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1. INTRODUCTION

There are several operational numerical weather prediction
models being used at the National Meteorological Center (NMC).
A T80 global, spectral, medium-range forecast (MRF) model
(Kanamitsu, 1989) is run twice-a-day (to 10 days at 00Z), and
a regional, grid-point, short-range nested grid model (NGM)
(Hoke et al., 1989) is run twice-a-day (to 2 days). An
experimental regional (ETA) model (Mesinger, 1988; Janjic,

1990) is also being run daily.

Currently these models parameterize radiation and cloud
processes differently. The global MRF and the regional ETA
models use a radiation parameterization developed at GFDL by
Fels and Schwarzkopf (1975, 1991), while the regional NGM uses
one developed by Harshvardhan et al. (1987). The cloud
parameterizations are diagnostic schemes based on the work of
Slingo (1987); and, while the MRF model employs both
stratiform and convection cloud-types (Campana and Caplan,
1989), the NGM diagnoses only the stratiform type (Tuccillo,
1988) .

We plan to unify the radiation and cloud parameterizations in
future NMC operational models as was done with the
experimental ETA model radiation. This paper will focus on
the MRF model's parameterizations, since they are becoming NMC
standards. The next section discusses recent changes to the
MRF longwave radiation scheme. Section 3 describes
adjustments to the MRF cloud parameterization in order to
diagnose marine stratus. The final section discusses NMC's

planned use of cloud databases to objectively tune its cloud
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parameterization. Since a number of people are responsible
for work described in each section, their names will be

acknowledged in each section title.

2. RADIATION PARAMETERIZATION
(S. Fels, D. Schwarzkopf, GFDL; K. Campana, B. Katz, NMC)

The radiation parameterization used in the MRF model has been
developed at GFDL (Table 1), and during many years of
cooperative effort, it has evolved to its current state. The
shortwave (SW) scheme has changed very little over the years;
however, recent activity at GFDL will provide NMC with both
improved treatment of clouds and added accuracy (increase in
the number of spectral intervals) in a future parameterization
(D. Schwarzkopf, personal communication). The longwave (LW)
parameterization has undergone a number of changes over the
years, many of which have emanated from Fels and Schwarzkopf's
participation in the Intercomparison of Radiation Codes in
Climate Models (ICRCCM).

In the MRF model, radiation calculations are made twice per
model-day. The SW processes are calculated using a latitude
daylight-mean cosine solar zenith angle, and the diurnal cycle
is approximated by a cosine zenith angle weighting at each
model computation-point, - at each model time-step
(Documentation, 1988). The infrequent radiation calculations
were made originally in order to save computational time, but
work at NMC (Katz) and GFDL (Schwarzkopf) have made the code
quite efficient (time of 103 sec per 18-layer column on the
Cyber 205). It is anticipated that more frequent radiation

calculations will become operational by Spring 1991.

A new MRF IW parameterization (Schwarzkopf and Fels, 1991),
developed at GFDL using recent laboratory data and ICRCCM
intercomparisons, became operational in the global model
during February 1990. In brief, Schwarzkopf and Fels treat
the H,0 lines more accurately, by reducing widths of the

spectral bands, extend the effects of the water vapor
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Table 1

(GFDL) Radiation Parameterization in NMC's MRF Model

Longwave
}50

H,0 continuum

co,

CLOUDS

Shortwave
}50

co
03
CLOUDS

2

SFC ALBEDO

'Exact' approach for CTS term.

- Emissivity approach for exchange term
(Fels and Schwarzkopf, 1975;
Schwarzkopf and Fels, 1990).

- Roberts etal 1976.

precalculated transmission functions,
table look-up with 2nd order
correction in temperature
(Schwarzkopf and Fels, 1985).

one interval random band model (Rodgers,

1968) .

- random overlap.

emissivity= 1., 1., .3-.6 for L, M, H
cloud.

- 9 spectral intervals (Lacis and Hansen,
1974) .
Sasamori etal (1972).

