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INTRODUCTION
Although the performance of numerical weather prediction (NWP) models in the tropics

considerably lags the performance in the extratropics, significant progress has been made in
the recent years. For example, the systematic errors of the ECMWF model in the tropics
have been considerably reduced (see Tiedtke et al., 1988) when compared to errors in the
earlier version of the model reported by Kanamitsu (1985) and Heckley (1985). A number of
factors such as increased horizontal and vertical resolution and improvements in analysis
have been partly responsible for this. However, the major impact on model performance in
the tropics has resulted from improvements in the parametrization of cumulus convection,
interactive clouds and the radiation scheme and (perhaps most importantly) through the
inclusion of shallow convection in the model (see Mohanty et al., 1985).

In spite of the progress made in tropical NWP several problems still remain, Inadequate
parametrization of physical processes, particularly cumulus convection, leads to large
systematic errors in model forecasts in the tropics. The Kuo cumulus parametrization
remains the most widely used parametrization of cumulus convection and considerable
attention has focused on improving its performance by attempting to obtain an optimum
value of the moistening parameter b which partitions moisture supply between moistening
and heating and by refining the definition of the cloud base used in the scheme. In recent
years at ECMWF much attention has been focused on alternative convection schemes namely
the Betts-Miller adjustment scheme (Betts, 1986; Betts and Miller, 1986) and a massflux
scheme (Tiedtke, 1989); an assessment of the former scheme with respect to tropical
cyclones will be given in Part II of this report. In spite of recent improvements there are
a number of aspects of cumulus parametrization which are not well understood and remain
poorly parametrized. Cumulus momentum transport and interaction between cumulus
convection and boundary layer flow are just two examples of aspects of cumulus convection
which are poorly understood. @ The parametrization of radiative processes also has an
impact on model forecasts in the tropics as was shown for the ECMWF model by Mohanty et
al. (1985), for example. The radiation scheme in use at ECMWF in 1987 has a systematic
error in that it underestimates the outgoing longwave radiation near the top of the model.
Preliminary work with an improved radiation scheme shows encouraging impact on the model
circulation in the tropics (Morcrette, 1988; private communication). Thus a considerable
amount of theoretical, modelling and observational work needs to be carried out in order to
properly understand the role of different physical processes in order to improve their

parametrization in numerical models.

Apart from physical parametrizations, deficiencies in analyses also contribute to forecast
errors. The analysis of even the primary variable in the tropics poses special problems.
Firstly, the data base for key variables such as wind field (particularly divergent wind)



and moisture is inadequate. Secondly, deficiencies in forecast models have a deleterious
effect on analyses, particularly in a four dimensional data assimilation system.
Furthermore, some analysis systems have a midlatitude bias which is imposed through the
use of assumptions such as nondivergence or geostrophy in the analysis increments. Some
recent developments in analysis in the tropics include the implementation of divergent
structure functions in optimum interpolation (Undén, 1989) and attempts to use outgoing
longwave radiation (or satellite) data as proxy data in analysing the divergence field and to
specify heating rates in normal mode initialization (Julian, 1984; Puri and Miller, 1989).
The initialization step is also being extended to include adjustment of the moisture field in
order to obtain better agreement between model rainfall in the early stages of the
integration and observed rainfall data (Krishnamurti et al., 1983; Puri and Miller, 1989).

Although model performance for large scale‘ quasi-stationary systems in the tropics displays
large systematic errors, the performance with respect to transient disturbances is more
promising. For example, Kanamitsu (1985) found that the ECMWF analysis scheme is capable
of detecting transient disturbances such as easterly waves. An objective verification of the
forecasts using correlations between time filtered analyses and forecasts showed that these
waves are well predicted up to about four days indicating that the model deficiencies at the
very large scales have a relatively small impact on the properties of the transient
disturbances. Similarly’ Reed et al. (1988) carried out a study based on a later version of
the ECMWF analysis-forecast system to evaluate its performance in analysing and forecasting
easterly waves and their related tropical storms during a two month period in the summer of
1985. They concluded that the system has an impressive capability for forecasting tropical
wave disturbances and other synoptic-scale circulation features.

The ability of current models to predict transient waves in the tropics is very encouraging
as it suggests that improved prediction of tropical cyclones with ‘these models may be
possible. Models such as those in use at ECMWF, the U.K. Meteorological Office (UKMO)
and NMC, United States have now attained resolutions where the outer circulations of small
scale systems such as tropical cyclones are beginning to be resolved. However, it should
be noted that these mod€ls are still hot at a stage where they can resolve the inner
structure and thus cannot simulate details of the structure of the cyclones. However, the
motion of cyclones is believed to be strongly influenced by the large scale flow and
therefore prediction of motion by such models might be possible. Hall (1987) has carried
out a study of the performance of the UKMO model in handling the motion of all major
tropical cyclones in the North Atlantic and North Pacific during 1986. In all, 169 cyclones
were considered. Hall concluded that the model provides useful skill in predicting the
movement of tropical cyclones, especially when they engage upper level troughs in the
middle latitude flow. This is particularly evident for 48 and 72 hour forecasts when

persistence and climatology can lead to large errors. ’
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During the period January 10 to February 15 1987 an exiensive observation program was
carried out in the Australian region corresponding to phase II, the major field phase, of the
Australian Monsoon Experiment (AMEX, see Holland et al.," 1986). AMEX was carried out by
the Bureau of Meteorology Research Centre (BMRC) in collaboration with Monash
University. Phase II was designed specifically to provide a research data base of sufficient
resolution to document the basic structure of the ‘monso'on. circulation in the Australian
tropics and to diagnose the effects of the interaction beiween the convective and large scale
flow. The AMEX atmospheric sounding array shown in Fig. 1 (taken from Holland et al.,
1986) was designed to take advantage of the existing Australian, Indonesian and Papua New
Guinea network and to concentrate on the climatologically active region in the Gulf of
Carpentaria.  The routine atmospheric sounding network is shown by squares and open
circles in Fig. 1 and the upgraded AMEX component by solid circles. The core of the
network is a group of six stations upgraded or established around the Gulf taking wind and
thermal soundings at six hourly intervals. Additionally an outer array of seven existing
Bureau of Meteorology stations were upgraded to the same frequency. In additon to the
upper air network, radars with remote sensing capability to monitor four-dimensional
structure of precipitation were an ihtegral part of the experiment. i |

The period covered by phase II of AMEX spaimed the onset of the Australian summer
monsoon which occurred on January 14 (as indicated by a number of indices). There was a
weak break from about January 24 to January 31 followed by an active period. The whole
AMEX period was characterized by a high level of convective activity in the north of
Australia. Four tropical cyclones (TC’s) formed during the period covered by AMEX namely
TC’s Irma (Jan 19 to Jan 21), Connie (Jan 17 to Jan 21), Damien (Feb 1 to Feb 5) and Jason
Feb 7 to Feb 13). Two of the cyclones (Irma and Jason) occurred in the Gulf of Carpenteria
within the enhanced AMEX network and were therefore well observed. Further details of
observations taken and significant weather events during AMEX can be found in Gunn et al.
(1989) and details of the torpical cyclones have been documented by Manchur (1987). Thus
the AMEX data provide a good base for performing numerical weather prediction (NWP)
studies on the onset and subsequent development of the monsoon and tropical cyclones.

The additional sounding and SYNOP data collected during AMEX were transmitted in real
time to ECMWF and were included in the data base to produce the operational ECMWF
analyses of this period. However, the amount of AMEX data received was highly variable.
In January only a small percentage of the data was received and although reception
improved in February, the amount of data received was still incomplete.

The aim of part I of this paper is to document the performance of the ECMWF
analysis-forecast system in depicting the main features of the circulation in the Australian



‘H oseud XHINV 10J Jomlou Surpunos aroydsoune ayy, 1 “Sig

0%} 0S4 ovi ocl 474 oLl
T L \.J | | 1 1
. \\O N Zf
oN "
N N N
/ N | Y
- N 8 - Z/ Hoe
(B S
\
N
0 N
/_.m; © S M
NEE The)
FTIASNMOL .ﬂ Z>>O ._.m_x\m«m 1 .QOnO -
smyg O %a:l%oﬁm WviooToudos
4E_ﬂ\,/
o | AVOSHNHL \ ®.70 o
u ) diHs 0. 0> . A~ ’
ﬁ o Tons ﬁNquOr“ m/ o blOv
No
/ O~ mH\o ha r» } ﬂ.O O
1 1 L\

AL1TOAO3HL

Ad d3axMOvdLl SANIM

Avd H3d SaNLL-

¥-2 SNOILYAHISHO aNIM

31IS NOILYAH3SH0
NOOTIvE LOTId INILNOH O

HYQVH A9 GIXOVHL SANIM
AVA H3ad SINIL
¥-2 SNOILVAHISEO aNIM
"JHS NOILYAHISEO
NOOTIvE LOId IANILNOY S

311M0JO3HL
A8 A3IX0OVHL SANIM
AVQ Y3d SINIL v-2 SONIM
Ava H3d
JONO SNOILVYAHISHO
IVNHIHL ATIVHINID
J1IS NOILVAHISHO

HIV H3ddn 3aNILNOY [

HvAvH A8 d3aXOVvH.L SANIM
AVQ "Y3d SINLL ¥ SANIM
Avd H3d
S3NWIL 2-1 SNOILYAHISEO
IYWHIHL ATIVH3INID
31IS NOILVAHISHO
HIv H3ddN INILNOY M

HvavH Ag d3XMOVHL SANIM

Avd H3d

S3ANIL ¥ SNOILVYAHISEO

IVINHIHL ® ONIM HIV H3ddn
31IS NOILVAHISEO X3anv @

‘NOLLYOIAVN

VO3IINO Ag dIxOVvHL SANIM

‘Avd

H3d SINIL ¥ SNOILYAH3SHO

IVINHIHL 8 ANIM HIV H3ddn
31IS NOILYAHISEO Xanvy W

Hvavd a3siLiola



region in the period January 10 to February 15 1987 during which AMEX was conducted.
The features include the onset of the Australian summer monsoon and the active and break
periods in the monsoon and four tropical cyclones, two of which occurred within the AMEX
network.

Part II of the paper describes the sensitivity of analysis-forecasts of the tropical cyclones
to convective parametrizations used in the model. Two convective schemes, the Kuo
parametrization in use until Spring 1989 and the Betts-Miller adjustment scheme are
compared. Some forecasts using the mass flux scheme of Tiedtke, which became operational
in Spring 1989, will also be described. Part II also shows two forecasts for tropical
cyclones Irma and Jason with a higher resolution forecast model.

Part III describes experiments aimed at reducing the problem of data rejection in the
analysis of tropical cyclones which results in considerable errors in locating the centre of
the cyclones. Results of these experiments have application to bogusing of tropical cyclone
data.

The model used in these studies is the operational ECMWF model (as in Feb 1987) which has
19 levels in the vertical and is truncated at triangular wave number 106 (T106) in the
horizontal, The model includes all the revised parametrizations implemented in May 1985.
The revised parametrizations which include shallow convection, a more effective
representation of deep convection, a new cloud scheme and improvements in the radiation
scheme resulted in significant improvements in the .representaﬁon of quasi-stationary flow in
the tropics. A gravity-wave drag formulation and improvements in the analysis scheme have
also been implemented which have resulted in further improvements in the performance of
the analysis-forecast system.
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PART I: PERFORMANCE OF THE ECMWF
ANALYSIS-FORECAST SYSTEM DURING AMEX

Kamal Puri

Abstract

The main aim of this part is to document the performance of the ECMWF analysis-forecast
system in depicting the mean features of the Australian monsoon circulation during AMEX
and some individual features such as the onset of the monsoon, the active and break periods
in the monsoon and the four tropical cyclones, two of which formed within the AMEX
network. In most cases only forecasts up to 72 hours will be considered as the model skill
in the tropics beyond this period falls off rapidly.

