of hours

on the most powerful computer systems.

Cray Y-MP 8/32 computer system has recently been installed at the Met
Office and is currently being ﬁsed to test the next generation NWP systen.
A second computer, with similar features and capability to the Y-MP 8/32,
will be acquired early in 1991 to be used primarily for climate change
prediction. A new unified climate-forecast model is being developed for the
Cray Y-MP covering a wide range of ocean and atmosphere applications.
Section 2 describes the scope of this model. In section 3 some general
points on code design and multitasking strategy are discussed. The

remaining sections describe more specific problems encountered whilst

28

designing a parallel processing strategy for the main components of the
model, namely the data assimilation component, the atmosphere dynamics and

physical parametrizations, and the ocean component.

2. THE UNIFIED MODEL

2.1 5Scope

To a first approximation, forecast models and the atmospheric part of
climate models may be viewed as just different resolution versions of the
same program. In forecast mode the highest resclution that can be
reasonably run in the available time is used. In climate studies there is a
trade off between the accuracy in the representation of features and the
length of time for which the model can be run. Therefore coarser resolution
models are typically used. Table 1 gives examples of the resolutions being
used at the present time. In addition to its flexibility with respect to
resolution, the unified model allows users the option of including
alternative packages if the need arises. For example, in climate
configuration, more detailed physical parametrizations might be adopted,

the impact of which are unimportant on the short timescales typical of NWP

configurations.
Configuration Levels Points E-W Points N-S| Resolution
Global short range 20 288 217 90km
Regional short range 20 229 132 50km
Monthly forecast 20 192 145 135km
Seasonal forecast 20 144 109 180km
Upper atmosphere 42 96 73 270km
Climate forecast 20 96 73 270km

Table 1. Dimensions of the atmospheric models used on the Cray Y-MP for

various applications

The model can be run in three modes, atmosphere only, ocean only, or as a
coupled atmosphere-ocean model. In each mode a run consists of an optional
period of data assimilation followed by a forecast. The model may be global
or limited in either horizontal or vertical extent. In the latter cases,
boundary values of the prognostic variables must be giQen for the period of

the integration.

29

At the control level of the model, large increases in complexity have been
introduced by the need to build a single model with a large number of
potential applications. Output flelds are required to couple together the
ocean and atmospheric components of the coupled model system. The global
model runs must be capable of outputing lateral boundary information for a
regional limited area model which may be located anywhere on the globe. The
regional model is required to output boundary information for subsequent
use by a separate mesoscale model run. All atmospheric configurations must
be able to provide forcing information for an ocean wave and swell

forecasting model.

The other aspect of output processing is the production of model
prognostic, diagnostic and derived fields for subsequent perusal by the
user, be it forecaster or research scientist. In excess of 1000 fields are
provided to the forecaster from a global 6 day forecast. In this mode, many
fields are required as frequently as 3 hourly during the run, whilst in
climate mode output may only be required at 10 day intervals, although that
10 day field might be a mean of 10 component daily fields.

A final feature of the control system worth mentioning is its ability to
automatically release other jobs at some predetermined interval. It would
be entirely inappropriate if, during a long climate run of many model

years, the model had to be stopped at intervals to process output.

2.2 Formulation

2.2.1 Data assimilation

The data assimilation scheme adjusts the model atmosphere towards
observations, providing both initial fields for the operational forecasts
and analyses from which global climatologies may be generated. At the Met.
Office, data assimilation is achieved by an iterative or "nudging"
procedure (Lorenc et al, 1991). In this procedure, as with any
dataassimilation scheme, we seek to extract information from the
observations and add it to our current knowledge of the atmosphere as
represented by the model. At each timestep, we calculate differences of the
observations from model values. The analysis increments, which are required
to nudge the model state towards the observations, are a linear combination
of weighted observation increments, where the weights are given by a rather
complicated function of displacement in space and time, and also of

observation density and error.

