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Abstract

At the present time the Spectral method is widely used within the Mete-
orological community. If massively parallel computers are to be useful to
this community then an efficient Algorithm for this method is required. The
massively parallel computer that is considered is one in which each compu-
tational node has it’s own private memory, CPU and has a fixed number of
communication links (valency) rather than increasing the valency with the
number of processors. Transputer based machines are an example of the
former while hypercubes are an example of the later.

The major computational effort in the spectral method, at least for large
truncations, are the legendre transforms and the fourier transforms. The
natural method for both of these are pipelines. Each pipeline has, of course,
different internal structures. The entire algorithm is a pipeline which carries
out the spectral space computations, the Spectral transformation, grid point
computations and computes the contribution to the Gaussian integration.
The data element in this pipeline is all variables for each Gaussian Latitude.

Calculations will be given for the pipelines vector efficiency and the pro-
cessor utilisation as the number of processors increase.

*Present Affiliation Hadley Centre, U.K. Meterological Office, London Road, Bracknell,
Berkshire, RG12 25Z
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1 Introduction

At present, the Spectral Method is widely used by the Meterological com-
munity. Its use ranges from low resolution climate models

(James and Hoskins, 1990; Bourke, 1988) to high resolution numerical weather
prediction models (Girard and Jarraud, 1982). Some authors have suggested
that the spectral method could be suitable for local area models if a suitable
conformal transformation of the globe is chosen (Courtier and Geleyn, 1988).
Their use is not likely to be discontinued in the near future. Therefore an ef-
ficient parallel algorithm for this method is required. This paper will outline
such an algorithm.

The details of the spectral method are well know to the meteorologi-
cal community (Machenhauer, 1979). The transforms in the method global
transformations and require that data be communicated across the entire
computational domain. Some models also require some local communications
in parts of the method, an example of which is described in (Bourke, 1974).
The model which was studied has been in use for some time and was first de-
scribed in 1975 (Hoskins and Simmons, 1975) and will be referred to through-
out this paper as the Reading Model. Most of the analysis in this paper is
directed at hardware which is capable of overlapping communications and
calculations.

The next section will provide a description of the method used to carry
out a parallel implementation, that is a pipeline. The two following sec-
tions explain in detail how the two components of the spectral transforma-
tion, the Legendre transform and the fast Fourier transformation are car-
ried out. Section 5 shows how the components are joined together and
gives an analysis of the algorithms scaling behaviour. Suggestions on how
an implementation could be done will be given. Implementations of the
spectral method have been carried out by other authors on SIMD machines
~(Carver, 1988; Swarztrauber and Sato, 1990; Sato and Swarztrauber, 1988).
This method is for a MIMD computer with fixed valency and which is con-
figurable to any desired topology. As will later be shown the algorithm is
only efficient for computers with large numbers of processors.

For future reference some hardware characteristics will now be given.
These are » which measures the communications speed relative to the com-
putations speed and v the valency of the processor. The valency of the pro-
cessor 1s the number of external links the processor has while r is the number
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of floating point operations than can be done in the time to communicate
one word to a neighbouring processor (along one link).

2 Pipelines

The method that was decided on for implementation of the spectral method
was to build a functional pipeline. A pipeline can be thought of as algebraic
decomposition in which a complex task is broken into several tasks (in this
case each functional unit is the task). If a sequential operation consists of
several functional units and the sequential operation requires to be done
several times on different pieces of data then it may be efficient to split up
the operation into its component functional units. Each unit will operate on
a piece of data, pass this computed data out to the next part and take in
another data element to act on. Figure 1 is a simple illustration of this where
a brick wall is built using a pipeline.

In this example the task of building a wall is broken into four functional
units. A task for this case is adding one brick to the wall. The four units are
in order;

1. Prepare the brick.
2. Apply mortar to the brick.
3. Place brick on wall.

4. Tamp brick down.

Bricks (tasks) will be taken from a pile and prepared by the first “brickie”
in stage 1. She will then pass this brick on to the next person in the pipeline.
The process will continue. After, in this case, 4 time steps the first brick will
be added to the wall. From this time on a brick will be added to the wall
every timestep. If each stage in the pipeline takes different amounts of time
then some “brickies” will spend some of their time doing nothing useful. *
The time between bricks being added to the wall will be given by the time
taken by the slowest “brickie”.