1. AUSTRALIAN SUMMER* MONSOON - ONSET AND ACTIVE/BREAK PERIODS
The summer monsoon which locally affects regions of Southeast Asia and Australasia can

have an influence which extends to global scales. Thus when fully developed, the summer
monsoon convection drives large scale circulations both in the east-west and north-south
direction (Krishnamurti et al., 1973). As noted by Lau and Chang (1987), the summer
monsoon exhibits distinct characteristics that  differ considerably from its winter
counterpart (i.e. the Indian monsoon). The basic difference is that during the summer
monsoon the major convection is over the maritime continent while the monsoon heat low in
winter is entirely over land. Another difference is in the location of the heat sources. For
the winter monsoon the major heat source is situated between 15°N to 30°N where the
Coriolis effect gives rise to highly rotational planetary scale circulation. The summer
monsoon on the other hand has its main heat source situated over the equatorial belt where
the divergent component of motion reveals itself more prominently (Lau and Chang, 1987).

In the Southeast Asian region the summer monsoon arrives in the north about November and
retreats from this region around March/April. During December or early January a
dramatic southward shift occurs in the location of the major heat source accompanied by the
sudden establishment of lower tropospheric ‘westerlies between the equator and 10°S. This
is known as the onset of the Australian summer monsoon. A review on this subject is given
by McBride (1987). The Australian Monsoon can last from 10 days to 100 days (see Holland,
1986) and is marked by active/break periods which are associated  with
strengthening/weakening of the low level ‘westerly winds.  Tropical cyclones form an
important component of the Southem. Hemisphere monsoon circulation. In the Australian
region McBride and Keenan (1982) in a case by case study of tropical cyclone development

*Winter and summer monsoon refer to the southern hemisphere season



for five years have found that in 84% of cases the precyclone cloud ‘cluster when it first
appeared was embedded in the monsoon trough. At the time the cluster was actually
classified as having reached tropical cyclone intensity, 97% were in the trough. Thus the
summer monsoon encompasses a wide spectrum of phenomena which span scales ranging
from subsynoptic to global scales and time scales ranging from hours to several months or
years.

In this section the ability of the ECMWF analysis-forecast system in handling various aspects
of the Australian summer monsoon for the AMEX period will be described. Although the
performance of the system for the Indian monsoon has been documented (Mohanty et al.,
1985) no detailed studies for the Australian monsoon have been carried out so far, The
onset of the monsoon during AMEX can be seen in Fig. 2 (provided by B. Gunn), which
shows the vertical section of zonal wind as a function of time and averaged over the domain
5°S to 15°S, 110°E to 140°E. The wind data are obtained from the Australian univariate
optimum interpolation analysis system. The monsoon onset clearly occurs on Jan 14 with a
weak break from around Jan 25 to 29 followed by a further active period. Fig. 3 shows the
vertical section of the zonal wind as analysed at ECMWF as a function of time. The time
frequency of the analysis is six hours. Apart from differences in the intensities of the low
level wind, there is good agreement with the height-time section shown in Fig. 2. The
ECMWF analyses also’ indicate monsoon onset occurring around Jan 14 with a weak break
from Jan 25 to Jan 30 followed by a mainly active period. Fig. 4 shows similar height-time
sections for the 24 and 48 hour forecasts respectively. The 24 hour forecasts show an
impressive skill in predicting most of the features of the monsoon present in the analyses.
Particularly impressive is the accurate prediction of the onset date and the active/break
periods. The 48 hour forecast does not predict the onset date which in fact only shows up
in the 48 hour forecast valid for Jan 15. However, the 48 hour forecasts provide a
reasonable guidance for the following break and active periods. The onset of the
Australian monsoon is accompanied by a rapid increase in convective activity over the
northern regions of Australia. Fig. 5 shows the 24 hour forecast area averaged
precipitation (5°S to 15°S, 110°E to 140°E) as a function of time from Jan 10 to Feb 15 1987.
Although the intensity of precipitation is difficult to verify, the model displays an
impressive capability in forecasting the rapid increase in precipitation with the onset of
monsoon followed by a decrease in the break period and then increased precipitation in the
following active period. The precipitation in the latter period of February is forecast too
low and is possibly related to the failure of the model in handling tropical cyclone Jason
which formed in the Gulf of Carpenteria. The capability of the model in predicting the
increase in precipitation over northern Australia with the onset of the monsoon is better
indicated in Figs. 6(a) and (b) which, respectively, show the rainfall for two 24 hour
forecasts prior to onset and two forecast on and after the onset.
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Fig.5  Area averaged (5° to 15°S, 110°E to 140°E) 24 hr forecast precipitation (in mm) as a
function of time from Jan 10 to Feb 15 1987.
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Close inspection of Figs 3 and 4 around January 14 indicates the model fails to capture the
monsoon onset until some low level westerlies are establ@shed in the initial conditions. This
is better i]lus_ttated in Figs. 7(a) to (c) which show the 24 and 48 hour forecasts for the
850 hPa wind field starting from Jan 12 to Jan 14 together with the starting and verifying
analyses. The main feature to note in the analyses from Jan 12 to Jan 16 is the marked
southward shift in low level westerlies around Jan 14 together with an increase in the
westerly winds over the region to the north of northern Australia. The 24 and 48 hour
forecasts from Jan 12 (Fig. 7(a)) fail to capture any of these changes. The 24 hour
forecast from Jan 13 (Fig. 7(b) predicts the strengthening of the westerlies (and therefore
the monsoon onset); however the 48 hour forecast fails to retain the strong westerlies.
Both the 24 and 48 hour forecasts from Jan 14 (Fig. 7(c)) which start with strong
westerlies in the initial conditions provide impressive forecasts of the winds although the
strong cross-equatorial flow near 125°E is poorly predicted. However, the above results
indicate the inability of the model to retain low level westerlies unless they are well
established initially. The reason for this is not clear and is probably linked to the marked
reduction in the convective activity in the model with time as will be shown below.

There was a weak break in the monsoon from around Jan 25 to Jan 29 which was marked by
a weakening of the low level westerlies to the north of northern Australia. The weakening
of the westerlies is well depicted by the ECMWF analyses as shown in Fig. 8 which presents
the 850 hPa winds from 1200 GMT Jan 23 to 1200 GMT Jan 26. The 24 hour and 48 hour
forecasts from 1200 GMT on Jan 23 and Jan 24 shown in Fig. 9 show that the forecasts also
indicate this weakening of winds; however for the 48 hour forecast winds, although
verifying well with the analyses, the weakening could partly be due to the systematic
weakening of low level westerlies in the model with time.

The subsequent strengthening of the winds around January 30 is again well depicted by the
analyses as shown in Fig. 10 for Jan 30 to Feb 1 and 24 hour and 48 hour forecasts from Jan
29 and Jan 30 as shown in Fig. 11. The contrast in the 850 hPa winds for the two periods
shown in Figs. 8 and 10 (for analyses) and Figs. 9 and 11 (for forecasts) is quite marked
and it is encouraging that the model is able to simulate some of these features although as
indicated above the weakening of the windé in Fig. 9 could be partly due to the systematic
error in the model.

Apart from the differences in the low level winds, the precipitation to the north of Australia
in the two periods considered above are also very different with much greater rainfall in the
active period. The model has some skill in forecasting these sharp differences as indicated
in Fig. 12 which shows 24 hour forecast rainfall from Jan 25 (break period) and Jan 30
(active period). The GMS IR imagery for 1200 GMT Jan 26 and 1200 GMT Jan 31 are shown
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Fig. 12 Precipitation (in mm) for 24 hr forecasts from 1200 GMT Jan 25 (bottom) and Jan 30
(top).
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Fig. 13 GMS IR-imagery for 1200 GMT Jan 26 (bottom) and Jan 31 (top).
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in Fig. 13 to indicate the dramatic changes in the convective activity for the two periods.
Although there are significant differences of detail between the forecast precipitation and
the GMS imagery, the model is able to forecast the major difference, namely the level of
convective activity between the two periods.  With increasing interest in obtaining
improved estimates of precipitation, particularly in the tropics, the result is encouraging as
it suggests that the data assimilation system is capable of providing useful information on
precipitation based essentially on mass and wind data combined with the physical
parametrizations.  Such information could be of considerable interest for GEWEX (Global
Energy and Water Cycle Experiment) and GPCP (Global Precipitation Climatology Project)
which have been set up 0 provide best estimates of precipitation. Thus model based
precipitation could be used to provide estimates of precipitation in data void regions and
also to have some influence in regions with data.



2.  MEAN CIRCULATION IN ANALYSES AND FORECASTS

Fig. 14(a) shows the mean 850 hPa and 200 hPa wind analyses for the period Jan 10 to Feb
15 1987. The period was marked by strong low level wesierly flow over and to the north of
northem Australia which is typical of the Australian monsoon circulation.  There is
cyclonic circulation in the Gulf of Carpentaria and off the West Australian coast. Another

feature of note is the strong cross-equatorial flow from ‘the northern to the southern
hemisphere in the regions around 100°E and 125°E. The ECMWF analysis of the mean
circulation agrees with the mean obtained from the Australian Bureau of Meteorology’s
tropical analysis scheme (not shown). The agreement between the two independent
analyses with respect to the main features of the monsoon circulation is very encouraging.
Fig. 14(b) shows the mean 48 hour forecasts verifying for the analysis period shown in
Fig. 14(a). The low level westerly flow to the north of Australia is well handled in the
mean at 48 hours although the westerlies are weaker than analysed and the underestimate
increases with time. The cyclonic circulations in the Gulf of Carpentaria and off western
Australia are well forecast at 48 hours. The circulation in the Gulf has weakened by day 3
and is located too far to the east over western Australia (not shown). The cross-equatorial
flow at both 48 hours and 72 hours, although occurring at the correct locations, is much
weaker than the analysed flow. Many of the features of the 850 hPa wind are reflected at
200 hPa.

In order to indicate the performance of the analysis-forecast system with respect 10
divergent circulation, Figs. 15(a) and (b) show the mean analyses and 48 hour forecasts
for velocity potential at 850 hPa and 200 hPa. .Although the forecasts for the velocity
potential are consistent with each other, the agreement with the analysis is not as good as
. for the streamfunction (not shown) ‘which shows reasonable agreement with the verifying
analysis. ‘This is particularly the case at 200 hPa where there is a marked weakening of
the divergent circulation with time. The vertical velocity (cw=dp/dt) is closely related to
the divergent circulation in the tropics. The mean verifying analysis and the 48 and 72
hour forecasts for the vertical velocity are shown in Figs. 16(a) and (b). Although
comparison of forecasts with the analysis of this field can be misleading as the analysis will
have substantial errors for a number of reasons such as lack of data, errors in the first
guess and considerable gravity wave noise, there is a reasonable agreement between
* analysis and forecasts and for the location of significant vertical motion. The forecasts
also show the general weakening trend with time noted for the velocity potential.  The
weakening trend in the divergence and vertical velocity is particularly evident in the
vertical section of the area mean (5°S to 15°S, 110°E to 140°E) of these fields.  These
vertical sections for the analyses and 48 and 72 hour forecasts are shown in Fig. 17. Note
the marked weakening for both fields in the upper troposphere. This systematic weakening
of the upper level divergent circulation is a consistent feature of the ECMWF
analysis-forecast system which has not been altered by significant improvements in various
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components of the system, The error is now considered to be related to the
underestimation of the outgoing longwave radiation flux ~by the radiative parametrization in
the model w_hich results in insufficient cooling (see Arpe, 1988). An example of this
deficiency for the AMEX period is given in Fig. 18 which shows the longwave radiation at
the top of the model for the 48 hour forecasts. Also shown is the mean (Jan 18 to Feb 15
1987) outgoing longwave radiation (OLR) flux from NOAA-9 satellite, There are
differences of larger than 60 watts m=2 in the tropics which are indicative of hjgher black
body temperatures in the model.