30

2.2.2 Atmosphere model

The atmosphere part of the model integrates the hydrostatic primitive
equations of motlon, using a split-explicit finite difference method on an
Arakawa ‘B’ grid (Cullen et al, 1990). For all configurations of the model
a spherical polar coordinate system is used. When the model is run with a
limited horizontal extent, a coordinate pole must be chosen as far removed
from the area of interest as possible. Hybrid vertical coordinates are
used, which can be specified as pressure or sigma or a combination of the
two. The integration scheme conserves mass, mass-weighted potential
temperature and molsture, and angular momentum. The gravity wave terms are
integrated using a forward-backward scheme which is second order accurate
in space and time. The horizontal advection uses a two-step Heun scheme
with fourth-order accuracy at low wind speeds. The scheme is automatically
reduced to second-order accuracy where the winds are strong in order to

ensure stability.

Computational stability is maintained in global versions of the model by
Fourier filtering at high latitudes. The filtering performed is
automatically adjusted according to the local wind speed. In addition,
horizontal diffusion is applied with a coefficient depending on wind speed,
and the vertical loss of total energy from the atmosphere arising from
diffusion terms is diagnosed and returned in the form of a globally uniform

heat source.

The model includes multilayer soil temperatures and a soil moisture
prediction scheme. Different soil types are specified, and used to
determine the surface albedo. A model of the vegetation canopy is included.
Moisture can be retained in the canopy or transferred to the soil or
atmosphere. Different vegetation types can be specified. Snow depth is
predicted and used in the calculation of albedo. Vertical turbulent
transport in the boundary layer depends on the local Richardson number. The
presence or absence of cloud is taken into account in calculating the

transport coefficients.

Large-scale clouds are represented by their liquid water (or ice) content.
The total optical thickness of the clouds is taken into account in the
radiation calculations. Large-scale precipitation is calculated in terms of

the water or ice content of the cloud. For liquid cloud, the scheme

31

represents the coalescence and accretion processes as precipitation falls
through the cloud; frozen cloud starts precipitating as soon as it forms.
Cooling of the atmosphere due to evaporation of precipitation is included.
Sub-gridscale convective proéesses are modelled using a simple cloud model
(Gregory et al, 1990); convection affects the large-scale atmosphere
through compensating. subsidence, detrainment, and the evaporation of

falling precipitation.

The radiation calculation uses six bands in the long wave and four in the
solar calculation and allows for water vapour, ozone, carbon dioxide, and
the layer and convective cloud distributions. Cloud radiative properties

depend on cloud water content.

The effects of the drag caused by sub-grid-scale gravity waves is estimated
using the sub-grid variance of the orography and the known absorption

properties of gravity waves in a given atmospheric profile.

2.2.3 Ocean model

The ocean model is based on code developed at the Geophysical Fluid
Dynamics Laboratory by Bryan and Cox (Cox, 1984). The model uses a leap
frog integration scheme with a second order accurate finite difference
representation on a spherical grid. The formulation allows irregular
domains to be used with realistic coastlines and bottom topography. The
mesh is variable and is constructed so that the zonal grid spacing is a
function of longitude and the meridional grid spacing a function of
latitude. Physical parametrizations include a mixed layer model, a
treatment of penetrative solar radiation, convective adjustment and

isopycnal diffusion.

Configuration Levels Points E-W Points N-S| Resolution
Global climate 20 96 : 73 270km.
N. Atlantic (FOAM) 40 140 112 "+ 100km
Tropical Indian 16 96 92 30-150km
Tropical Pacific 16 134 94 30-150km

Table 2. Dimensions of the ocean models used on the Cray Y-MP for

‘'various applications

32

Several different ocean applications are being developed for the Cray Y-MP.
These are shown in Table 2. The FOAM (Forecast Ocean Atmosphere) model
covers the North Atlantic and is expected to become operational within the
next 4 years using a gridlength of around 30 km. The tropical models are
run as part of the TOGA (Tropical Ocean Global Atmosphere)} programme,

focussing on phenomena such as El Nifio and the Indian Monsoon.

3. CODE DESIGN AND MULTITASKING STRATEGY

3.1 Background

On previous Met Office computer systems production code was generally
written in a low level language in order to extract the maximum performance
from the hardware. On the Cyber 205, for example, Q8 calls (allowing direct
access to hardware instructions) were used extensively in climate and
operational forecast applications. Although this approach led to fast
efficient code, it made it difficult to maintain or modify. It was
therefore decided to use Fortran when writing the unified model and leave
the job of producing efficient, optimised code to the Cray compiling
system. It is felt that the performance gains that might be obtained by
judicious use of a low level language are now outweighed by the need to
make code modifications as easy as possible. Apart from at the control
level, all sections which perform meteorological calculations are designed
to be ’plug compatible’, and communicate information with the rest of the
model purely through their argument list. All routines correspond to the
standard for exchanging meteorological code proposed by Kalnay et al
(1989).