- Lacis and Hansen, 1974.

random overlap.

bulk reflectivity .69, .48, .21 for L,
M, H cloud.

bulk absorptivity .035, .02, .005 for L,
M, H cloud (not in O; band).

multiple reflections computed.

background over land from Matthews,
1985.

zenith angle dependent over water
(Payne, 1972).
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continuum from 18y to 25u, and replace the previous l-band
H,0/CO, overlap with 2 narrower bands. The clear-sky results
are more accurate, relative to line-by~-line (LBL)
computations, than the older scheme (Fig. 1 from Schwarzkopf
and Fels, 1991).

The impact of the new scheme on the radiative heating rates is
to reduce LW cooling both in tropical/subtropical regions
below 800 mb and, at all latitudes, in the middle and upper
troposphere above 400 mb, while increasing IW cooling
elsewhere. These differences are on the order of 10% of the
1W heating rates, themselves, and are several tenths of deg
K/day in zonal means (Fig. 2). Changes to top-of-the-
atmosphere (TOA), outgoing, LW flux are small (1-2 W/m%.

Changes to downward LW surface flux are somewhat larger (5-10
W/m?) , where the new parameterization produces increased flux

in clear-sky regions and decreased flux in low-cloud areas.

The largest impact on the MRF model forecasts is to the zonal
mean atmosphere, primarily temperature (Campana, 1990).
Differences in zonal mean temperatures (Fig. 3) are consistent
with changes to the radiative heating rates. They result in
slightly lower (1-2 m) 500 mb heights, which is an increase in
model error, and slight increases in 200 mb heights, as well
as warmer (.25° - .5°K in 5 days) lowest model layer
temperatures over subtropical/tropical oceans, both of which
are reductions in model error. Effects of the slight changes
to the atmospheric stability implied in Fig. 3 are difficult

to find in precipitation forecasts.

Synoptic forecasts using either IW parameterization are
virtually identical out to 5 days. Hemispheric 500 mb height
anomaly correlations between forecasts, rather than the normal
forecast- verification correlation, show values of .99 at 5
days for a number of forecasts. Even at day 10 for one of the
cases, the correlations are .97 and .96 in northern and
southern hemispheres respectively. The small impact 1is

insignificant relative to forecast skill at these time ranges.
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a. MRF day-5 forecast with zonal mean cloud.
b. MRF day-5 forecast with model-diagnosed cloud. -
C. Observed (valid at forecast verifying times).
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3. CLOUD PARAMETERIZATION
(K. Campana, NMC, A. Kumar, A. Leetmaa, NMC-CAC)

Clouds exert a strong, often dominant, effect on radiation
processes. Their horizontal variations create gradients of
atmospheric radiative heating rates and surface fluxes which
may influence forecasts of synoptic features. These cloud-
generated gradients appear to assist maintenance of baroclinic
wave strength via potential-to-kinetic engery conversion
processes (Slingo and Ritter, 1985), which, in turn, result in
better 5-day anomaly-correlation scores (Slingo, 1987). At
NMC, incorporation of more realistic clouds, relative to zonal
mean climatological clouds, has produced improved zonal mean
transient eddy kinetic energy (Fig. 4, from G. White, NMC).
Improvements to the 5-day forecast are found primarily in the
zonal mean atmosphere, in surface and TOA radiative fluxes,
and in the cloud field itself. Reduction in the model
systematic error contributes to overall model’improvement
through better initial analyses from the global data
assimilation system (Kalnay et al. 1990). Improvements to
regional model forecasts due to changes in the c¢loud
parameterization are also found in the near-surface sensible

weather (K. Mitchell, personal communication).

Unification of all cloud-related processes through use of a
liquid water model variable has begun (P. Caplan, NMC,
personal communication), however, its implementation awaits
further experimentation. Currently, model <c¢louds are
diagnosed from forecast variables in a manner similar to
Slingo (1987), and they interact with the forecast model only
through radiative effects on atmospheric temperature and

surface fluxes.