!Nothing as far as we are concerned, they may find this time extremely useful !
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Figure 1: A simple Pipeline

A few preliminary definitions will now be given. The timestep, T, is
the time interval between between data elements at the output end of the
pipe. The startup time, S, is the time it takes for the first data element to
travel the length of the pipeline. This time will be less than or equal to the
numbers of units in the pipe (or depth), U, times 7. If the processor can
overlap communications and calculations then this startup time is less than
the number of units in the pipe times 2r. The factor of 2 in the startup time
is because there can be no overlapping of communications and calculations
as there is nothing to be overlapped with the calculations.

At this stage details of 7 will be left to later, it depends on the underlying
architecture and algorithms used. The efficiency, V,

., of a pipeline is given
by;

V= Td (1)
* rd+ S
d is the number of data elements that are to be computed on. A lower

bound on efficiency is given from the relationship S(2) < Ur and in that case
equation 1 can be rewritten as;
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Table 1: Required Parallel Complexity

Stage No. of Processors
Timestep Inc. o(7?%)
Forward Lgnd. o(T?)

Inverse FFT O(TlnT)
Non-lin Products o(7)

Forward FFT O(TlhT)

Gaussian Int o(7?)

T is the truncation number (either Rhomboidal or Triangular).

d
> W (2)

The pipeline will be running at 50% efficiency, or more, when d, the
number of tasks, is equal to (2)U, (twice) the pipeline length. Bracketed
cases apply when the hardware can overlap communications and calculations.

Now considering the timestep 7, it is clear that this is given by the max-
imum of all the times taken by each stage in the pipeline. This time may
or may not include communications time depending on the characteristics of
the underlying hardware on to which the the pipeline is mapped.

Next considering the spectral method, a flowchart for one iteration is
given in figure 2. This flowchart is at the level of the different units within the
spectral transformation. This flowchart can, at least conceptually, be turned
into a pipeline by turning figure 2 on its side and choosing the transformation
of the different Gaussian latitudes to be tasks. Figure 3 shows this and the
computational complexity of each stage in this pipeline.

In order that the each stage be balanced, as the timestep is given by
the slowest part within the pipeline, the number of processors in any stage
should be proportional to the computational complexity. Table 1 shows the
constraints that are required on the number of processors at each stage.

v,

3 The Fast Fourier Transform

This section will detail the unit of the pipeline that carries out the fast
Fourier transform (or FFT ) component of the spectral transform. This
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Figure 2: Flowchart of spectral method
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Figure 3: Pipeline and Computational complexity for spectral method
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unit is itself broken down into a pipeline though there are only two types
of units within this sub-pipeline. The numerical details of the FFT are well
known (Press et al, 1986). The important equations will be repeated here as
necessary.

As will be later shown this part of the algorithm is the bottle neck in
the entire problem. The FFT requires very few operations per stage of the
transform and thus if the communications speed, relative to the computations
speed of the processor, are slow then this approach may not be cost effective
and a smaller number of processors and/or a different decomposition strategy
should be used.

The important parts of the FFT, in terms of it’s implementation on a
massively parallel computer, are the recurrence relationship which demands
a particular kind of communications pattern and the fact that a binary rep-
resentation of the harmonics that starts ordered in one space will be bit
reversed in the other. If, as in the Reading model, no local communications
are required in either gridpoint space or spectral space then it is not neces-
sary to carry out a bit-reversal or reordering process. For future reference the
bit reversing operator for A bits will be denoted by * i.e BT is the number
formed by reversing the the bits of a binary representation, length A, of M.
M must, of course, satisfy the constraints M > 0 and M < 2?1 IfMis
equal to z;\gol m;2* then s Z?‘;ol m;_(i_’_l) with m; =0 or 1.