The Cray Y-MP in use at the Met Office has eight CPUs each with a 6
nanosecond clock period, 32 Mwords of main memory and 128 Mwords of SSD
memory. Under the UNICOS operating system the eight processors can operate
independently on separate programs or concurrently on a single problem in
multitasking mode. The dedicated resources of all 8 CPUs on the Y-MP will
be used for production runs of the forecast models. Climate modelling will
also require some of the speed gains offered by multitasking, although in
practice a small number of separate climate integrations may be run in

parallel.
In discussing the performance of the unified model in detail, it is

convenient to consider the major components separately. This will be done

in subsequent sections. In this overview, we note from Table 3, the

33

relative costs of the main components of an atmospheric model run in both
data assimilation mode and forecast mode at the highest proposed
resolution. We see that in assimilation mode, the assimilation component is
most costly both in terms of work and time. In forecast mode, we see that
the dynamics entails much more work than the physics but the costs are
almost the same, indicating clearly that dynamics code is more efficient.
The trend is towards further decreases in the relative cost of the dynamics
as observing systems become more extensive and parametrization schemes

become more complex.

Model component % of total work % of total cost

(flopcount) (elapsed secs)

ASSIMILATION MODE

Assimilation 44 49
Physics 17 23 .
Dynamics 39 28

FORECAST MODE
Physics 30 45

Dynamics 70 55

Table 3 Contribution of various components to total cost of model

3.2 Using Autotasking

Three alternative ways of multitasking a piece of code are available on a
Cray Y-MP; macrotasking, microtasking and Autotasking. Macrotasking allows
a program to be partitioned into two or more tasks at the subroutine level.
The programmer inserts library routine calls into the source code to
initiate and synchronise tasks scheduled by the operating system.
Microtasking, on the other hand, allows parallelism to be exploited at the
DO-LOCP level and is therefore suitable for problems that exhibit a finer
granularity. The programmer identifies parallel regions in his program and
inserts directives accordingly. Code is. then generated which allows the
program to hand out loop iterations to each CPU as it becomes available for
work using a master-slave relationship. If no extra CPUs are avallable, the
code will continue to execute on a single CPU. Autotasking is functionally
equivalent to microtasking with the added advantage of automatic detection
of parallelism and automatic scoping of variables. It attempts to identify

and exploit parallel regions in a .program through the use of a

34

preprocessor.

Because of its ease of use, Autotasking was chosen to multitask the unified
model. It is a particularly attractive option because no machine-dependent
code needs to be inserted. If programmer intervention is desired to further
optimise performance in routines where the Autotasking preprocessor fails
to detect an opportunity for parallelism, it is done by means of

directives.

Autotasking consists of a three phase compiling system: dependence analysis
(fpp), translation (fmp) and code generation (cft77). The dependence
analysis phase looks for parallelism in the program and inserts directives
which are then interpreted by the translation phase. The translation phase
converts the directives into extra code which controls the parallel
execution. Directives to override how a particular parallel block is
handled by the compiling system may be inserted by the programmer at either
the fpp or fmp step. More details on the features of Autotasking may be
found in Furtney (1990).

3.3 Data organisation

At the present time the atmosphere and ocean components use different data
organisations. The atmosphere model stores data by fields whilst the ocean
model stores data by latitude rows. Both have an outer loop over the number
of levels. In its default mode, Autotasking allocates successive iterations
of the outer loop to separate processors. This can be particularly
effective if the number of processors is an exact divisor of the number of
levels. Alternatively, the innermost vector loop may be étripmined by
partitioning it into shorter strips and allocating each strip to a separate
processor. This approach removes the need to consider any horizontal (or
vertical) dependencies inherent in the integration scheme, but it is only
successful as a general multitasking strategy if the inner loop is long. It

is therefore only a viable option if the data is stored by fields.