Stratiform clouds (Fig. 5) are computed from model relative
humidity (RH) and vertical motion, and may be one of three
types (high, H, middle, M, low, L). Cloud fraction, C., is
computed in all model layers, Xk, using Slingo's (1980)

quadratic relation
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Cy=0 RH, < RH,

(1)

RH,-RH_\?
Cp=| ———=5 RH, 2 RH,

1-RH,

where the critical relative humidity, RH_, is set to 0.8 for

et
all cloud domains. Within each H, M, or L domain, the model-
layer containing the maximum value of C, is designated as the
cloud top. Since radiative heating rates currently are held
fixed for 12 hours, strong LW cloud-top cooling in thin model
layers near the earth's surface can be deterimental to the
forecast. Thus restrictions are imposed for low cloud-types,
which reduce the magnitude of the LW cooling. The diagnosed
cloud is required to be at least 90 mb thick and its top is
placed above the lowest 10% of the atmosphere. In these
multi-layer clouds, net LW flux within the cloud is forced to
vary linearly between cloud top and bottom values; thus

smoothing the heating rate profile within the cloud layers.

To offset a tendency to diagnose excessive low stratiform
cloud, a cloud reduction factor based on vertical velocity is
used. The factor varies between 0 and 1 as vertical velocity
varies between .0005 mb/sec and -0.0005 mb/sec. Thus strong
descent will cause dissipation of a model-diagnosed cloud.
High stratiform cloud is not permitted in the top 3 model
layers (approx. 150 mb) or above the model tropopause. The
latter is estimated as the model-layer containing a first
occurrence of ae/ap < 0.25 deg/mb (6 is potential temperature,

p is pressure).

Deep cumulus clouds are diagnosed identically to Slingo
(1987), wherever the forecast convective precipitation rate,
P, exceeds 0.14 mm/day. Convective coverage, CC, is obtained
from Slingo's (1987) relation, CC = a + b 1ln P, where CC is

allowed to vary between 0 and 0.8. In regions where both
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stratiform and convective clouds are diagnosed to co-exist,
the convective type takes precedence. The cloud is modeled by

vertically stacking 3 stratiform clouds - where a single layer

of high cirrus (¢, = .25CC), supported by a multi-layer
convective tower (C, = .25CC), is sitting on low cumulus (C,
= ,75CC). High cloud is not permitted in the upper 2 model

layers. If the convection is deep enough (extending above 400
mb) and strong enough (P>1.6mm/day), C, becomes an anvil and
is recomputed using Slingo's linear relation in CC (here C,

can be as large as 1.0).

One of the known deficiencies of the present cloud
parameterization is too little fractional coverage relative to
observed data (Figs. 6, 7). Typical global mean total cloud
fractions of 0.4 are significantly less than values of 0.5-0.6
in Nimbus 7 and ISCCP climatologies. The next section
describes an objective technique which should alleviate this
general underestimate of cloudiness. A second deficiency is
lack of marine stratus off the west coasts of continents, in
regions where it is expected climatologically. This has
proved troublesome for extended coupled ocean-atmosphere model
experiments. Differences between Oberhuber (1988) April
climatology of net-SW surface flux and model monthly mean data
for April 1989 (Fig. 8) show serious model overestimates off
the North and South American coasts. A 'rule-of-thumb' is
that a monthly mean anomaly of * X W/m? in surface flux will
result in a sea-surface temperature change of * 1°K per month
in a mixed ocean layer of X meters in depth (R. Reynolds, NMC-

CAC, personal communication).

Since the present stratiform cloud parameterization does not
search the lowest 10% of the atmosphere for clouds (see Fig.
5), it will miss the low-level marine stratus layer. However
in regions that are climatologically favorable for marine
stratus, the MRF model does show characteristics of these
clouds in its lower atmosphere; that is, a well-mixed layer
topped by dry subsiding air above a low-level inversion (Fig.

9). The inversion height rises in elevation away from the
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MRF values from monthly mean of the (12-36) hour
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coast, which is supported by climatology (Heck et. al., 1990).
Fig. 10 shows ae/ap computed between model layers for a
forecast mean-atmosphere, and the largest values (hatched) are
found in higher layers of the model atmosphere away from the

coasts.