The weakening of the divergent circulation in the tropics is also closely related to the
precipitation and cloud cover in the model. The 24 hour cumulative rainfall amounts for -the
24, 48 and 72 hour forecasts (now shown) indicate a marked weakening in the precipitation
with time. The weakening is much more dramatic for the convective cloud cover which is
shown in Fig. 19 for the 24, 48 and 72 hour forecasts. By 72 hours the convective activity
in the model has substantially weakened. A direct verification of the precipitation and
convective cloud cover is difficult because of lack of data. However, an indirect measure
of both quantities is provided by the OLR fluxes shown in Fig. 18. The shaded region in
this figure are for OLR fluxes less than 200 watts m2 which are regions of deep
convection. ~ The 24 hour forecast convective clouds show reasonable agreement with
regions of strohg convection indicated by the OLR data.

An indication of the model performance in predicting the mass field in the tropics is given in
Figs. 20(a) and (b) which show the Aa.nalysis and 48 hour forecasts of the geopotential field
at 1000 hPa and 500 hPa. As with the wind field the main feature is the good consistency
between the 48 and 72 hour forecasts (not shown) and the good agreement between the
analyses and forecasts. The main error at 1000 hPa is the underestimation of the
geopotential over north and north-west regions of Australia. This -deﬁciency is related to
underestimation by the model of the intensity of four tropical cyclones which occurred in
this region.

In summary, results for the mean performapce of the model indicate that progress has been
made in the tropics with recent improvements in the physical parametrization, increased
model resolution and improvements in analysis. The 48 and 72 hour forecasts of the wind
and mass fields show good consistency with each other and a reasonable agreement with
analysis. However a number of problems remain, the main one being the weakening of
tropical divergent circulation with time and a related weakening in the convective activity in
the model.  Another systematic problem which could cause the above problem is the
underestimation of the outgoing radiative flux by the radiative parametrization in the
model.
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Fig. 18 Mean long wave radiation for 48 hr forecasts at the top of model (top) and mean
outgoing longwave radiation flux from NOAA-9 for the period Jan 18 to Feb 15,
1987 (bottom). Units are watts in m-2 and contour intervals are 20 watts m-2,
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3. TROPICAL CYCLONES
Numerical weather prediction models such as the one used at ECMWF have attained
resolutions where small scale atmospheric features such: as tropical cyclones are beginning

to be resolved. During the period considered in this study four tropical cyclones, Irma,
Connie, Damien and Jason, formed in the Australian tropics. The tracks followed by the
cyclones as obtained from BOM are shown in Fig. 21. Two. of the cyclones, Irma and Jason
formed within the enhanced AMEX network around the Gulf of Carpentaria. The aim of this
section is to consider the performance of the ECMWF analysis - forecast system in handling
these tropical cyclones. Analyses and forecasts for each cyclone will be considered
separately. Our main attention will be focused on the location of the cyclones and their
gross features, as the ECMWF model and analysis scheme cannot resolve the inner structure
and finer details of the cyclones. TC’s Irma and Jason will be considered in more detail as
these cyclones formed within the AMEX network and were therefore well observed.

3.1 Analyses of tropical cyclones

({) Tropical cyclone Connie

Tropical cyclone Connie formed from a low which originated over land, intensified rapidly
and reached tropical cyclone intensity around 1200 GMT 17 Jan 1987. Connie then moved
southwest, intensifying to a maximum intensity of around 950 hPa. It crossed the coast at
20.3°S, 118.5°E around 0900 GMT Jan 19 and continued inland on a southerly track
weakening slowly.{_ Further details of the cyclones considered here can be found in Manchur
(1987). The track followed by Connie as obtained from BOM is shown in Fig. 21 and the
position and intensity as a function of time as determined by the Bureau of Meteorology
(BOM) are shown in Table 1. The location of the cyclones are determined by the Bureau
from GMS imagery and radar if the cyclone is within rangé of a radar station. The
intensity, in terms of central pressure and maximum wind speed is estimated using the
Dvorak technique and could be in considerable error. The strongest wind recorded during
the cyclone was a wind gust of 171 km h! (48 ms!) at Port Hedland at 191147 GMT when
the mean wind speed was 93 km h! (26 ms!). Figs. 22(2) to (e) show the ECMWF sea
level pressure and 850 hPa wind analyses of TC Connie at 12 hour intervals. The figures
also show the observations that were accepted by the analyses. The location of the cyclone
as determined from the minimum sea level pressure and the central pressure are also shown
in Table 1 and the cyclone track as obtained from the ECMWEF analyses is shown in Fig. 23
at 12 hour intervals. In general the cyclone is located with 1° to 1.5° of the Bureau’s fix
with a maximum error of around 2° in longitude at 0000 GMT on Jan 18. The analysed
central pressures are generally much weaker than the estimates shown in Table 1.
Although the BOM estimates are liable to have considerable error, there were some
observations which indicate that the central pressures were much deeper than the ECMWE
analysed values and closer to the Bureau’s estimates. This can be seen in Fig. 24 which
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TROPICAL CYCLONE CONNIE - TRACKS

BOM Ops Analysis

Jan’ Lat Long Press Lat Long  Press
(S) (E) (hPa) | (S) E) (hPa)

17/1200 | 171 1219 994 17.4 1219 997
18/0000 | 17.8 121.0 988 16.2 119.2 993
18/1200 | 185 1192  976- | 17.3 1204 990
19/0000 | 195 118.6  962° | 185 - 1195 . 991
19/1200 | 20.5 118.4 955 19.6 1192 994
20/0000 | 22.0 1184 = 974 1207 1194 994
20/1200 | 235 1182 980 | 23.0° :118.1 - 995
21/0000 | 259 1189 982 252 119.3 994

and the ECMWF operauonal (ops) analyses

TROPICAL CYCLONE IRMA - TRACKS

Table1 Locations and central pressures for TC Conme obtamed from BOM best estimates

; BOM 3 ' Ops Analysis
Jan Lat  Long Press | Lat  Long Press
S  ® (Pa) |1 (S) (B  (WPa)
19/0000 | 12.5 1386 994 | 142 1370 1004
20/0000 | 12.8 1374 987 13.0 137.0 - 1002
201200 | 13.6 1359 984 | 154 1359 1002
21/0000 | 154 134.1 984 165 1345 : 999

Table2 Asin Table 1 but for TC Irma.
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Fig. 22b As in Fig. 22a but for analyses-at 0000 and 1200 GMT Jan 18 for TC Connie.
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shows all the surface observations available at 1200 GMT Jan 19 when the cyclone was at its
most intense stage. Note the observation of 968 hPa at statlon 94312 (Port Hedland).  This
observation was in fact rejected by the ECMWF analysis system as indicated in Fig. 25 which
shows all observations that were rejected at this time. Fig. 25 also shows another example
of a key observation within the cyclone that was rejected by the analysis system for 0000
GMT Jan 20. This observation also indicates that the cyclone at this stage was considerably
deeper than analysed. Further evidence that the ECMWF analysis system leads to central
pressures that are too weak can be seen in Fig. 26 which shows the UKMO analyses for the
sea level pressure and 850 hPa wind at 1200 GMT Jan 19. Note that the central pressure of
983 hPa is significantly deeper than the corresponding ECMWF analysis,

(ii)  Tropical cyclone Irma

Tropical cyclone Irma developed from an area of deep convection in the northern Gulf of
- Carpentaria that had persisted for several days prior to January 19. The low continued io
intensify and was upgraded to a cyclone at 1200 GMT Jan 19. Irma moved in a southwesterly
direction and crossed the coast around 1200 GMT Jan 20. The lowest pressure recorded
was 989.9 hPa and strongest wind reported was 111 km ht! (31 ms1). It should be noted
that Irma formed within the enhanced data network of AMEX and was therefore relatively
well observed. The track followed by Irma as obtained from BOM is shown in Fig. 21 and
the position and intensity as a function of time are shown in Table 2. Figs. 27(a) to ©
show the ECMWF sea level pressure and 850 hPa wind analysis of TC Imma at 12 hour
intervals together with observations that were accepted by the analysis system. Fig. 28
shows observations that were rejected for two analysis times. The location of the cyclone
and the central pressure as obtained from the ECMWE analyses are also shown in Table 2
and the cyclone track according to these analyses is shown in Fig. 23. The analysed
cyclone locations are within 1° to 2° of the BOM’s locations and the analysis system
correctly located landfall around 1200 GMT Jan 20. As with TC Connie the analysed central
pressures are much weaker than the BOM estimates. Figure 28 shows that the rejected
surface observations are those which indicate lower surface pressures. Further evidence
for the ECMWF sea level pressure analyses being too weak is given by the UKMO sea level
pressure analyses for 1200 GMT Jan 20 in Figure 29 which shows a central pressure of 996
hPa compared to 1002 in the ECMWF analysis. Note however that the UKMO analysis places
the cyclone too far to the north. The UKMO operationally use manually generated TC
bogus data but no bogus data were used for TC Irma,

(iii) Tropical cyclone Damien ,

Tropical cyclone Damien formed from al monsoonal low and attained tropical cyclone at 2100
GMT February 1. TC Damien was a maritime cyclone throughout its life cycle. The
strongest observed wind was about 83 km ht (23 ms!) to the north of the cyclone at 1200
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showing observations rejected by the analysis.
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Fig.26 AsinFig. 22a but for UKMO analyses at 1200 GMT Jan 19.
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Fig. 27b As in Fig. 22a but for analyses at 0000 and 1200 GMT Jan 20 for TC Irma.
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GMT Feb 3 and the strongest estimated winds were 97 km/h (27 ms-1) from 0000 GMT to 0600
GMT on Feb 3. The lowest central pressure was estimated to be 980 hPa at 0000 GMT Feb 3.

The track followed by Damien as obtained from BOM is shown in Fig. 21 and the position and
intensity as a function of time as determined by BOM are shown in Table 3. Figs. 30(a) to
(d) show the ECMWF sea level pressure and 850 hPa wind ’analyses for TC Damien at 12
hour intervals for part of its life cycle together with observations accepted by the system.
The location of the cyclone and the central pressure as obtained from the ECMWE analyses
are shown in Table 3 and the cyclone track according to these analyseé is shown in Fig.
23.  Although the location error in the early stages of the cyclone was 1.5° to 2° the
cyclone locations in the later stages (1200 GMT Feb 3 to 1200 GMT Feb 5) were well
analysed with errors of less than 1°. The low level wind analyses also reflected most of the
observed features. As with the previous cyclones the analysed central pressures are much
- weaker than the BOM estimates. However, in contrast to the other cyclones, no
observations in the vicinity of the cyclone were rejected; closer inspection of the
observations used in Fig. 30 shows that the analyses are consistent with observations,
none of which reach the lower values of BOM estimates. Lack of observations close to the
centre of the cyclones suggest that bogusing of data in the vicinity of the cyclone could be
useful to improve the analysis of the intensity of tropical cyclones in addition to improving
their location. '

(iv) Tropical cyclone Jason .