The recurrence relationship for the FFT are;

PR = P+ P O e 21y, jefo,..., 21
(3)

=F‘?(') §,+1F"+=" s A {0,...,2-1}, je{o,...,27'-1}
(4)
For the spectral method the inverse transformation is carried out first
followed by the forward transformation. At present no local horizontal com-
munications are required in grid point space. The use of semi-Lagrangian
methods to compute the advection step in grid point space would change
this (Ritchie, 1987). This more complex case is not considered further.
The method used to compute the FFT is to form a pipeline of width N
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(N is an integer power of 2) and length log, N + K, K is a constant number
of processors. The value of which depends on the size of “internal” FFT.
Details are discussed later. The width is the number of processors which
will act on one Gaussian latitude. Each stage of the pipeline will compute
the recurrence relationships using which ever one of equs 3, 4 is appropriate.
The number of points on a processor, O with O = 2°,is M/N (M being the
total number of points for the fourier transform with M = 29 q>p)

The mapping of the —F;Fl to the processors is now considered. This takes
the form of a mapping, dependant on 1, from the 7, k indices to a single index
j. The processor identifier is given by j/O (integer division) with labels for
the processors reading left to right.

The following expression satisfies various requirements.

il k) = 27K 44 (5)
]
Values of k are given by [j/2q—l] and 1 is given by j mod 277! These are
obvious from the restrictions on the domains of 7 and j.
This mapping strategy leads to the following communications pattern for

equations 3 and 4 respectively.

G+ (6)
(G,7+270) ot (7)

When g — (I + 1) > p communications between processors are required.
The natural, and well known (Hockney and Jesshope, 1988), topology that
has this required communications pattern is shown in figure 4.

When no communications are required between processors then an “in-
ternal” FFT can be done. This “internal” FFT is a purely serial operation
and thus all the well known optimisations for serial computers can be used
(Temperton, 1983). These serial parts can, and in order to load balance the
pipeline should, be pipelined.

At this stage it should be recognised that the distributed FFT needs
some extra operations (Fox et al, 1988).Their solution to this inefficiency is
to use the richer topology of the Hypercube to make all stages of the FFT’s

internal and then carry out a shuffle after each stage. The computation of

k () . G, .
Wy +1FZ'I:_+2N is done twice in the distributed FFT, once on each processor
AT
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Figure 4: The processor topology for the fast Fourier transform
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involved in computing the FFT using which ever one of equations 3 and 4 is
relevant. Another inefficiency is that in order to keep the pipeline balanced
it is unlikely that many traditional optimisation methods for the FFT will
increase performance.

The balancing of the fourier pipeline is now considered. All the dis-
tributed parts of the transform take the same time. The time per site is
fixed and cannot be varied. That is max(r,4) for the overlapping case. The
only free parameter available is the number of processors that will compute
the “internal” part of the FFT. This will require (g — p)c operations per site,
¢ is the number of operations per site for one stage. The lengthz, I, of the
“nternal” pipeline in order that the FFT pipeline be balanced is constrained
by;

I < maz(r,4)/c (8)

The number of extra processors is the smallest integer K s.t. K > (g — p)/l.

The previous discussion has only considered one part of the transforma-
tion, the inverse FFT. The forward transformation is also required. The
traditional, serial method, is to explicitly carry out the bit-reversal after the
transformation, do computations with data ordered then do the other FFT
using the same algorithm as the first. Finally the data is again bit-reversed
to return it to an ordered state. The following quote (Press et al, 1986), with
some text emboldened, by the present author, to show emphasis, illustrates
this.

“You can use decimation-in—frequency algorithms (without its bit revers-
ing) to get into the ‘scrambled’ Fourier domain, do your operations there,
and then use an inverse algorithm (without its bit reversing) to get back
to the time domain. While elegant in principle, the procedure does not in
practice save much computation time, since the bit reversals represent
only a small fraction of an FFT’s operations count ...”.

For the case, as is being considered, where the FFT is distributed over the
processors the bit reversal operation will require approximately the same time
as the rest of the Fast Fourier Transform spent on communication and it will
not be possible to overlap this communications work with any calculations.
Thus the time taken by the algorithm is significantly increased. For the model

*length here means the number of stages in the pipeline on one processor
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being considered it is not necessary to carry out the bit reversal operation as
there are no communications between adjacent points in grid point space.