Beneath the model inversion there is ample moisture for the
stratiform cloud calculation in Egn 1. Below 850 mb, zonal
mean relative humidity 1is generally greater than 70% and
remains so during the forecast (Fig. 11). Higher values of
relative humidity tend to be found in lower model layers under
these inversion-capped regions than in other oceanic areas.
Thus, it is possible to use the characteristics of marine
stratus to determine likely regions for these clouds, and then
use the operational cloud scheme to search for C,, (Egn 1) in
the lowest 10% of the atmosphere (excluding the bottommost
layer). That is, look for regions:

1. over the ocean, with

2. ae/ap < (%/w)mn'in the lowest 10% of the atmosphere,

3. which are capped by dry layers above the inversion
base (RH < RH ). The value of (%/aﬁcmrz_o'05 °K/mb, has been
obtained by inspecting mean model-layer data in T40 and T80
experiments. Attempts to use instantaneous vertical velocity
to define regions of subsidence above the low-level inversion
were unsuccessful, as both upward and downward motions were

found.

There are two other aspects of the marine stratus formulation
to be noted. The use of a vertical velocity filter for the
low cloud makes an assumption that the clouds are frontal in
nature. Since this 1is not the case here, the filter is
removed for marine stratus calculations. Also, the cloud
scheme does not guarantee that the layer of maximum C, will
occur at the inversion base; therefore, these low-level clouds
are thickened upward through the lowest 10% of the model

atmosphere in adjacent model layers where C_ > 0.
A comparison of low-cloud fraction for a 12-day T80 MRF model
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forecast using either the operational (Fig. 12a) or the new
cloud parameterization (Fig. 12b), shows that the latter
depicts marine stratus in climatologically expected regions
(Heck et al., 1990). Zonal mean cross-sections of cloud
fraction (Fig. 13) show the similarity of the two schemes,
except in latitudes where marine stratus has formed (20°=40°
latitude). Larger values of tropical high cloud in the new
marine stratus test are related to a slight increase in
convection. Comparison of zonal mean total cloud for the two
experiments (a mean of all forecast days) with Nimbus-7 June
climatology shows the marine stratus test to be closer to

climatology (Fig. 14).

There is a corresponding decrease in downward SW surface flux
in the marine stratus regions, of order 30-40 W/m? in the
zonal mean. On a regional scale the decrease is greater than
100 W/m? (Fig. 15), which is of the same order as the positive
anomaly shown in Fig. 8. Improvements to the net surface
fluxes are evident in a 3% month coupled ocean-atmosphere
experiment. Figure 16 shows weekly averaged data, estimated
four independent ways, for a region in the tropical Pacific
Ocean. This region lies on the southern boundary of the
model's persistent marine stratus in the northeast Pacific
Ocean. The data from the ocean analysis model is a residual
flux, computed for the case of an unchanging sea surface
temperature (SST) after considering all below-surface oceanic
flux. This residual, by implication, provides a reasonable
estimate of the "observed" surface flux. The data from the
coupled experiment using the new marine stratus formulation is
quite similar to this residual. The large differences
between the uncoupled atmospheric model estimates (the topmost
line in Fig. 16) and the three others reflect both a lack of
marine stratus and an incomplete spin-up of the hydroleogical
cycle in the 12-36 hour forecasts. The use of more realistic
cloud in the atmospheric model contributes to the success of
the 3% month SST forecast, where errors are generally less

than 1°K over large areas of the tropical Pacific.
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There is also a tendency for the atmospheric temperature
profiles to show sharper inversions in marine stratus regions
for the new cloud test (Fig. 17). This is a result of
persistent IW radiative cloud-top cooling. However, there
does not to appear to be a general lowering of the inversion

level with time.

The impact of incorporating marine stratus into the MRF model
is minimal in the synoptic forecast. Anomaly correlations
between the two forecasts at 500 mb are quite high (.99 at day
7; .90 at day 12) and systematic effects on precipitation are
difficult to find. This is not unexpected since the new
clouds are confined to ocean regions where surface
temperatures are held fixed. There are however larger surface
sensible and latent heat fluxes (Fig. 18) in the marine
stratus regions, where air-sea temperature differences have
increased (the dashed lines in Fig. 17 show a colder lower

atmosphere) .

The marine stratus changes to the cloud parameterization are
made within the context of the current operational scheme.
They will be part of a set of MRF model updates that are
planned for Winter 1990/91. In essence, a 4™ stratiform
cloud-type has been defined. 1In the future, the techniques
that are used to depict this type of boundary layer cloud
could be extended to include parameterization of other shallow
clouds whose characteristics might be observed in forecast
model data - e.g. shallow cumulus activity associated with
large sensible heating into cold air outbreaks over warm

water.