TC Jason developed from a tropical low which formed near the northeastemn part of the Gulf
of Carpentaria. The low moved west southwest, intensified and reached cyclonic intensity
at around 0600 GMT Feb 7. The cyélone continued to move west southwest and crossed the
coast at around 0000 GMT. It then weakened and drifted southward and moved over water
again around 0000 GMT Feb 11. Jason initially moved eastward and then southeast and
continued to intensify until it became a severe cyclone at about 1800 GMT Feb 12. It
eventually made landfall near Burketown. The maximum intensity was reached at about
1800 GMT Feb 12 with a central pressure of 970 hPa. The highest reported wind speed was
159 km h'l (44 ms?) at Burketown at 0520 GMT Feb 13 and the lowest recorded pressure
was 981 hPa at 0030 GMT Feb 13. The tréck followed by Jason as obtained from BOM is
shown in Fig. 21 and the position and intensity as a function of time is given in Table 4.
Figs. 31(a) to (e) show the ECMWF sea level pressurc and 850 hPa wind analyses for part
of the life cycle of TC Jason together with the observations accepted by the analysis
system while Fig. 32 shows the observations rejected for two for the analysis times. The
cyclone location and the central pressure as obtained from the ECMWF analyses are shown
in Table 4 and the cyclone track obtained from these analyses is shown in Fig. 23.
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TROPICAL CYCLONE DAMIEN - TRACKS

BOM Ops Analysis
Feb Lat Long  Press Lat Long  Press
() (E) (hPa) | (S) (E) (hPa)
02/0000 | 15.6 123.3 988 15.1 122.6 999
02/1200 | 163  122.5 984 184 1216 997
03/0000 | 16.7 1215 980 184 1204 993
03/1200 | 174  120.6 982 174 1204 997
04/0000 | 175  118.9 983 173  119.2 997
04/1200 | 17.8  117.8 987 184 1181 996
05/0000 | 18.1  117.6 991 173 117.0 998
05/1200 | 18.7 117.2 992 184  118.1 998
Table 3 As in Table 1 but for TC Damien.
TROPICAL CYCLONE JASON - TRACKS
BOM KUO Analysis

Feb Lat Long  Press Lat Long  Press
(S) (E) (Pa) | (S) (E) (hPa)
09/0000 | 129  136.8 977 13.1 1359 1004
09/1200 | 13.0 136.2 984 143 137.1 1003
10/0000 | 12.6 136.1 990 143  137.2 1005

10/1200 | 13.1 136.2 992 * * *
11/06000 | 13.6 136.3 992 154 1347 1003
11/1200 | 140 136.7 990 154 1345 1002
12/0000 | 142  137.8 980 142 1359 1002
12/1200 | 155 1390 . 965- | 154 138.3 1002

Table 4 Asin Table 1 but for TC Jason.

* Centre not well defined
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The overall performance of the analysis system for most of the life cycle of Jason was poor.
The cyclone was generally analysed to be too weak without a well developed circulation at

cerfain stages .so that it was not possible to define a location at these times. The analysed
central pressures were too weak although there were observations which indicated lower
pressures. However most of these observations were rejected as shown in Fig. 32 The
‘ rejection of the surface and 850 hPa wind observation at station 94150 on 1200 GMT Feb 10
for example is particularly notable as the cyclone was located very close to this location.
The rejéction of such an observation is a serious problem in the analysis of a tropical
cyclone as these observations are vital mot only to obtain the intensity but also to correctly
locate the cyclone. The UKMO analysis system performed much better for the life cycle of
Jason both with respect to position and intensity. An example of this is indicated . in
Fig. 33 which shows the UKMO analyses for 1200 GMT Feb 20. Part of the reason for the
better performance of the UKMO analysis system is that bogus observations were used in
the analysés of TC Jason although, as was noted for TCs Connie and Irma, the UKMO
analyses tend to produce deeper lows than the ECMWF analyses even in the absence of
bogus data. ‘

To summarise the performance of the ECMWF system in analysing tropical cyclones, there are
some encouraging features given that no particular attention has been paid to the problems
of specifically handling tropical cyclones. The analysis system is able to define the 'gross
features and locate three out of the four cyclones considered to within 1° to 1.5° of the
BOM’s location. Given that the analysis is performed on the Gaussian grid of the model,
which for the T106 model has a resolution of approximately 1.125° in both zonal and
meridional directions, this is close to the best that can be achieved by the current analysis
forecast system. However, for TC 'Jason and at various times for the other cyclones there
are location errors of 2° or more. Such errors can lead to serious errors in forecasting the
future motion of the cyclones. The main reasons for location errors .is lack of data close to
the cyclones and rejection of useful data by thé analysis system. One way of reducing the
problem of data sparcity is to use bogus data such as done at operational centres such as
the UKMO and Japan Meteorological Agency and more recently at ECMWF (Anderson and
Hollingsworth, 1988). The estimated location and intensity of cyclones from satellite imagery
can be used to generate bogus wind data around the cyclone. The use of such data has
the potential of at least improving the location of the cyclone by the analysis system.
However even when data is available (as for TC Irma and Jason) or when bogus data has
been generated, there still remains the problem of rejection of data. There are several
reasons for this; firstly the first guess could be inadequate because of deficiencies in
model parametrization of physical processes and inadequate model resolution, Some of these
factors are considered in Part II of this report. Secondly, the analysis system is not
designed to handle tropical cyclones. Thus, for example, the first guess error variance
used in the analysis system is probably too low for tropical cyclones and this could also

’ . 68



2 SINP/SHIP 0 RIREP/COLBA
12 GMT 10 FEB 1987
l"lC}'E

0 SATOEB 0 DARIBY

0 TewP

SEA LEVEL PRESSURE

10°S

13 SYNU’)SHJP O AIREP/COLBA D SATOB D DRIBU

00 GMT 11 FEB 1987

SER LEVEL PRESSURE

1 Tewp

10"

! SH1200-F6

140°E

9;'4294 0 FG

0 SYNOP/SHIP 0 RIREP/COLBA

12 GMT 10 FEB 1987

0 SATOB O DRIBY
HIND

o TEwP
850 M8

0 SYNOP/SHIP O RIREP/COLBA 0 SATDB O DAIBU

00 GMT 11 FEB 1987

WIND

1 TEN
850 M8

10°5 }-

10°

10°S

Fig.32 As in Fig. 25 but for analyses at 1200 GMT Feb 10 and 0000 GMT Feb 11 for TC

Jason.

69



!

A

y))
b
u}% / L1oo
W

17 k\jﬁ \ ’.‘f:;m
) e T
o
3

30

A A A VR S 21 NNV AN NN UGN
////z““*j-/“ AP IAR AR RS
/'/j////\\_/) \\___,////'/'/'///f\\\\\\_
-~ ,q//-/-»/-/‘/'/f/'/l\\\_ -d20
A RN P PN N ol NS L,
—— l\\,./-/«»/ PP S Y YAV A "__\ S
I e ﬁA/-AA/ P T i Pl W B S g -\
L P S e B W e P S WY 1/‘ )
»,‘/‘i\YV@/‘/‘A/'//‘/O,‘_L.__‘_‘A_‘/-,‘\ \.A—\: N
A \,.,q/-/—/'/'//'/‘/q__.\.ﬂ_-‘/ /”\\ | ==k
o, ,‘ﬁ_‘//////-/*/\\\‘,.__/ PRI S PN i
~7 RV E ENENRN o Y » A
- ..\o\\a ~+ —‘ﬁ/«(,_.\o\,_v\‘\-\r\
AR~ =aN fdd e i PN
ARG ARG SN VNl R
SRPRYEY Gl BVRRERA @M NN
AL TAR A N D e P
SV ad Fndi FE T N S M. Y B
\-( \-::\'1\'\‘\:'\] 1 )\,4/4::_,\,:\'\\‘\\.([‘\
~ \'\‘\‘\.\‘\'\'\‘\'\‘,\-\’— \ / {/:Hw\\'\\\\‘/
\.:*‘\-\.\\\\\\"‘" h P _‘-:\»\.\.\\.
— = (\4 —'.—J:\\\\\ \ \\I,_‘\ \ / / /’_J..JV\’\
TLOEFTIIN NN LANA T 2 LY
-t ML ‘(( N N NN B -
N VR SR SIS SN VW
ihberhie et e
'/
F\\\-\\\.\Mr(ﬁ'ﬁ(;’fr;;f ’,,_.\.\-\.\-\>,ij (;]
an 100 110 120 130 [N 1] 150 160

Fig. 33 AsinFig. 26 but for 1200 GMT Feb 10,

70



' 1
CONNIE . DAMIEN

Aa—a17 Jan A—a 2 Fgb
~18 Jan . ~ 3 Feb
| |

A—4a18 'Jan

19 Jan
] . ] ~

Fig. 34 Forecast tracks at 12 hr intervals for TCs Connie (starting times 1200 GMT Jan 17
and 18), Irma (starting times 1200 GMT Jan 18 and 19), Damien (starting times
1200 GMT Feb 2 and 3) and Jason (starting times 1200 GMT Feb 10 and 11).
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lead to rejection of data.  Furthermore the resolution of the horizontal and vertical
structures used in the analysis system is probably inadequate for tropical cyclones. Some
of these questions are addressed in Part Il of this report. A consistent problem with the
ECMWF analyses of the cyclones considered here is the underestimation of the central
pressures. Although these can be improved,. it should be noted that the ECMWF
analysis-forecast system cannot resolve the inner structure . of the cyclones and cannot
simulate details of the structures of the cyclones. It therefore cannot analyse the full
intensity of the cyclones such as indicated by BOM estimates of observations close to the
cyclones.

3.2 Forecasts of tropical cyclones

In this section the performance of the forecast model in predicting the tracks of tropical
cyclones will be described. The emphasis is on track prediction rather than detailed
structure and intensification of the cyclones because the model does not have adequate
resolution to resolve the detailed structure of the cyclones.

Fig. 34 shows the forecast tracks of the four cyclones considered in the previous section.
In each case two forecasts are shown starting from analyses one day apart. The cyclones
and the starting analyses are as follows:

Connie 1200 GMT Jan 17 and Jan 18 1987
Ima . 1200 GMT Jan 18 and Jan 19 1987
Damien 1200 GMT Feb 2 and Feb 3 1987
Jason 1200 GMT Feb 10 and Feb 11 1987

The best tracks estimated by the BOM for each cyclone are shown in Fig. 21 and from the
ECMWF analyses in Fig. 23. The main features to note are the considerable variability in
two track forecasts for each cyclone and the significant position errors.  Thus 1 day errors
for TC’s Connie, Irma and Damien for the two forecasts were 2.4° and 2.6% 1.6° and 0.6%
2° and 2.4° respectively. As with the analyses of TC Jason the forecasts throughout the
life cycle of Jason were poor. The reason for the failure of the analyses-forecast system to
handle Jason is due to a combination of factors. In the early stages of its life cycle Jason
was a small scale cyclone which could not have been adequately resolved by the model. In
the latter stages, as will be shown in Part II, the parametrization of cumulus convection in
the model has a significant bearing. '

In order to give further indication of the forecast performance, Figs. 35(a) to (d) show the
one and two day forecasts for tropical cyclones Connie (initial date 1200 GMT Jan 18), Irma
(initial date 1200 GMT Jan 18), Damien (initial date 1200 GMT Feb 2 and Jason (initial
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date 1200 GMT Feb 11). The model forecasts for day one are reasonable. Thus, for
Connie and Damien inspite of the position error, most of the gross features in the verifying
analysis (see Fig. 23c and 32b) are present in the forecast.  The model deepens the central
pressure and simulates strong low level winds of about 25 mst, The one day forecast for
Irma is in good agreement with the verifying analysis, (see Fig. 28a) although the low level
winds are somewhat weak. Even for Jason where the initial analysis was poor leading to a
poor forecast, the model intensifies the cyclone, moves it in the right direction and
generates a reasonable low level circulation. By day two however, apart from Irma, there
are large position errors. Thus for Connie the forecast keeps the cyclone over sea while it
has gone a long distance overland. For Damien, the model moves the cyclone closer to the
West Australian coast while the cyclone moves away from the coast. For both cyclones
- however, the model still maintains the cyclonic circulation and has a number of features
present in the verifying analyses. The two day forecast for Irma is reasonable although it
is weaker than analysed, particularly the low level wind field. The model correcily moves
the cyclone towards the western coast of the Gulf of Carpentaria and subsequenily moves it
over land. The two day forecast for Jason on the other hand is poor with little
correspondence with the analyses. ‘ '



4, CONCLUSION
The aim of Part I of the report is to document the performance of the ECMWF
analysis-forecast - system- in - depicting the main - features of - the tropical - circulation in - the

Australian region in the period January 10 to February 15 during which the Australian
Monsoon Experiment was conducted. The features included the onset of the Australian
summer monsoon, active and break periods in the monsoon and four tropical cyclones.