The forward part of the transform (or inverse if we start ordered in grid-
point space) is very similar to the inverse transform. The main difference is
that the transform starts bit reversed and in this case a labeling ;' is used.
In this case k and 7 are given by the following expressions;

k= (7" mod?) R 9)
<l
, |

1 =

The startup time, per point on each processor, for the Fourier transform
stage of the pipeline is:

Syrr = (44 7)logy N + Kr + (g — p)e (10)

while the time, per point on each processor, between results at the output
end of the pipe is:

TPFT = maX(T7 4:) (11)

Eqﬁation 11 assumes that the constraint given by equation 8 is satisfied.

4 Legendre Transform

This section will detail how the Legendre Transformation is implemented,
as well as the Gaussian integration (which is similar to the the Legendre
transform). In order to keep the pipeline balanced both parts will require
O(T?) processors. : : ‘
Schematically the Legendre transformation can be described as;

upper

v‘G = Z PGmmm A . (12)

m=lower

G is the index for Gaussian latitude, Pg,, is the value of Legendre poly-
nomial at m and Gaussian latitude G while z,, is the value of the variable
at wavenumber m.
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Trunk

Nodes

Leaves

Figure 5: Processor topology for legendre transform

The strategy used is based on the fact that addition is associative ®. This
sum can be decomposed into several partial sums and the total sum can
then be formed by adding the partial sums together. Note that in order to
guarantee repeatability the partial sums should always be done in the same
deterministic order.

The natural topology for this is to form a tree as shown in figure 5. The
leaf processors should compute Pg,,z,, Vm within their domain and then
compute the partial sum on their processor. Having formed the partial sums
these should be passed up to the node processors “above” them in the tree.
Each node processor would receive up to v — 1 partial sums.

These node processors would then sum these partial sums and pass the
computed sums “up” the tree. The final sum will appear at the trunk pro-
cessor.

At this stage the reader should be aware that only the leaf processors
are doing any useful work. In this context useful means only that work that
would be done on a serial computer. All the other processors are carrying
out extra computational work as a result of using a parallel computer. The
efficiency of this stage of the algorithm will now be computed.

Assume that the tree has dj levels and each level is completely filled.
That is a level n will have (v — 1)" processors in it. Then the number of leaf
processors is simply (v — l)dL while the number of total processors required
is Z:ﬁ: o(v — 1)". The efficiency, defined as the number of processors doing

3For the limited precision arithmetic done on a computer this is not strictly true.
However a good algorithm should not be sensitive to the order of addition
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useful work over the number of processors is then —z———l— which is,

an—l'o( )
v —2
d
el P o %
This expression drops, exponentially fast as the number of levels increase,
to H Assuming that the tree is always completely ﬁlled then the total
number of processors P is given by:

(13)

s 1)%1 (14)

The eﬂiciency,‘in terms of P, after some easy algebraic manipulation is;

P = (v—1y =2

v—-2+ 1
v—1 (1—-wv)P

Next, having constructed the pipeline for the Legendre transform, its
balance needs to be considered. Here the constraint is that the time taken by
the leaf processors should be the same as that taken by the node processors.
The number of computations that a leaf processor does is 2n — 1. For each
site one multiplication and then n — 1 adds to compute the sum, n being the
sub-domain size. Each node processor will do v — 2 operations, an add on
each input. Giving the total time for each type of process;

(P) = (15)

Tiear = max(2n — 1,7) (16)
Toode = max(v—2,7)

(17)

The only parameter that can be controlled, once a choice of hardware
has been made, is the computational load on the leaf processors. For hard-
ware which can overlap communications and calculations then, in terms of
reducing the wall clock time, nothing is gained by reducing 2n — 1 below r
or below v — 2. Formally then;

2n — 1 > max(r,v — 2) ‘ (18)

It will not be possible to indefinitely increase the number of processors
on a fixed problem size. At some point there will be no gain in wall clock
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N Smaa:

r=8, v=4 | r=4, v=4 | r=4, v=8
21 4 8 6
63 14 25 18
213 43 85 60

Table 2: Maximum Speedup ,
Maximum speedup for various values of v (processor valency) and r (com-
munjcations speed)

time. This value of P called P, is given by the following equation. Note
that this point may not be the maximum speedup.