4. CIL,OUD DATABASES
(K. Campana, K. Mitchell, NMC; S.K. Yang NMC-CAC)

The underestimate of the present MRF model-diagnosed cloud,
noted earlier (Figs. 6, 7, 14), is directly related to a lack
of fine-tuning of the parameterization. The cloud algorithm

uses a number of tuneable parameters (e.qg. RH_, vertical
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velocity constraint for low cloud), which were given their
current values (RH, = 0.8, vertical velocity less than 0.0005
mb/sec) because the resulting clouds "looked about right".
Obviously that general statement needs refinement. To truly
obtain clouds which "look about right", it is necessary to
objectively tune the cloud parameterization using independent
cloud observations.

There is a tendency for the model-diagnosed clouds to "spin-
up" during the early part of a forecast, simply because they
are reacting to the spin-up of model variables themselves. At
the initial time, the MRF model convective cloud-fraction is
obtained from the 6-hour forecast made during the previous
analysis cycle (implemented Autumn, 1989), while stratiform
clouds are computed from initial data. Area-weighted global
mean déta from T40 and T80 experiments (10 June 1990) show
that the spin-up is generally complete by days 3-4 (Fig. 19).
After that period, zonal mean cloud fraction is relatively
constant. With an objective tuning processes, relevant cloud-

diagnosing parameters could be made a function of time.

Fine-tuning procedures are not only valuable for the cloud
parameterization development phase, but they also will be
useful for adjusting the cloud scheme if there are any
seasonal changes to the observed cloud, or if the forecast-
model system changes -~ e.g. changes to model resolution,
numerics, or physical parameterizations. As an example,
effects of horizontal resolution changes on the cloud scheme
are seen in comparisons of T40 and T80 results for operational
model tests (Fig. 20). Comparison of zonal mean cross-
sections of cloud fraction shows results similar to those
obtained by Kiehl and Williamson (1990). There is a
significant reduction in cloud fractional amount with an
increase in horizontal resolution, especially in the subsiding
subtropical atmosphere. Global mean total cloud fraction of
.44 for the T40 run drops to .39 for the T80 test.

Both Rikus and Hart (1988) and Mitchell and Hahn (1990) report
success with related objective cloud tuning techniques in
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determining cloud-relative humidity relationships (recall Eqn
1) for their models. By assuming that observed cloud fraction
is strongly related to model relative humidity (RH), they
attempt to preserve key statistical properties of the cloud
observations in the cloud-RH functional relationships. The
Mitchell and Hahn method begins by calculating cumulative
frequency distributions of both model RH data and independent
cloud observations on the same horizontal domain for the same
valid time. Then the frequency distribution of the cloud
analysis is projected, or mapped, onto that of the RH data
(Fig. 21) yielding both a quasi-continuous specification of
cloud fraction as ' a function of model RH, as well as an
objective estimate of RH . Mitchell and Hahn show results for
different pressure levels (Fig. 22) for their model, and the
cloud fraction-RH relationship appears approximately quadratic
in the upper levels, but RH, is considerably less than 0.8.
If it is assumed that other cloud-scheme parameters such as
model convective precipitation rate or low-level inversion
strength are strongly correlated to cloud fraction, one should

be able to tune those relationships as well.

The desired independent cloud database is being developed by
NOAA, (see paper by L. Stowe elsewhere in these workshop
proceedings), and it will be useful for continuously tuning
and validating the cloud parameterization'. We are currently
embarking on a feasibility study, to test Mitchell and Hahn's
technique, using Air Force RTNEPH cloud analyses (Kiess and
Cox, 1988). The RTNEPH data will be compacted to the forecast
model grid using methods described by Yang et.al. (1990).
Initial plans are to study the cloud-RH relationships as
functions of time, cloud type (H, M, or L), and region. Air
Force expertise in the realm of cloud verification will also

be utilized where possible.

'"The cloud database will be useful for other purposes as
well - e.g. improving initial analyses - i.e. tropical
divergent winds, RH in no data regions, surface radiative
fluxes (inserting cloud directly into the model during the
analysis cycle). Also to create pseudo-satellite cloud loops
for forecasters - i.e. merging cloud observations with model
forecast clouds.
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