Because the atmosphere model uses an explicit timestepping scheme, only one
copy of the prognostic fields needs to be stored. This allows all the data
to be retained in memory, even at the highest proposed resolution. The ease
with which data can be manipulated in a single shared memory greatly
simplifies the data assimilation problem as well as the generation of

output fields, particularly when processing complicated configurations such

35

as the lateral boundary information for an embedded regional model.

4. PARALLEL PROCESSING THE DATA ASSIMILATION COMPONENT

Observations describing the state of the atmosphere are distributed
inhomogeneously in space and time. A brief summary of the currently
available observations is given in Table 4, together with an estimate of

future trends.

Observing system Type of report Number/6hours
' ' now future

Radiosonde T,V,q (multilevel)| 1000 1000
Surface P,T,V,q (1 level) 5000 5000
Alircraft T,V (1 level) 1000 10000
Satellite cloud vector V (1 level) 2000 2000
Satellite soundings T (multilevel) 5000 100000
Satellite scatterometer V (sea surface) 0 50000
Safellite Windlidar V (multilevel) 0 50000

Table 4 Observation characteristics and data volumes

(T=temperature, P=pressure, V=wind and g=moisture)

We note from this table the diversity of the global observing system, with
some components observing wind only, some temperature only and others
giving a more complete measurement; some components giving a profile of
measurements through a depth of the atmosphere and others restricting their
observation to a single level; some components giving a rather limited
global coverage whilst those satellite based systéms giving a more complete
coverage. All of these features of the observing system conspire to make
the problem of mulfitasking the data assimilation component, to say the

least, rather messy.

The data assimilation code is greatly simplified by considering each
component of the observing system in turn and adapt the algorithms to suit.
Further simplification is achieved by partitioning the problem into a
vertical part and a horizontal paft. The result from the vertical stage is
a column of increments on model levels at the observation location. The
vertical stagé_is not very costly. Vectorization is ovér the number of
observations and Autotaskiﬁg is used to partition these loops over the

available processors.

36

The horizontal stage seeks to spread the increment (Y) from the observation

(k) to nearby gridpoints (i), as indicated by equation (1).

Axi = kaik Yk (1)
Each observation has a sphere of influence which can exceed 1000km. Thus at
the highest resolutions this might involve as many as 500 gridpoints. The
code for equation (1) gives nested DO-LOOPS over observations and
influenced gridpoints. At the higher resolutions it appears not to matter
which way the loops are nested, since both the observation counts given in
Table 4 and the number of influenced gridpoints given above are
sufficiently large for efficient vectorization on a Cray Y-MP. For lower
resolutions the number of influenced gridpoints scales down substantially
and an inner loop over observations seems more appropriate. However this
strategy leads to a potential store hazard where near-coincident
observations which are adjacent in the obgervation vector attempt to update
the same location in the output increment vector on the model grid. For
this reason, the alternative vectorization strategy with an outer loop over

observations has been adopted.

Autotasking directives may be inserted by the programmer to achieve
multitasking of the outer loop, forcing single iterations (observations) of
the outer loop onto different processors as they become available. The
complexity of the inner loop appears to rule out automatic multitasking
without programmer intervention. A similar store hazard to the one
discussed above needs safeguarding against when this code is multitasked,
since the increment vector of model gridpoints is an array in shared memory
and potentially there is a problem if individual processors simultaneously
update this shared array. The solution to this problem is achieved by
inserting further directives (GUARDS) around the critical area of code
which performs the gathering from/addition to/and scattering back of the
partial analysis increments array, thus preventing simultaneous access by
the processors. Fortunately the amount of work in the GUARDed area is small
relative to the total work in the loop so that with 8 processors the

waiting time at the GUARD is minimal.

The single tasked speed of this horizontal part of the assimilation is

roughly 110 megaflops. This compares unfavourably with the sort of peak

37

rates achieved by straightforward dynamics code because of the complexity
of the coding, for instance, in the spherical geometry calculations
required for (observation-gridpoint) distances. However, with the coding
strategy adopted, the code exhibits a large granularity and performance

improvements of roughly 7.8 are obtained with 8 CPUs.