P 2N
~ max(v—1,7+1)

max

(19)

N is the number of processors. Above this point increasing the number
of processors will gain nothing and will probably cause a performance loss.
The speedup is simply given by eP and will now be computed.

S = e(P)P (20)
g v —2) 1
(v—-1) 1—w
Take the derivative w.r.t. P of equation 20 to obtain.
05 v-—2
- = 21
OP wv-—1 (21)

This derivative is always positive and so maximum speedup will be ob-
tained when P equals P_,,.

Table 2 shows the maximum speedup that can be obtained for various
different parameter values.

This discussion has referred to the maximum speedup when the pipeline is
running at full efficiency. That is the effect of start up time has been ignored.
These calculated speedups can, of course, only be reached asymptotically as
the number of tasks tend to infinity. For the hardware being considered the
startup time is given by the following expression;
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Siree = 2n — 1) + dg(r + (v - 2)) (22)

or expressed in terms of the number of processors P;

Siree = 2(n — 1) + (log, 4 [P(v — 2) + (v — 1)])(r + v - 2) (23)

As can be seen from this expression the startup time increases logarith-
mically with the number of processors.

Finally in this section the Gaussian integration is considered. This is
schematically written as;

Vp = Bom= P X (24)

0

It is clear from this expression that the computation of any V,, is indepen-
dent of the rest. Therefore decompose m over the processors and compute
V., = LVm on that processor. As there are no constraints on how this dis-
tribution is carried it it would be sensible to use the same m distribution
as was used to compute the Legendre transformation. The problem then is
how to efficiently replicate the X over the processors. The best way is to
build another processor tree just like in figure 5 all though the description
of processes’s on the various processors of the tree will be different from the
Legendre tree.

The X will enter at the top of the tree and a copy of it will be sent to
each processor below it in the tree. Each node will also have this behaviour.
Each of the leaf processors will then increment it’s contribution to V,, for the
values of m which lie within it’s domain.

Most of the earlier observations on processor efficiency and utilization
are still true. The only differences are the number of operations that the
leaf processors will do has increased from 2n — 1 to 2n. Therefore a similar
equation to 18 is obtained for a constraint on n.

2n>r (25)
5 Joining Everything Together

This section will show how the remaining parts of the method are done. It
will also explain how all the functional units are joined together and then
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derive some expressions for the speedup of the algorithm (although some
simplifying assumptions will be made). Some details are implementation
dependant and so will be outlined in the following section.

The two remaining parts of the method, which are both model dependant,
are the non-linear/gridpoint computations * and the time update. This sec-
ond part will be considered at the end of this section after the piplines’
efficiency has been computed.

5.1 The Pipeline

The pipeline is build by starting with the FFT topology or butterfly topology
which was shown in figure 4, whose width will be determined by the normal
demands for the number of gridpoints in a longitudinal circle divided by the
number of points per processor. At the base of the butterfly network each
processor has attached a Legendre tree. It is not required that all the trees
have the same number of processors. Connected to the top of the butterfly
will be a number of processors equal to the width of the butterfly. These
processors will compute the non-linear terms in grid point space.

The computation of the non-linear terms may cause considerable imbal-
ance in the pipeline and thus a large loss of performance. The computations
per site for the non-linear unit is given by G. The exact details of G are de-
pendant on the exact specification of the model and probably the processor
hardware. For the Reading model the imbalance over the other parts of the
model is about 4. In order to avoid this imbalance then for each processor
at the top of the butterfly another tree should be build, It’s depth is given
by dg. The number of leaf processors, (v — 1)dG, should be equal or less than
G /7. For future reference this is denoted by G'. There should be at least one
point for each one of the leaf processors.