The model is successful in predicting the mean features during the period up to 3 days
ahead. The major deficiency is a marked weakening of the upper level divergent circulation
which appears to be related to the weakening in convective activity with time and
underestimation of the outgoing longwave radiation in the model. The ECMWF analyses are
in good agreement with independent BOM analyses in depicting the main changes during the
period such as the onset and active/break periods in the monsoon. - The model is able to
forecast the. monsoon onset correctly up to 24 hours ahead of time and provides impressive.
simulation of the subsequent episodes in the monsoon up to 48 hours ahead. The 24 hour
model forecasts are also able to depict the dramatic changes in ‘precipitation following the
onset and during the active/break periods. The model however is unable to retain low level
westerlies beyond 36-48 hours unless these westerlies are well established in the initial
state. The reason for this is not clear and this aspect clearly needs further investigation.
One possible reason could be the marked reduction in convective activity in the model with
time.

There are a number of encouraging features in the anaiyses of tropical cyclones given that
no particular attention has been paid to specifically handle TC's. The analysis system is
able to define the gross features and locate three out of four cyclones to within 1° to 1.5°.
However for TC Jason and at various times for the other cyclones there are location errors
at 2° or more. Such errors can lead to serious errors in forecasting' the future location of
the cyclones. The main reason for location errors is lack of data close to the cyclones and
rejection of useful data by the analysis system. Another consistent problem with the ECMWF
analyses of tropical cyclones is the underestimation of central pressures. This is caused in
large part by inadequate resolution which does not allow the inner structure of the cyclones
to be resolved adequately, lack of data and errors in the first guess field. The forecasts
for the cyclones mainly reflect errors in the initial analyses although this is not the sole
cause of forecast errors. There is considerable variability in the track forecasts starting
from initial conditions one day apart. Although the model forecasts the direction of motion
of the cyclones in the first 24 hours there are significant position errors. The forecasts, as
with the analyses, consistently underestimate the central pressures.



A number of factors contribute to the errors in the analyses and forecasts of tropical
cyclones namely, inadequate data, deficiencies in the analysis scheme in its ability to handle
tropical cyclones such as inappropriate first guess érrors, insufficient resolution and
inadequate parametrization of physical processes such as cumulus convection. The
sensitivity of analysis-forecast system to cumulus parametrization is considered in Part II
and the problem of data rejection and analysis resolution is considered in Part III of this
report.

Finally, it should be noted that there is a considerable amount of ongoing work at ECMWF
aimed at improving the performance of the analysis-forecast system in the tropics.
Modifications in the analysis scheme to allow divergent analysis increments which resulted in
significantly improved divergence analysis were implemented operationally in January 1988
(Undén, 1989). A revised filter for smoothing diabatic tendencies used in initialization was
implemented operationally in November 1988. The net effect of this revision was to retain
stronger diabatic forcing in the initialization (Puri, 1988). This, together with the use of
divergent structure functions should result in improved retention of the analysed tropical
divergent flow. A major change in the analysis scheme was implemented in July 1988. This
change involved the use of higher resolution structure functions whose net effect was to
increase the effective resolution of the analysis scheme from spherical wave number 24 to
spherical wave number 48 (see Lonnberg, 1988 for details). This change resulted in
significant impfovement in the ECMWF analysis and forecasts and could have significant
bearing on analysis of tropical cyclones (see Part III). Convective parametrization plays
an important role in the tropics and two schemes némely the Betis-Miller adjustment scheme
(Betts, 1986; Betts and Miller, 1986) and a mass-flux scheme (Tiedtke, 1989) have been
developed which lead to improved model performance in the tropics compared to the current
Kuo parametrization. The problems of underestimation of outgoing longwave radiation has
been addressed by the development of a new radiation scheme (Morcrette, 1988). The
mass-flux scheme and the new radiation scheme will be implemented operationally in
mid-1989. In the absence of data, bogussing of TC data is one important means of
reducing errors in the location of cyclones. A scheme to generate such data has been
developed and tested at ECMWF (see Anderson and Hollingsworth, 1988) and will be
implemented operationally. The overall impéct of the above changes could lead to improved
analyses-forecasts in the tropics.
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PART II: SENSITIVITY OF ECMWF ANALYSES-FORECASTS OF TROPICAL
CYCLONES TO CUMULUS PARAMETRIZATION

Kamal Puri and M.J. Miller

1. INTRODUCTION _
In Part I of this report the main problems associated with analyses and forecasts of tropical

cyclones were identified to be position errors and underestimation of the intensity of the
cyclones. One of the factors contributing to the forecast errors and to analysis errors
through inaccurate first guess is the parametrization of cumulus convection which is known
to have a strong influence on model forecasts in the tropics (see Puri and Gauntlett, 1988).
Another factor is insufficient model resolution. In this part the sensitivity of ECMWF
analyses-forecasts of tropical cyclones to cumulus parametrization is considered.  The
sensitivity of two forecasts, one each for tropical cyclones Imma and Jason to increased
model resolution will also be considered using a Amodel truncated at triangular wave number
159 (T159). This model has a resolution of approximately 130 km compared with a
resolution of 190 km for the T106 model. As in Part I only the cyclones which formed
during the period covered by AMEX will be considered.

2. BRIEF DESCRIPTION OF CUMULUS CONVECTION PARAMETRIZATIONS USED
Two cumulus parametrization schemes are compared, namely the operational (in 1987) Kuo

cumulus parametrization and the Betts-Miller parametrization (Betts, 1986; Betts and
Miller, 1986). The Betts-Miller adjustment scheme is based on an adjustment towards
quasi-equilibrium profiles of temperature (T) and moisture variable (q). Whereas most
adjustment schemes such as the Manabe convective adjustment scheme (Manabe et al., 1965)
adjust the (T, q) profiles to a saturated moist adiabat, the new scheme is designed to
ensure adjustment to more realistic (and observed) structures CI‘R, qR) within a
relaxation time scale of about one hour such that Tp is less stable than the wet adiabat in
the lower part of the troposphere and more stable above. dR is computed so as to maintain
realistic sub-saturations in a convective atmosphere. The interested reader is referred to
Betts and Miller (1986) for details of the scheme.

Results from the Betts-Miller scheme will be compared to the operational Kuo parametrization
scheme. The latter scheme as used at ECMWF has the following modifications which are
described in more detail in Slingo et al. (1988). Firstly the cloud base is defined as the
condensation level for near-surface air rather than that for air with the mean characteristics

of the well mixed layer which was used previously. The second change involves e



moistening parameter, B, which determines the partitioning between convective heating and

moistening. B is assumed to depend on the mean saturation deficit of the whole layer i.e.

IiBRH dp

T n

B=[1-(-———"T"7")]
Pg- Pr

where Pr and pg are the pressures of the top and base of the cloud and RH the relative
humidity, In its original form a linear dependency (n = 1) was used which tended to
over-moisten the environment and to underestimate the latent heat release. In the modified
scheme a cubic dependency on the environmental saturation deficit is used (n = 3). ‘

3. RESULTS

The current study covered two time periods namely 1200 GMT Jan 17 to 1200 GMT Jan 21 and
1200 GMT Feb 2 to 1200 GMT Feb 13. For the Betts-Miller scheme this required data
assimilation over the above periods. (The assimilation was in fact started two days prior to
the start of each period in order to minimise spin up problems associated with using a
different parametrization from an operational initial condition). Ten day forecasts were then
performed from the subsequent analyses at one day intervals. In both the data assimilation
and forecast steps, apart from the use of the Betts-Miller convection scheme, all other
parameters were as in the operational suite.

The period covered by the study included the four TC’s which formed in the Australian
region during AMEX. Fig. 1 shows the best tracks and intensites of the cyclones as
issued by the Australian Bureau of Meteorology (BOM). In the following, the operational
system will be referred to as KUO and the experimental system using the Betts-Miller
adjustment scheme as ADJ and the results will be presented in terms of the performance of
the analyses and forecasts in handling the four tropical cyclones.

a, Comparison of analyses

Tables 1 to 4 show the positions and intensities of the four cyclones as a function of time as
determined by the Bureau of Meteorology (BOM) and from KUO and ADJ analyses. Overall
the position errors relative to the BOM best estimates for the two schemes are similar with
the ADJ analyses providing marginally better locations for TC’s Irma, Connie and Jason and
the KUO scheme performing significantly better for TC Damien than the ADJ scheme which
had errors at 2° or more for this cyclone. The major difference between the analyses from
the two schemes is in the central pressures which (apart from TC Damien) are consistently
deeper in the ADJ analyses. The differences are particularly marked for TC Connie where
there are pressure differences of over 20 hPa between the two analyses. The differences
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Fig.1  Best tracks and intensities of TC’s Irma, Connie, Damien and Jason issued by the

Bureau of Meteorology. The legend is PPDDHH, where PP is central pressure, DD
is day of month and HH is hour (GMT).
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TROPICAL CYCLONE CONNIE - TRACKS

BOM KUO Analysis ADJ Analysis

Jan Lat Long Press Lat Long Press Lat Long Press
(S) (E) (hPa) | (S) (E) (Pa) | (S) (E) (hPa)

17/1200 | 17.1 121.9 994 174 1219 997 174 1214 993
18/0000 | 17.8  121.0 988 16.2  119.2 993 17.5  120.5 986
18/1200 | 185 119.2 976 173 1204 990 174 1204 981
19/0000 | 19.5 118.6 962 18.5 1195 991 186 1204 970
19/1200 | 20.5 1184 955 19.6  119.2 994 19.7 119.2 975
20/0000 | 22.0 1184 974 20.7 1194 994 20.8 1193 987
20/1200 | 235 118.2 980 23.0 1181 995 229 1192 991
21/0000 | 259 118.9 982 252 1193 994 25.5 1205 992

Table 1 Locations and central pressures for TC Connie obtained from BOM best
estimates, KUO analyses and ADJ analyses. Central pressures are in hPa.
TROPICAL CYCLONE IRMA - TRACKS
BOM KUO Analysis ADJ Analysis

Jan Lat Long Press Lat Long Press Lat Long  Press
(S E) (hPa) | (S) (E) (hPa) | (S) (E) (hPa)

19/0000 | 12.5 138.6 994 142 137.0 1004 13.0 1382 1002
20/0000 | 12.8 1374 987 13.0  137.0 1002 134 1372 998
20/1200 | 13.6 1359 984 154 1359 1002 142 136.0 996
21/0000 | 154 134.1 984 16.5 1345 999 16,5 1350 . 994

Table 2 Asin Table 1 but for TC Irma.
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TROPICAL CYCLONE DAMIEN - TRACKS

BOM KUO Analysis ADJ Analysis
Feb Lat Long  Press Lat Long  Press Lat Long  Press
(S B (Pa) | (S) (B) (Pa) | (S) (E) (hPa)
02/0000 | 15.6 1233 988 15.1 122.6 999 NA NA NA
02/1200 | 16.3 1225 984 184  121.6 997 NA NA NA
03/0000 | 16.7 1215 980 184 1204 993 NA NA NA
03/1200 | 174  120.6 982 174 1204 997 175 12.04 997
04/0000 | 17.5 1189 983 173 119.2 997 174 1204 997
04/1200 | 17.8 117.8 987 184 118.1 996 20.8 115.8 994
05/0000 | 18.1 117.6 991 173 1170 998 18.6 118.1 998
05/1200 | 187 117.2 992 184  118.1 998 20.7 115.8 998
Table 3 As in Table 1 but for TC Damien.
NA Not Available
TROPICAL CYCLONE JASON - TRACKS
BOM ‘ KUO Analysis ADJ Analysis
Feb Lat Long Press Lat Long Press Lat Long Press
(S (E) (hPa) | (S) E) (hPa) | (S) €2) (hPa)
09/0000 | 129 136.8 977 131 1359 1004 13.0 1384 1003
09/1200 | 13.0 136.2 984 143 137.1 1003 13.1 1382 - 1001
10/0000 | 12.6  136.1 990 143 1372 1005 13.0 137.1 1999
10/1200 | 13.1 136.2 992 * * * 142 138.2 999
11/0000 | 13.6  136.3 992 154 1347 1003 142 1383 998
11/1200 | 14.0 136.7 990 154 1345 1002 154 137.0 1000
12/0000 | 142  137.8 980 142 1359 1002 154 1370 999
12/1200 | 15.5 139.0 965 154 1383 1002 154 1383 997
Table 4 As in Table 1 but for TC Jason.