Referring back to Table 4, we give details of future trends in data volumes
during the coming decade. This increase in data volumes is potentially
enormous and clearly more computer power will be required to cope with the
explosion in satellite observations. One redeeming feature of the future
observing systems is that the data are on a more uniform grid of a density
not too dissimilar to those of the models, so we might envisage rather

simpler algorithms for mapping observation increments onto the model grid.

Before leaving the data assimilation problem, it is worthwhile stressing
the advantages of a large shared memory for this particular problem. We
have had some experience of using local memory parallel processors (ETA-10)
and large data transfers were necessary to obta}n a good load balance with
this algorithm. If model fields are held in local memory, then the
observations appropriate to that same sub-domain must be held in the same
memory. The uneven geographical distribution of observations leads to load
balancing problems. In addition, as has already been mentioned, the
horizontal influence of an observation is quite large and in the horizontal
processing step this leads to increments being generated in one processor

which update model fields held in the memory of other processors.

S. PARALLEL PROCESSING THE ATMOSPHERE MODEL

The forecast program has been designed to store data as horizontal fields,
so that inner loops are typically over all points along a model level. This
arrangement maximises vector efficiency while allowing a range of
multitasking options. The multitasking strategy currently adopted uses
Autotasking to partition the innermost loops across all the available
processors. A feature of this approach is that provided the vectors are
long enough, load balancing is assured by the dynamic scheduling algorithm

used in Autotasking.

5.1 Dynamics

In the dynamics the same operations are generally carried out at every

peint in the integration domain. This makes these algorithms easy to

38

(a) 8
DYNAMICS
7+ A A| 135
A
A
61 A
o
[/},
T A a
3°0 2
(=
[y
a 4)
/] 4 - m
A
3 0.5
2 L
horizontal dimensions
1 1 1 1 i] i 1 1
) S5 A N o N A x
i A 9 ¥) X ™
oz 3 %‘& o o N &
S I 4 S P
(b)
8
CONVECTION SCHEME
7 -
sl08
6 - A
A
a_| A a
A 2
° A "5
o 2
o4 A o
7))
A
3 L
- A : 0.3
2 -
horizontal dimensions
1 1 i 1 1 1 1 1 1
) o> A N o A A x
S A YV X) N)
S A I
AL R G A LI

Figure 1. The gigaflop rate and speed-up over single tasked code recorded
for 8-CPU Autotasked versions of (a) the global model dynamics and (b) the
convection scheme using a range of horizontal dimensions.

39

vectorize, but there are horizontal and vertical dependencies resulting
from the discretization process which 1imit the range of effective
macrotasking options (Dickinson, 1990). By adopting a multitasking approach
which stripmines inner loops, these dependences can be ignored. But the
success of this strategy depends on having large do loops containing long
vectors, since each loop incurs an overhead related to the cost of the
single task code inserted by the preprocessor to control the
multiprocessing. The performance of the dynamics routines, including the
FFT code used for stability filtering, is shown in Figure 1(a). At the
forecast resolution a 6.9 times speed up over the non-Autotasked, single
CPU, code is recorded with a respectable performance of 1.3 gigaflops,
while the climate resolution shows a speedup factor of only 4.5 and a

performance level of 0.8 gigaflops.

An estimate of the multitasking overhead may be obtained by computing the
difference between the cost of an Autotasked run limited to 1 CPU and the
cost of the same run when Autotasking is not used. If this is inserted into
Amdahl’s Law, as shown below, it gives an indication of the maximum speed

up that can be obtained.
mt_overhead = 1 CPU Autotasked time - single_tasked_time (2)

single_tasked_time
max_speed_up = (3)
mt_overhead + single_tasked_time/number_of_cpus

Timings of the dynamics code show that the multitasking overhead is 10% at
climate resolution and 2% at forecast resolution. On substituting this into
Amdahl’s Law (3) with number_of_cpus=8, maximum speed-ups of 4.5 and 6.9
respectively are obtained: the same as given in Figure 1(a). Since the
multitasking overhead is proportional to the number of parallel loops in
the code, any further improvement in performance can only be obtained,
logic permitting, by combining together loops which use the same vector
length. Any lack of load balancing appears to be insignificant, underlining
the effectiveness of the dynamic scheduling algorithm used within

Autotasking.-

5.2 Physics

In contrast to the dynamics, the physics are data dependent and localised,

40

being characterised by nested conditional blocks of code. There are no
horizontal dependencies and so a straightforward macrotasking approach
where the integration domain is split into 8 regions, each integrated in
parallel by a separate processor, is a valid alternative strategy to
Autotasking inner loops. If the conditional constructs are converted to use
the Cray vector merge functions such as CVMGT, then gigaflop rates in
excess of those obtained for the dynamics can be produced. This is a false
measure of performance, however, since most of the physical processes apply
only at sub-areas of the grid and a mask-merge approach leads to
calculations being carried out at all gridpoints irrespective of where the

final results need to be applied.