Figure 6 illustrates this entire forward spectral transformation (spectral
space to gridpoint space)

An alternative approach would be to pipeline the computation of the
non-linear terms. However analysis of the algebraic decomposition required
here is difficult, very model and configuration specific. Thus balancing the
pipeline would also be extremely difficult and very specific. If the grid point

*In a more complicated and realistic model these would include the parameterisation
schemes.
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computations were sufficiently time consuming then this approach would
have to be used.

The inverse transformation (gridpoint to spectral) requires a fast Fourier
transformation followed by a Gaussian integration. Previous sections (3,
4) have described the required topologies for these functional units. The
network required is identical to that of figure 6 except for three things

1. The communications happen in the opposite direction (from top down
rather than bottom up)

2. No computation of the non-linear terms is required, though if a tree is
build for these terms that another will be needed to collect the data
together.

3. There will also be some differences as a real FFT is used. These will
not be further discussed in this paper

The reader should be aware that if the underlying hardware supports
efficient bi-directional communications and rapid process swapping then some
efficiency benefits will be gained if the total topology build is similar to
figure 6. The tree processes will, in this case, run both a Legendre process
and a Gaussian process. The butterfly processors will run both a forward
and inverse FFT process. The node processors should, of course have both
the copying and summing processes running. Doing this will balance out
the pipeline as different numbers of variables could be transformed in the
forward and inverse parts of the pipeline. The startup time will he halved.
For models with a small truncation (T21, T42) this may be helpful. However
only half the number of processors can be used in this case.

To complete the sub-section some calculations will be done to compute
the efficiency of the pipeline. First the vector efficiency V, of the pipeline
will be computed. Table 3 summarizes the startup times and output times.

The reader should be aware that there are two contributions to efficiency.
First the vector efficiency V, defined in section 2 and then the utilization of
each processor within the pipe. The utilization is the fraction of the time
that the processor is doing useful work®. This utilization factor will stay
constant as the problem scales (so long as the work per processor remains

5In this context useful means only that work that would be done on a serial computer
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Table 3: Pipeline Times

Unit S T
Legendre 2n—1+dg(r+v—2) max(r,v — 2,2n — 1)
Gaussian 2n+dy(r+v—2) max(r,v — 2,2n)

FFT (4+7)log, N+ Kr + (¢ — p)c max(4,r)

Non-lin Products G/(v-1)% + rd, max(G/(v ~ 1)%,7)

constant). The factor which affects scaled speedup is the vector efficiency
and this is controlled by the startup time.

Fourier Transform

- "~ ~ G
§=4dn - 1+2dL(r+'u—2l+(4+r)log2N+Kr+(q—p)c—|— (v—:_——l—)gq—+rdg
Legendre/Gaussian l‘Eon—]ine:u' term;
(26)

From equation 14 djy, is alog, P;, +b. Pp is the number of processors
involved in computing the Legendre transform while a and b are constants.
The contributions from the internal part of the FFT are also constant as is
the contribution from the non-linear computations. Equation 26 can then be
rewritten as;

S = Alog, P, + B (27)

The number of tasks is proportional to the truncation number, while
from table 1 P is proportional to the square of the truncation. Therefore
the number of tasks is given by C'+/Pf, C being another constant.

The vector efficiency is thus;

V _ CT'\/]L
®  Alog, P, + B+ Ct/P,

For /Py, sufficiently large the number of tasks will dominate the startup
time and V, will tend to 1. In this limit the utilization will be =2 and the
asymptotic efficiency will be 2=2. A cautionary note should be sounded, it
may well turn out that sufficiently large truncation will be so large that the

Spectral method is uncompetitive against a grid point method.

(28)
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5.2 Timestep Increments

The final part of this section will consider the computation of the timestep
increment. These, like the gridpoint computations, are highly model depen-
dant. R

The computation of the field values for a new timestep can be computed
in either the Legendre processors or the Gaussian processors. The choice
of which is preferred is dependant on the size of the data in the forward or
inverse transforms. If the dataset is smaller during the inverse transform
compared to the forward transformation then these computations should be
done on the Legendre processors as communications cost is minimized. The
opposite is true if the dataset is larger during the inverse transformation. The
data is allready partitioned across the processors and so no extra data move-
ment is required. Some models (Bourke, 1974) require nearest neighbour
communications in which case leaf processors in neighbouring trees and/or
the same tree may need connecting. Figure 7 shows this. The Reading model
does not require any such connections.