* Centre not well defined
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are better illustrated in Figs. 2(a) to (d) which show the MSLP and 850 hPa analyses at
particular times for the four cyclones. The adjustment analyses tend to have better

defined cyclonié circulations with deeper central pressures and stronger winds. Since the
data base for the two analyses was identical, the deeper pressures must come from the first
guess field in the assimilation cycle with the adjustment scheme. Although the adjustment
analyses have deeper ceniral pressures they are still too high compared to the BOM
estimates. This is not surprising for a number of reasons. Firstly, the BOM estimates
could have significant errors, secondly the analyses are consistent with the available
observations which do not indicate much deeper pressures (except for TC Connie which
had an observation of 968 hPa at 1200 GMT 19 Jan, which was rejected by both analyses)
and thirdly the model and analysis resolutions are clearly not sufficient to resolve the inner
core of tropical cyclones. The differences in analysed intensities of cyclones by the two
schemes are also clearly evident in Figs. 3(a) to (c) which show the 1000 hPa and 850 hPa
vorticity analyses for TC’s Connie, Irma and Jason. The ADJ analyses are significantly
stronger than the KUO analyses with localised cyclonic vorticity maxima in the region of the
cyclones and also have better consistency between the two vertical levels shown. Thus if
vorticity maxima were used to determine the location of the cyclone the results would be
significantly different if 1000 hPa or 850 hPa KUO analyses were used while those from the
ADJ analyses would be more consistent.

Figs. 4(a) to (d) show cross-sections of potential temperature-winds, vorticity and
divergence for the ADJ and KUO analyses at latitudes 12°S and 15°S which are close to the
analysed positions of TC’s Irma (1200 GMT Jan 20) and Jason (1200 GMT Feb 10). These
cross-sections also indicate the ability of the ADJ analyses to better isolate the tropical
cyclones in terms of stronger vdxﬁcity in the region of the cyclone and improved
consistency in the vertical of the vorticity and divergence. The divergence section for
example indicates convergent flow (negative values) in the low levels and divergent flow at
the higher levels for the ADJ analyses which is not as well defined in the KUO analyses.
The divergence profile implied by the ADJ analyses is bome out by detailed observational
studies of tropical cyclones (see McBride, 1981, for example).

A major problem with the KUO analyses ndted earlier in Part I is the rejection of data in the
vicinity of the cyclones. The same problem also occurs with the adjusiment scheme.  An
example of this is shown in Fig. 5 which shows the ADJ analysis for MSLP and 850 hPa wind
for TC Jason on 1200 GMT February 10. The analysis had a large position error at this
stage and a major reason for this error was the rejection of sea level pressure data at
station 94146 and 850 hPa wind field for station 94150 (Gove, 12°S; 130°E). These stations
were very close to the centre of the cyclone and station 94150 was one of the stations in the
enhanced data base where sondes were released every six hours and provided reliable and
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Fig.2a MSLP (top in hPa) and 850 hPa vector wind (bottom in ms?) analyses for TC
Connie at 1200 GMT Jan 19 1987 from the KUO (left panel) and ADJ (right panel)
systems. Contour intervals are 2 hPa and 5 ms? respectively for MSLP and
isotachs. The observations used by the analyses are also shown.
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Fig.3a 850 hPa (top) and 1000 hPa (bottom) vorticity analyses for TC Connie at 1200 GMT
Jan 19 from the Kuo (left panel) and ADJ (right panel) systems. Contour
intervals are 1 and 4 units respectively for the KUO and ADJ analyses.
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Fig.3b As in Fig. 3a but for TC Irma at 1200 GMT Jan 19. Contour intervals are 1 and 2
units respectively for the KUO and ADJ analyses.
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Fig.3c As in Fig. 3a but for TC Jason at 1200 GMT Feb 10. Contour interval is one 1
unit.
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Fig.5 MSLP (top in hPa) and 850 hPa vector wind (bottom in ms1) ADJ analyses for TC
Jason at 1200 GMT Feb 10 showing observations rejected by the analysis.
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useful data. A procedure to overcome the problem of rejection of useful data in the
vicinity of the tropical cyclone will be described in Part I11.

In summary, We note that the analyses of tropical cyclones show a marked sensitivity to the
cumulus convection parametrization used in the forecast model. The analyses from the
Betts-Miller adjustment system lead to stronger and better defined cyclonic circulations
which have better vertical consistency than the operational analyses.  Although both
analyses are in general consistent with the observed data the gross features of the ADJ
analyses are closer to the mean features reported in detailed composite studies "of tropical
cyclones (McBride, 1981).

b. Comparison of forecasts

The performance of the forecasts from the two schemes will be judged by comparing their
ability to provide guidance on the genesis of tropical cyclones from initially weak or no
cyclonic circulation and secondly to handle the motion of cyclones which were present in the
initial conditions. As has been mentioned before, the model being used here does not have
sufficient resolution to resolve the details of the cyclone structures and the inner core of
the cyclones. Thus the comparison here will only be in terms of the gross features.  Unless
otherwise stated the forecasts referred to as KUO forecasts start from operational
(i.e. KUO) analyses and use the KUO parametrization during the forecasts whereas the ADJ
forecasts start from ADJ analyses and use the Betts-Miller adjustment scheme during the

forecasts.

Figs. 6(a) to (d) show the one and two day KUO and ADJ forecasts starting from 1200 GMT
January 17 and Figs. 7(a) and (b) shows the starting and verifying KUO and ADJ
analyses for 1200 GMT January 17 and 19 respectively. —The period corresponds to
developments leading to the formation of tropical cyclone Irma on Jan 19 and the aim here
was to determine whether the forecasts have the ability to generate and intensify cyclonic
circulation in the Gulf of Carpenteria. The initial ADJ analysis has a low level cyclonic
circulation in the Gulf while the KUO analysis has very weak circulation. Both verifying
analyses are in reasonable agreement with respect to the location of TC Irma although the
ADJ analysis has a significantly stronger cyclonic circulation. The adjustment forecast
intensifies the cyclonic circulation in the Gulf during the two day period and deepens the
surface pressure, both features being in reasonable agreement with the verifying analyses
although the upper level flow is rather different. The KUO forecast however does not lead
to any intensification and there is mo indication of cyclonic development in the Gulf during
the forecast period. One reason for the differences in the forecast performance of the two
schemes can be seen in the forecasts for the lower and upper level velocity potentials and
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the vertical velocity., The ADIJ forecast generates good consistency of these fields in the
vertical with significant upward motion (negative vertical velocity) in the region of the
cyclonic circulation. The KUO forecasts on the other hand show little consistency in the
vertical with a very weak divergent circulation. This important difference appears to be a
systematic difference between the two systems for both analyses (not shown) and forecasts.
The lack of vertical consistency appears to be a major deficiency in the KUO parametrization
as used at ECMWF.,

Another reason for differences in the forecasts could be due to differences in the initial
conditions. Note that the ADJ analysis for 1200 GMT Jan 17 has stronger cyclonic
circulation in the Gulf,. These differences in analysis reflect the impact of the
parametrization scheme on the analyses via the first guess. However in order to provide
some indication as to which of the two factors (initial analysis or cumulus parametrization)
exert a stronger influence on the forecasts, two further forecasts were carried out.  The
first one started from the KUO analyses for 1200 GMT January 17 and had the Betts-Miller
adjustment scheme during the forecast (to be referred to as KUOADJ) and the second
forecast started from ADJ analyses and used the KUO parametrization during the forecast to
be referred to as ADJKUOQO). The two day forecasts are shown in Fig. 8. In both forecasts
the circulation in the Gulf is weak although the KUOADJ generates the stronger circulation
of the two forecasts . providing some evidence of the stronger role of the cumulus
parametrization on the forecasts.

Fig. 9 shows the two day forecast tracks for TC’s Connie (starting date 1200 GMT 18
January), Irma (starting date 1200 GMT 18 January) and Jason (starting date 1200 GMT
. February 10) at 12 hour intervals and Figs. 10(a) to (f) show the maps for one and two
day forecasts. When compared with the BOM best track estimates (see Fig. 1) the track
for the ADJ forecasts for TC’s Connie and Jason are better than the KUO forecasts whereas
the latter forecast was significantly better for TC Irma. The ADJ forecast for TC Connie
predicts landfall - at approximately the observed time and a significantly better track
for TC Jason which however still has large position errors that in large part appear to be
related to the location error in the initial analysis. As with the analyses, a feature of the
ADJ forecasts as evident in Fig. 10 is the stronger cyclonic circulation for all the cyclones
with stronger winds and central pressures which are 5-7 hPa deeper than the KUO
forecasts. Part of this is due to initial analyses having deeper central pressures;
however, for TC Irma the ADJ forecast intensifies the cyclone compared to initial
conditions. @ The KUO forecasts on the other hand appear to be unable to cause any
significant intensification. Another notable feature in the forecasts from the two schemes
is that the ADJ forecasts have marked consistency in the vertical between the divergent
circulation and the vertical velocity whereas the KUO forecasts do mnot show this
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consistency and have a somewhat noisy vertical velocity. An example of this feature which
was noted earlier for TC Irma (Fig. 6) is shown for the one day forecasts for TC's Connie
and Jason in Figs. 11(a) and (b). These features are also indicated in the cross-sections
for day 1 forecasts at latitudes close to the position of the TC's shown in Figs. 12(a) to
(d). Note the stronger vorticity and divergent fields in the vicinity of the cyclone in the
ADJ forecasts. '

The results presented above, show that the forecasts for. tropical cyclones show
considerable sensitivity to the parametrization of cumulus convection. This was also evident
in a limited number of forecasts run from the operational (KUO) analyses but using the
recently developed mass flux cumulus parametrization scheme (Tiedtke, 1989). Two day
forecasts for TC’s Connie, Irma and Jason are shown in Figs. 13(a) to (c). Compaﬁng
with the KUO forecasts in Fig. 10 clearly confirms the sensitivity to cumulus
parametrization; the mass flux forecasts produce somewhat more intense cyclonic systems
and also show the marked consistency in the vertical between the velocity potential and
vertical velocity which is also present in the ADJ forecasts. It should be noted that the
forecasts with the mass flux scheme are shown mainly to indicate sensitivity of TC forecasts
to cumulus convection and should not be interpreted in terms of the performance of this
scheme. Such an assessment can only be made by starting from initial analyses which have
been obtained through data assimilation using the mass flux scheme. Such a comparison is
beyond the scope of this paper. ’

As was indicated earlier, the model resolution used in all the results presented above is not
sufficient to resolve the details of tropical cyclones. A limited study to assess the impact of

increased resolution was conducted by carrying out two forecasts using the ECMWEF model
' truncated and triangular wave number 159 (T159). The first integration started from the
operational analysis (KUO) of 1200 GMT Jan 18 and used the KUO parametrization during the
forecast. The second integration was from the ADJ analysis of 1200 GMT Feb 10 and used
the Betts-Miller parametrization during the forecast. The one and two day forecasts are
shown in Figs. 14 and 15. The forecasts from Jan 18 for TC’s Connie and Irma shows little
sensitivity to increased resolution except for slight intensification in the cyclones. Part of
the reason for this lack of sensitivity could be the systematic inability of the KUO scheme
as used at ECMWF to intensify existing cyclonic systems in the tropics. The forecast from
Feb 10 which used the Betts-Miller parametrization shows significant sensitivity. The T159
forecast intensifies the cyclone relative to the T106 forecast (see Fig. 10) and maintains a
much better definition of the cyclomic circulation. Given that the initial condition of the
forecast had a relatively large position error, the T159 forecast track is impressive with
the position errors being mostly explained by the initial error. The T159 forecast also has
considerably more detail. This is particularly- the case for the upper level wind field
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where, for example, there is a pronounced upper level trough at day 1 in the region of the
cyclone which is not so evident in the lower resolution forecast. Such upper level troughs
are considered to have a significant impact on the future development and motion of tropical
cyclones (Holland, private communication). The greater amount of detail is also evident in
the one day vorticity forecasts shown in Fig. 16(a) to (c) and precipitation forecasts shown
in Figs. 17(a) and (b). Verification of precipitation forecasts: is difficult because of lack of
data. The GMS pictures for 1200 GMT Jan 19 and 1200 GMT Feb 11 are presented in
Figs. 18(a) and (b) to indicate qualitatively regions of cloudiness during the forecast
periods considered above. Both the T106 and T159 forecasts have most of the feature
present in the GMS pictures and the ADJ forecasts appear to produce larger amount of
precipitation compared to the KUO forecasts.