In the gravity wave drag parametrization, for example, vertically
propagating mountain waves are modelled and so the effects need only be
computed over land points. Since just one third of the Earth’s surface is
covered by land, the cost of this routine can be significantly reduced by
first focussing in on this set of points. This is achieved by using
explicit gathers in the code based on index lists produced from simple
tests. The other physics routines use this approach in varying degrees. For
example, the cost of the convection scheme is shown in Figure 1(b). Note
that the gigaflop rate is less than half that of the dynamics, but the wall
clock time of the code is significantly less than can be obtained with the
mask-merge approach. Tests show that further improvements in wall clock
time, particularly at climate resolution, can be obtained by using the
regional macrotasking approach described above, but with the addition of

Autotasking of inner loops to provide load balancing.

Even if a macrotasking layer were added to the physics, the performance of
the climate resolution version of the model would still be rather poor and
it would be unacceptable to run this in a stand alone mode. However, at
least four parallel streams of work are identifiable in climate prediction:
a control run, various increased CO2 senarios, formulation changes and runs
from different initial data. Also, the size of the problem is such that
four copies may easily fit into the available memory without the need to

roll out a job.
A test of the throughput of the 8-CPU Autotasked code is shown in Table 5.

It should be noted that these test jobs contain no I/0 and no significant

pieces of single tasked code. It can be seen that only a small improvement

41

is obtained as the number of jobs in the system is increased. This is
because Autotasking grabs all available CPUs (as controlled by GETCPUS and
the environment variable NCPUS), even if it cannot use them efficiently,
and appears unable to share resources with another Autotasked job which
also wants to use all the available CPUs. An alternative strategy is to
limit the number of CPUs allocated to each job. As shown in Table 6, an
acceptable level of throughput may be obtained with 4 parallel jobs each

Autotasked over 2 CPUs.

No of copies
of job
in system

Avg time
per job
in secs

28.3
27.0
26.1
26.4

W N e

Table 5 Throughput test of 100 timestep run of climate

resolution atmosphere model using 8-CPU Autotasked code.

Wall clock|{No of CPUs| No of CPUs
time in actually allocated
seconds utilised to work

Single tasked 114 4 4
Autotasked on 2 CPUs 64 7.1 8
Autotasked on 8 CPUs 105 4.4 8

Table 6. Throughput test of four 100-timestep runs of

climate resolution atmosphere model.

6. PARALLEL PROCESSING THE OCEAN COMPONENT

The ocean model is organised by latitude rows, giving the option of an out
of memory solution. For ease of vectorization values are computed over both
land and sea points. At each timestep boundary conditions are applied along
the coasts. Evidence from running the code on a Cyber 205 suggests that
there is little advantage in first gathering together sea points in the
manner described in §5.2 for the atmospheric physics,since savings in
processing time are balanced by the extra costs of the gathers and

scatters.

42

At the time of writing, conversion of the ocean model for the Cray Y-MP has
only Jjust begun. The initial multitasking strategy will be to apply
Autotasking to the loops over levels. From Table 2, it can be seen that the
number of levels divides by 4 in the case of the climate model and 8 for
the tropical ocean and FOAM models. In practise, as in the case of the
atmosphere climate model, the climate and tropical versions of the ocean

model will be restricted to use just 2 CPUs.