Define the time taken by the increment, per discretised point in spectral
space as 7. Let 7' be the 7 /7 . T' is the time for the increment scaled by the
characteristic time for the pipeline. S’ is the scaled startup time and is de-
fined similarly. The efficiency of the entire algorithm (pipeline plus timestep
increment) will now be computed. Rather than computing the increment on
just the Gaussian/Legendre processors an extra set of processors could be
added in order to speed up the timestep computations. Assume that there
are P}, processors involved in computing the Legendre or Gaussian transform
and that an extra BP; processors are added to compute the time step in-
crement (8 € [0,...,00]). These processors take no part in computing the
Legendre or Gaussian transforms®. It can be shown that the efficiency of an
entire algorithm is given by the time weighted efficiencies of all the units.

That is;

e — 2 6T

2T

In this case there are two units. ¢ refer to the timestep increment while p
refer to the pipeline. P, is the total number of processors in the pipeline. In
order to simplify the analysis the effects of communications times are ignored.

(29)

5There would be no gain if they did as the pipe would then be unbalanced
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Figure 7: Possible communications between and within trees
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Pr(1+B)

“ = Fipn,
T'
T, =
C T (1+8)
V;Pp'
e, =
i P, + B8P,
T, = N/V,
1 ’T'PL—{—NPp

(30)

TS B TAP, T(1+p)+ NV,

It can be shown that g% < 0 and therefore the efficiency will decrease with

the maximum efficiency occurring when § = 0. This efficiency is,
1 T'PL+ NP,
. Lt 31
6(0) Pp TI+ N/V; ( )
When N > T', P, ~ P, then e(0) ~ V,. The efficiency in this case is

dominated by that of the pipeline. The speedup is given by the efficiency
multiplied by the number of processors, which gives,

T'P,+ NP,
T'/(1+8)+ N/V,

It can be shown that g§ > 0 and therefore the maximum speedup will
occur at 8 = oo. This is not particularly realistic and will be interpreted as

B>T.

(32)

7

SZEPZE(PP+IBPL):

T'P,+ NP,
)= ————— ™ 3
Define the relative speedup gain as AS(f3) given by;
_ S5(8) - 5(0)
AS(B) = 509 (34)
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This relative speedup gain measures the speedup gain relative to using
no extra processors by using B P} extra processors to compute the timestep
increment. It is, -

T ++N/V,
A58 =TT m N,

The maximum gain is AS,,, and, as was allready shown, occurs at 8 =
00. ’

(35)

' TV,
AS(o0) = Ne = ASax (36)
In terms of AS,,,, AS(B) can be rewritten as,
BASmax
AS(B) = 37
)= RSt (L1 ) il

A graph of this is shown in figure 8 and is an example of Amdahl law
behaviour. When N is small, relative to 7', then quite large speedups may
be obtained. This is because the computation of the timestep increment
dominates the time taken by the Algorithm, significantly reducing the time
taken by the timestep will significantly reduce the time taken by the entire
Algorithm. In the case when N is large and V, =~ 1 then the relative gain
from increasing A is very small as the time taken for the entire Algorithm is
dominated by the time taken by the pipeline. k

Finally in this sub-section the value of G that gives half the maximum
speedup will be computed.

1
AS(IB) = EASmax
ﬂASmax
= 1AS . =
2 ASpax + (1 +8)
= B = ASqax + 1 (38)

This Algorithm is unusual in that its scaled speedup is super-linear, i.e.

S(P+1)> ﬁP—;_.','H.S'(P). There are three reasons for this:

1. The number of tasks linearly with the system size while the startup
time grows logarithmically. Therefore V, will increase with increasing
processor number.
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2. The utilization factor will be dominated by the leaf processors rather
than the inefficient node and FFT processors.

3. The relative effect of the computation of the timestep increment on the
speedup will fall as the number of processors increase.