The limited case studies presented here indicate sensitivity of model forecasts to increased
model resolution. However much more work needs to be carried out before any firm
conclusions can be made. More case studies are clearly needed, possibly with analyses also
generated using the high resolution model. Such work could probably be carried out with a
limited area model although the role of large scale flow which is better handled by global
models will need to be clarified.
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Fig. 16a One day T106 (left panels) and T159 (right panels) forecasts for TC Connie
starting from KUO analysis of 1200 GMT Jan 18 for 850 hPa (top) and 1000 hPa
(bottom) vorticity. Contour intervals are 1 unit,
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Fig. 16c As in Fig. 16a but for forecasts for TC Jason from ADJ analysis of 1200 GMT Feb
10. :
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Fig. 17a One day T106 (top) and T159 (bottom) precipitation forecasts starting from KUQ
analysis of 1200 GMT Jan 18. Units are mm day! and contours plotted are 10, 30,
50, 70 and 100. Increasing shading levels denote increased precipitation.
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Fig. 17b Asin Fig. 17a but for forecasts starting from ADJ analysis of 1200 GMT Feb 10.
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4.  DISCUSSION

A major feature which emerges from this study is the marked sensitivity of both analyses

and forecasts of tropical cyclones to cumulus convection'parametrization. The Betts-Miller

scheme leads to significantly stronger and better defined cyclonic circulations which have

better vertical consistency than the operational analyses and forecasts based on KUO

convective parametrization, The reason for these differences is not clear and needs

further study. An obvious conclusion could be that the Betts-Miller scheme works well for
tropical cyclones and points for future directions for cumulus parametrization research.

However, there is another possible interpretation for the more intense analyses of tropical

cyclones and short term forecasts. A feature of the Betts-Miller scheme as used at ECMWF

is that it has a systematic spin-up signature where there is excessive precipitation in the

first few hours of model integration.  This should generate strong lower tropospheric
convergence and hence given intensification of a pre-existing vortex. The Kuo scheme as

used at ECMWF also has a typical spin-up signature which is rather different from the
Betts-Miller- scheme. In the Kuo scheme, there is an excess of precipitation over
evaporation for the first 2-3 days although the precipitation does not reach its maximum till
1-2 days of integration. Thus for the six-hour analysis-forecast cycle and short range
forecasts the Kuo scheme does not trigger sufficiently to impact significantly on any
pre-existing vortex. This would also lead to the lack of vertical consistency noted for the
Kuo based analyses and forecasts. It should however be noted that in addition to cumulus

parametrization, the spin-up in numerical weather prediction models is a function of a
number of factors such as the level of dynamic and thermodynamic consistency between
variables such as divergence, temperature and moisture retained by the analysis scheme.

These factors' need to be considered in order to resolve the two different viewpoints

mentioned above.

It should be emphasized that there are a large number of varations in the Kuo
parametrizations as used at various institutes and the results presented here only apply to
the Kuo scheme as used at ECMWF. The performance of the scheme is sensitive to a number
of factors such as the moistening parameter B and the definition of the cloud base, for
example. This sensitivity and its impact on the precipitation of the 1979 summer monsoon
onset by the ECMWF .model has been documented by Slingo et al. (1988). Akyildiz (Private
communication) performed a limited study on the simulation of tropical cyclones in the
ECMWF operanonal model during September to November 1986 (most of the physical
parametrizations used were similar to the ones used in the current study, the main
difference being that gravity wave drag was not included). He concluded that the model
developed fewer and weaker tropical cyclones than the previous operational models (T63
spectral and the N48 grid point model) although the higher resolution T106 model would be
expected to give a better representation of the storms. It” was therefore suspected that the
modifications in physical parametrizations made in 1985 inhibit the development of these
intense tropical features. The features of the current study are therefore consistent with
the earlier study.
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5. CONCLUSION

In Part II the sensitivity of analyses and forecasts of tropical cyclones to cumulus
parametrization and model resolution (forecasts only) wés studied. Two parametrization
schemes were compared, namely the operational Kuo scheme and the Betts-Miller adjustment
scheme although a limited number of forecasts with the mass flux scheme of Tiedtke (1989)
were also considered. The sensitivity of forecasts to model resolution was evaluated by
comparing forecasts using T106 and T159 versions of the model.

Both analyses and forecasts of tropical cyclones considered here show considerable

sensitivity to cumulus parametrization. The ADJ analyses and forecasts generated

more intense cyclonic systems as indicated by maps of sea level pressure, low level winds
and vorticities and cross-sections in the neighbourhood of the cyclones which are in closer

agreement with the BOM estimates although, apart from TC Connie, analyses from both

schemes are consistent with the observed data. For TC Connie there was an observations
close to the centre of the cyclone which supported the BOM estimate. It should be noted,

however, that both analyses rejected this observation. The cyclone location errors for both

analyses systems are similar ranging from 1° to 2° and are larger for forecasts whiéh show

considerable variability with respect to initial conditions.  The forecast position error

strongly reflect errors in the initial conditions although this is not the sole cause of the

forecast errors. Of the two cases considered here, the forecast for TC's Connie and Irma

did not show much sensitivity to increased model resolution. TC Jason however showed

significant sensitivity with the T159 model forecast showing considerable improvement; the

main error of location in this forecast mainly reflected errors in the initial conditions.

Major problems however still remain which will need to be addressed before global systems
such as the ECMWF analysis-forecast bsystems can provide satisfactory analyses and
forecasts for trdpical cyclones. The main problem lies in improving the location of the
cyclones by the analysis system. A major conﬁibuﬁng factor to this problem is the lack of
adequate data in the region of the cyclone. One way of reducing this problem is to
generate bogus data based on satellite imagery, for example;_ and information about wind
profiles in tropical cyclones obtained from observational studies.  Such procedures are
already in use at opérational centres such as the UKMO and Japan Meteorological Agency and
have been studied for the ECMWF system by Andersson and Hollingsworth (1988). However
even when data is available there is the problem of rejection of useful data in the vicinity of
the cyclone by the analysis scheme. Examples of this rejection were given for TC's Connie
and Jason which contribute to position errors. This rejeéti_on of data occurs because of
errors - in the first guess, the structure functions used in the analysis scheme not having
sufficient resolution and the use of inappropriate parameters such as forecast error
variances and quality conirol limits for tropical cyclones. The latter factors are considered



in Part Il of this report. The first guess errors and the forecast errors are caused by
analysis errors, inadequate parametrization of physical processes and insufficient model
resolution. Some of these factors have been considered in this part of the paper which
point to the need to improve the parametrization. of cumulus convection and to increased
model resolution. The fapid progress in compuier engineering should allow considerable
increases in model resolution while parametrization studies could benefit from more
observational data such as collected during GATE and AMEX and through intercomparison
studies with different parametrization schemes and models.
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PART III: USE OF HIGH RESOLUTION STRUCTURE FUNCTIONS AND
MODIFIED QUALITY CONTROL IN THE ANALYSIS OF TROPICAL CYCLONES

Kamai Puri and P, Ldnnberg

1. INTRODUCTION -
In Parts I and I of this report it was shown that the ECMWF analysis system has
considerable problems in locating the position of tropical cyclones because of the rejection

of reliable data. This rejection of data occurred because of. errors in the first guess used
by the analysis and partly because the structure functions used in the analysis did not
have sufficient resolution to resolve small scale features such as tropical cyclones. The
rejection of data is based on the notion that large observation-background- departhrcs are
caused by gross observation errors. ‘The rejection limits are tuned statistically to reflect
average conditions and, consequently, certain atmospheric events which are poorly
captured by the background field, can cause rejection of good data. ' ‘ ' '

The errors in the first guess could have been caused by a number of factors, the main ones
being deficiencies in the parametrization of cumulus convection -and insufficient model
resolution. These factors were considered in Part II. The aim of Part Ol is to firstly
assess the impact of high resolution structure functions in the analysis of a tropical
cyclone. A second aim is to assess the impact of forcing the analysis to accept data in a .
limited domain around the tropical cyclone. An obvious application of this would be the
inclusion of bogus data for tropical cyélones in' current data assimilation systems (see
Andersson and Hollingsworth, 1988). ' |

A description of some features of the high resolution structure functions together with the

forcing of data is given in section 2 followed by results of various experiments in section 3
and a discussion in section 4. ’
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2.  BRIEF DESCRIPTION OF AN EXPERIMENTAL HIGH RESOLUTION ANALYSIS (HRA)

Only a brief description of the HRA scheme, which became operational in July 1988, will be
given here. The interested reader is referred to Lonnberg (1988) for details. The
effective analysis resolution has been enhanced by changing the response properties of the

optimum interpolation (OI) scheme. Several modifications to the operational analysis have
been made (LOnnberg, 1988), but only those which are of interest to the tropical analysis
are discussed in the following. h

The horizontal forecast error correlations are modelled by a series of Bessel functions:
N : ' ' .
2 AnTo (eyeD) | | o)
n=

where subscript n is the radial mode, An the amplitude of mode n, r the distance and D
the maximum data selection radius. The wavenumbers kn are chosen such that the
derivative of Jo is zero at r=D. Expansion (1) includes a constant term (mode. 0) with
k=0. The spectrum of the analysis response is controlled by D and N, and the spectrum
An' The parameters D and N define the smallest wave that can be seen by the analysis.
For a given value of D, an equivalent spherical wavenumber can be defined for every mode
in (1). '

The control funs, i.e. the operational (pre-July 1988) analysis, used N=5, while in the HRA
runs N is set to 8. In the operational system, D is approximately 4400 km at 15°S which
means that radial mode 5 corresponds to spherical wavenumber 24. In the HRA scheme, D
" is about 3400 km and mode 8 then c;orrésponds to spherical wavenumber 48. The preferred
response to wind data can be inferred from the forecast error correlations for wind.
Figures 1a and 1b show the operational and HRA correlations for the
lbngimdinal-longimdinal wind (L-L) and for (transverse-transverse wind (T-T)
respectively. The length scale of the correlations has been substantially reduced in HRA.,

The other major change relative to the control runs is the retuning of the forecast error
variances with the latest data assimilation statistics. A significant increase in the specified
lower tropospheric wind forecast error leads to substantially lzirger weights being given to
wind data. The vertical wind forecast error correlations have been subject to only a minor
retuning in the tropics. ‘

The ECMWF analysis scheme has two types of data quality control checks. The observation

is, in both tests, compared to an independent estimate of the observed quantity at the
observation position. If the difference between the observation and the independent
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Fig. 1a Operational (dashed) and high resolution ahalysis (solid) correlations for the
longitudinal - longitudinal wind (L-L) at 15°S.
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estimate exceeds some predefined tolerance then the observation is assumed to be in error
and rejected. These tests are, however, of little use when the error of the independent
estimate is large relative to the observation error or when the estimated accuracy of the
independent value is seriously in emor. Proper tuning of the rejection limits is a
necessary prerequisite for obtaining good analysis response to data.