Some indication of the performance of the ocean code may be obtained from a
multitasking exercise undertaken by Cray UK on the FRAM Antarctic modelling
code run by the Institude of Oceanographic Sciences. The model uses 32
levels on a 722x221 horizontal grid and is similar in formulation and
design to the Met Office model. Applying Autotasking on an 8 CPU Y-MP, the
code recorded 870 Mflops which was 6.1 times faster than single tasked
code. When limited to just 4 CPUs, 550 Mflops and a 3.6 times speed up were
observed. All of the code was Autotasked over levels, except for the
solution of a Laplacian resulting from the upper boundary condition, which
was stripmined across the 722 points E-W. This was the most expensive
routine, accounting for 30% of the execufion time. From Table 2 it can be
seen that lower horizontal resolutions are planned by the Met Office (Table
2) leading to potentially less parallelism. However, a computationally more
efficient formulation of the upper boundary condition is planned, which

will allow this part of the code to be Autotasked over levels.

7. CONCLUSIONS

The Met Office’s atmosphere and ocean modelling codes are being rewritten
for the Cray Y-MP using standard Fortran. Care has been taken to apply a
consistent coding style and common interface to all components of the
system, unifying the code for climate and forecast applications. It is
expected that this code will form a platform for our modelling activities

over the next 10 years and more.

Optimization is handled by the Autotasking preprocessor. This allows the
speed benefits of multitasking to be applied to all modelling activities,
particularly high resolution numerical weather prediction, in a user

friendly, almost transparent, way.

The atmosphere component of the unified model stores its data as horizontal

43

fields. By Autotasking inner loops, horizontal and vertical dependencies
are avoided which usually need to be considered when using the more
traditional macrotasking approach to parallelise grid point models.
Acceptable levels of parallelism can be achieved with large problem sizes,
although the combined use of macrotasking and Autotasking (to give better
load balancing) may well give the best results, particularly for the
physics routines. Further work still needs to be done to determine the

optimal combination which minimises wall clock time.

At climate resolution, the ocean and atmosphere models are less parallel
and so it is not appropriate to run these integrations in stand alone mode.
Batch throughput tests of the atmosphere code at climate resolution suggest
that running more than one 8-CPU Autotasked job in the system at the same
time does not lead to a significant improvement in overall performance.
Essentially, batch processing will only make an inefficient 8-CPU
Autotasked job relatively more efficient if other jobs in the system are
restricted to use less than 8 CPUs. Acceptable levels of performance appear

to be possible if climate runs are limited to use 2 CPUs each.

Retention of model data in a single shared memory has greatly simplified
those parts of the model which are non-local in character with significant
horizontal or vertical dependencies. In particular this strategy is well
suited to the data assimilation problem and also the generation of certain

output fields such as lateral boundary information for other models.

8. ACKNOWLEGMENTS
The authors wish to thank Deborah Salmond and Mike 0'Neill of Cray Research

UK for providing the ocean modelling timings discussed in §6.

9. REFERENCES
Cox, M.D., 1984: A Three Dimensional Model of the Global Ocean. GFDL Ocean

Group Tech. Note 1. GFDL, Princeton, U.S.A.
Cullen, M.J.P., Davies,T. and Mawson M.H.,1990: Conservative Finite
Difference Schemes for a Unified Forecast Climate Model. Unified Model

Documentation Paper No 10, Short Range Forecasting Research Division, Met

Office, Bracknell.

Dickinson, A., 1990: Multitasking the Meteorological Office Forecast Model

44

on an ETA-10. The Dawn of Massively Parallel Processing in Meteorology, Eds

G-R Hoffman and D. K. Maretis, Springer-Verlag.

Furtney, M., 1990: Parallel Processing at Cray Research Inc. The Dawn of
Massively Parallel Processing in Meteorology, Eds G-R Hoffman and D. K.

Maretis, Springer-Verlag.

Gregory, D., and Rowntree, P.R., 1990: A Mass Flux Convection Scheme with
Representation of Cloud Ensemble Characteristics and Stability Dependent

Closure, Mon. Weather Review, June 1990.

Lorenc, A.C., Bell, R.S. and Macpherson, B., 1991: The Meteorological
Office Analysis Correction Data Assimilation Scheme. Quart. J. R. Meteorol.

Soc

Kalnay, E., Kanamitsu, M., Pfaendtner, J., Sela, J., Suarez, M., Stackpole,
J., Tuccillio, J., Umscheid, L. and Williamson D., 1989: Rules for
Interchange of Physical Parametrizations. Bulletin of American Met Soc, Vol

70, No 6.

45