The efficiency of this algorithm when using small number of processors
is very poor, however if the hardware can support efficient multi-tasking
then a possible solution may be possible. The partition into processes has
divided the computations load equally among many processes — each process
will require the same computational effort. The efficiency for small numbers
of processors could be increased by mapping several processes to the same
processor, this will reduce the startup time of the pipe. Further if the number
of processors is the same as the number of Legendre leaf processes — then the
inefficiency referred to in point 3 will not be present. The communications
will be less efficient though for small numbers of processors this effect will be
small.

6 Implementation Details

This section will detail a possible implementation of the Reading Model on
the Transputer machine at Edinburgh.The machine at Edinburgh is build
from 400 T800 transputers (Bowler et al, 1987) and has been in existence
since 1987(Bowler et al, 1989). The aim of the implementation is to convert
the existing FORTRAN code. This is done for three reasons:

1. The process of converting this relatively simple model may provide
some guidance to the effort in converting a larger and more complex
model.

2. It is hoped that this conversion could be quickly done.

3. Verification of each stage is possible by comparing the partially con-
verted model against the serial model.

The communications between processes was provided by a set of Fortran
library routines supplied by Meiko called CS-Tools(Mei). Meiko also provided
a set of routines to build a loader/configurer to allow mapping of processes
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to processors. Separation of the two allows development of the separate
processes to occur on a workstation. Much of what follows is specific to
the Meiko system and the Reading Model - however the author hopes that
this will encourage others to convert their spectral models and provide some
aid in the process. The author estimates that approximately 6 months are
required to convert the Reading Model.

The general approach to convert the model is, for each one of the com-
ponent sub-routines, a “wrapper” module would be written which should
first carry out data initialisation, then repeatedly carry out the following
tasks: communications from the previous module in the pipeline; if neces-
sary process the input data into a format suitable for the sub-routine; call
the sub-routine; again if necessary do some processing on the data in order
to put it in a form suitable for output; then transfer data to the next module
in the pipeline. :

Considering the grid-point computation, there are only two modifications
that require to be done; the maximum length of the longitudinal sub-strip
on the processor will be different from the serial model and will need to
be computed by the loader program. The actual size of this strip, if the
tree for the gird-point processes is build, may vary from process to process
and require initialisation from the initialisation module. Apart from these
changes the initial grid point subroutine may be used.

Due to the need to avoid bit-reversal the FFT required rewriting. Even
if not avoiding bit-reversal was an option, the subroutine would still have
needed extensive modifications as communications occur frequently and can-
not be isolated outside the serial subroutine.

The next modules that are considered are the Legendre and Gaussian
transforms. In both cases the serial sub-routines have a triangular data-
structure. This large triangle can be completely covered by a set of smaller
triangles, all these triangles are the same size as that used by a serial T(2"-1)
model. For each of these triangles again the original subroutine can be used.
This restriction on the size is to allow a radix 2 FFT to be used. Some points
on some sub-triangles will lie outside the original triangle. At these points the
value of the Legendre polynomials are set to zero in order these points make
no contribution to the transform. Figure 9 shows this mapping. Some of the
triangles are upside down and reversed, in this case some data-manipulation
is required to convert the sub-triangles into the required form for the serial
subroutines. After the sub-routine has processed the data some more data-
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Figure 9: T21 model partitioned into 9 T'7 modules
This figure shows how a t21 model could be split over 9 processors. The
circles represent points where the Legendre polynomials are set to zero.

manipulation is reqmred the longitudinal rows will requlre reversing for the
upside, reversed triangles in order to compute the FFT.

7 Concluding Remarks

As of June 1991 implementation of the algorithm is almost complete, the
various processes are written and produce similar results to the serial version
of the model. The only differences are due to the different order of addition
on the parallel version of the model compared: to the serial version. There
are 2 questions that require answering before an implementation on several
hundreds or thousands or processors could succeed.

o On these large parallel machines can an arbitrary topology be build
and, in particular, can the effects of “long” wires be neglected.

e The model investigated is a pure dynamics model — the effects of
“physics” have been ignored. Exactly how to implement these schemes
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in the context of this algorithm is not clear at present.
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