The standard quality control limits are too stringent for observations in the vicinity of
tropical cyclones. This would cause rejection of good data because of deficiencies in the
first guess, for example. In the current study, the tropical cyclone under consideration
(tropical cyclone Jason) formed in the Gulf of Carpentaria in Northern Australia. To avoid
rejection of correct data, the quality control in the HRA scheme for observations in the
region of the Gulf was relaxed and a very coarse check was made on the data. This
ensured that ail data, particularly wind data, in the vicinity of the cyclone were accepted

by the analysis.

The check against the background value, ie. the first-guess check, is intended to
identify and reject observaiions with gross errors. Then the main burden of the quality
control is carried by the test against an independent analysis using neighbouring
observatons. The usefulness of these checks is reduced by shortcomings in the forecast
model in predicting extreme atmospheric events. A large departure caused by a poor
background field might erroneously be regarded as a corrupt observation and rejected.
Structures, like the core of a tropical cyclone, which cannot be resolved in the model can
also not be resolved by the analysis as it tries to ainalyse data onto the model grid. Nor are
these structures resolved in the independent analysis for quality control and therefore that
. test will reject many observations which represent shorter scales than can be resolved by
the analysis. The énalysis therefore rejects Adata on structures it cannot resolve on the
model grid (Lorenc, 1981) consistent with its underlying assumptions.

Besides the use of HRA, the experiments reported here use the Betts-Miller adjustment
scheme (Betts and Mi]ler, 1984) to parametrize cumulus convection, rather than the Kuo
parametrization used operationally. ‘This scheme was used because it is found to produce
better simulations of tropical cyclones in ‘the Ausiralian region (see Part II) than the
operational scheme.
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3. RESULTS

Two data assimilation experiments for the period 0000 GMT 8 February 1987 to 1200 GMT 13
February 1987 were carried out. In the control experfment (to be referred to as CNTL)
~the operatiohal analysis scheme was used, whereas in the second experiment (to. be
referred to as HRES) the high resolution analysis together with the modified quality control
‘was used to ensure that all wind data and most mass data in the region of the Gulf of
Carpentaria were accepted by the analysis. Both experiments used the Betis-Miller
~ adjustment scheme. The period of assimilation covered part of the life cycle of tropical
cyclone Jason which formed in the Gulf of Carpentaria on' 7 February and lasted until 13
February. During this period the cyclone was within the enhanced data network of AMEX
and was well observed. - Figure 2 shows the best track for the cyclone, issued by the
Australian Bureau of Meteorology. '
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Fig.2 Track of tropical cyclone Jason.
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Figures 3 to 6 show the sea level pressure and 850 mb wind analyses from the two
assimilations at 12 hour intervals starting from 1200 GMT 10 February 1987. The format of
the figures is such that the left hand panels show the analyses from CNTL and the right
hand panels from HRES. . The upper panels indicate data not used by the analysis and the
bottom panels show the data accepted unconditionally by the analysis. In the upper
panels, flags of zero indicate that the data were not considered useful for the analysis,
whereas flags greater than zero indicate rejection of data because of assumed poor quality.
The main feature to note in the figures is that some sea level pressure data are flagged
with zero because observations from the same station closer to the analysis -time were
available. No wind or mass data are rejected in HRES. On the other hand, in CNTL some
mass and wind data in the vicinity of the cyclone are rejected. In particular, note the
rejection (Fig, 3b) of the 850 mb wind at station 94150 (Gove; 12°S, 137°E) on 1200 GMT 10 4
February. From 1200 GMT 10 February to 1200 GMT 11 February the positions of the
cyclone in HRES are much closer to the ’observed’ best track than in CNTL which places
the cyclone too far to the east. The position error in CNTL analyses, which can be as
large as 3°, will have an impact both on the subsequent analyses (through errors in the
first guess) and on forecasts of the cyclone track, The figures indicate that the use of
HRA together with forced insertion of data have the potential to improve the analyses of
the positions of tropical cyclones and suggest that using bogus data for tropical cyclone
analyses, as done at institutes such as UKMO, could be beneficial. ‘
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Fig. 3a Sea level pressure analyses from CNTL (left column) and HRES system (right
column) for 1200 GMT February 10. Upper panels indicate data not used by
analysis scheme and bottom panels show data accepted unconditionally by the
analysis. Units are mb and contour interval is 2 mb. The surface pressure from
station 94146 was used in HRES but not in CNTL. The observed sea level pressure
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The HRA scheme is designed to give a more detailed description of the flow and it should
show improved agreement between the observed and analysed wind field. Figs. 7a to 7c
show the observed wind (magnitude and direction) together with the first guess, analysis
and initialised analysis at three stations around the Gulf of Carpentaria. In general, the
high resolution analysis is able to reduce the forecast errors (ie. first guess errors)
substantially and the analysed wind agrees reasonably well with the observations whereas
the response of the CNTL analysis is not satisfactory. Although the HRA scheme draws to
within the expected observation errors, it is still not able to cope adequately with strong
vertical shears. This is evident for station 94150 (Fig. 7a) where the strongest flow is
observed near the top of the boundary layer with a marked decrease of the wind speed
above it. The first guess for the CNTL system shows a rather uniform structure of the
wind field which is not significantly altered by the analysis. The first guess for this
station in the HRA system has more structure in the boundary layer but overestimates the
wind speed in the free atmosphere. The high resolution analysis in this case reduces the
error substantially although it does not adequately handle the strong vertical shear. ' "

The improved response by HRA to upper air data has a clearly positive impacf on the
assimilation of the cyclone when verified against observations from stations 94190 (Fig. 7b)
and 94192 (Fig. 7c). In particular, the HRES short range forecast agrees well the observed
wind speed and directién at station 94190. The CNTL short range forecast produces uniform
wind profiles at stations 94190 (Fig. 7b) and 94192 (Fig. 7c¢) which verify poorly against the
observed winds. In .a_ddition to the poor CNTL first-guess, the analysis response by the
CNTL scheme is very weak at these stations, while the HRES scheme produces a satisfactory
analysis of the wind profile.

A feature of the wind speed profiles shown in Fig. 7 is that the initialised analyses retain
most of the information present in the uninitialised analyses indicating that the additional
details present in the HRA scheme survive the initialisation step. This feature, which is
consistent with geostrophic adjustment theory according to which the mass field should
adjust to the wind field in the tropics, and on small vertical and horizontal scales, has-
implications for bogusing of tropical cyclone data. The results shown above suggest that
this should be done for the wind field in preference to the mass field (see Andersson and
Hollingsworth, 1988).
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In order to indicate the impact of HRA analyses on model forecasts, Figs. 8a and 8b show
24 hour forecasts starting from 1200 GMT 10 February and 11 February 1987.  The
forecasts from the CNTL and HRES analyses are shown in the left and right hand panels
respectively. ‘The forecasted cyclone positions and depths can be verified against the best
track shown in Fig. 2. The initial location of the cyclone for both days in the CNTL
analyses was too far to the east with a position error of 2° to 3° as compared to the best
track position. The initial location of the cyclone in the HRES analysis for 10 February is
analysed to be somewhat south of the best track while the analysed location for 11 February
agrees with the best track position fairly closely. The 24 hour forecasts from 10 February
for both systems show significant position errors. The forecast from the HRES analysis of
11 February is much closer to the best track position than that from the CNTL analysis
which is located too far to the south, a feature which again reflects the error in the initial
condition. Forced insertion of critical radiosonde winds, which were rejected in CNTL,
combined with improved analysis response to wind data in HRES produced a more accurate
analysis of the cyclone in HRES than in CNTL. |

The results presented above indicate some sensitivity of model forecasts of tropicai cyclone
motion to initial conditions, particularly the analysed location. The two forecasts from the
HRES analyses show that the improved location does not necessarily lead to better
forecasts. This is perhaps not surprising since there are other factors which also affect
the motion of the cyclone. The wind profile in the region of the cyclone could affect the
future development of the cyclone and the structure functions used here probably would
filter the finer details of the observed profiles. Apart from analysis sensitivity, the motion
of a cyclone is  also sensitive to other factors in the model, namely resolution and
. parametrization of physical processés particularly cumulus convection. This sensitivity was
described in Part II. All these factors will need to be considered before improved model
forecasts of tropical cyclones can be made.
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4. DISCUSSION , ; ‘ ,

With increasing resolution of global models used operationally and for research, spécial
attention will . have to be devoted to the treatment of tropical cyclones by the
analysis-forecast systems. One important component is the analysis of tropical cyclones.
Although the resolution of the models and the data base is clearly not adequate to define
the detailed structure of the cyclones, the anaiysis system should be able to provide
reasonable location of the cyclones and a reasonable description.‘ of the large scale
environmental flow. The aim of the current study was to | address thlS quesﬁon for a
tropical cyclone which was relatively well observed. It was shown that even with a
reasonable data coverage the 1987 ECMWF operational analysis scheme performed poorly in
locating the tropical cyclone. This was mainly due to i) iejection of good data because of
inadequacies in the first guess and ii) thei quality control limits befng 100 stringént in the
vicinity of the cyclone. In this study the problem of data rejection was overcome by
altering the quality control checks to ensure that all data, particularly wind data, in the
region of the cyclone were accepted by the analysis and by using high resolution structure
functions to improve the response to these data.  This procedure resulted in much
improved location of the tropical cyclone. There was also greater detail in the  analysed
wind profile, in better agreement with the observed data. The greater detail was retained
during initialisation, which is important as it suggests that the extra detail can be retained
by the model.

The current study is based on a well observed tropical cyclone, which is not a typical
situation. Apart from limited regions such as the ‘eastern seaboard of the USA, cyclones in
general tend to be poorly observed -and the available information on location (and' strength)
is based on satellite imagery. Even this limited information could be usefully applied in
correcting the location of the cyclone:  Secondly, a set of bogus or synthetic data,
particularly of the wind field could be generated in the region of the cyclones with the
wind profiles based on results of previous studies of a large number of tropical cyclones
(see for example Frank, 1977). The procedure suggested here is in fact used operationally
at the UKMO, and has been tested successfully at ECMWF. In order to make optimal use of
the generated bogus data, the high resolution analysis system described in the current
study could be used to ensure that the data is not rejected, as was done by Andersson and
Hollingsworth (1988).
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s. CONCLUSION

Global models such as those used at ECMWF have attained resolutions where small scale
systems such as tropical cyclones are beginning to be' resolved. Because of the large
diversity of the spatial scales and the scope of physical processes involved, tropical
cyclone prediction using numerical models raises special problems which will need to be
addressed. One such problem is the analysis of these small scale systems, particularly the
location of these systems. In this study the sensitivity of analysis of a well observed
tropical cyclone to higher resolution structure functions and forcing of data in the vicinity
of the tropical cyclone is studied. It is shown that these changes in the analysis system
lead to much improved location of the cyclone. The high resolution analysis structure
functions are also able to depict more structure in the vertical, although strong wind
shears are still not satisfactorily analysed. The procedure described here has obvious
applications to using bogus data for tropical cyclone analysis in regions where the data
base is inadequate.
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