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I. Introduction

A number of approaches can be taken in attempting to review methods for space
discretization of the atmospheric primitive equations. A historical account of
the achievements during the past 10 years of operational medium-range
forecasting is one possibility and a general overview of the methods used
another. But inview of the availability of other material such as the GARP
Publications Series volumes on numerical methods (Mesinger and Arakawa 1976,
WMO/1CSU 1979), the proceedings of the ECMWF 1983 seminar (ECMWF 1984) as
well as those of the ECMWF workshop on horizontal discretization published
only about a year ago (ECMWF 1988) perhaps the best we can do in a one hour
lecture is attempt to review very recent work as well as concerns which

- currently exist regarding various aspects of space discretization. Our shopping
list of developments and issues to talk about will in fact be rather like the
Report of Working Group 1 of the mentioned workshop and is as follows.

e  The spectral transform method. While most medium-range modelers are
perhaps generally pleased with the performance and capabilities of the spectral
transform method for global discretization concern is being expressed regarding
the increase in relative computational cost of the Legendre transform as the
horizontal resolution is increased. Accordingly, reexamination of the spectral
technique against possible competing techniques is receiving a renewed
attention (e.g., ECMWF 1988, Report of Working Group 1),

¢  Semi-Lagrangian schemes. A number of benefits has been demonstrated to
come or is expected to come from the use of the semi-Lagrangian schemes.

They offer the prospects of economy through time steps not limited by the CFL
condition and do not suffer from the pole problem of the currently used
finite-difference methods. Accuracy in the advection of spatially rapidly
varying fields (e.g., moisture) is yet another feature that hopefully can be
achieved (e.g., Williamson and Rasch 1988, 1989). |

* Lecture presented by F. Mesinger (present affﬂiatvon Institute of Meteorology, College of Physics,
Belgrade, Yugoslavia) -
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®  Representation of sharp gradients. Difficulties with the generation and
advection of sharp features is a long-standing problem of the finite-difference
method. More recently attention has been focused on the need to avoid creating
new minima and also new maxima in the linear advection process.
Characteristic-based technigues developed and extensively used outside
meteorology seem to represent a very powerful method free of such problems.

®  forcing at individual grid columns. Methods used for horfzontal
discretization in weather prediction models have serious deficiencies in
treating forcing performed at individual grid points (points of the transform
grid of spectral method) and yet changes due to parameterization of physical
processes are applied at individual grid points. Ina recent paper (Janji¢ and
Mesinger 1989) we have demonstrated that a given single grid point forcing can
have a profoundly different effect for two types of horizontal discretrization
both of which are commonly used in prediction models.

e  The pole problem. The polar filtering used in latitude-Tongitude global
finite-difference models is time consuming and obviously not appealing also for
other reasons (e.g., filtering of some of the effects of physical forcing).” In
addition, the mere coverage of the sphere in a latitude-longitude fashfon
involves a computational overhead of more than 30 percent (5t/2) compared to a
hypothetical uniform grid.

e  The sigma system problem. We have repeatedly writfen on the pressure
gradient force errors in finite-difference sigma system models (e.g., Mesinger
and Janji¢ 1987b). In a recent note (Janjic 1989) it was shown that in a number
of examples use of the spectral method was associated with the pressure-
gradient force errors in the rms sense larger than those of a simple finite-
difference scheme. Other sigma system problems are known (Simmons and
Burridge 1981; Simmons and Strifing 1981) or being looked into (Bleck and Peng
1989).

@  Conservationof integral quantities. Since its introduction by Arakawa
(1966) the principle of the conservation of chosen integral quantities in
“particular of enstrophy and kinetic energy in order to control the energy cascade
has perhaps been gaining a steadily increasing recognition. Possibilities for the
maintenance of various properties of the continuous equations are associated
with the choice of the horizontal grid however and it is only for (Arakawa) grids
C and B/E that advection schemes enforcing a strict control of the energy
cascade were shown possible (Arakawa and Lamb 1981; Janji¢ 1984). But there
are examples of the nonstaggered grid being chosen for its reported ease of the
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nnplementation of the fourth-order accuracy schemes (Purser and Leslie 1988).

In the remaining part of this lecture we shall
(@)  discuss at somewhat greater length each of the listed issues, at the same
time reviewing some recent as yet unpublished work (in particular work on the
Characteristic-based techniques and on the pressure gradient force errors of the
spectral transform method), and
(b)  show examples and some verification statistics of forecasts believed to
derive their success relative to control forecasts primarily as a result of the
differences in space discretizations used. The forecasts will be of

(1) an outbreak of a very cold air into mid-western United States in early
February 1989, and

(2) convective precipitation patterns during the period 16 June - S July
1989, including the landfall and about four days of quasi-stationary movement
over southern Texas and Louisiana of the tropical storm Allison,

2. The spectral transform method

in the present ECMWF T 106 operational code Legendre transform takes about one
fifth of the total computation time. If no new developments are forthcoming
and the resolution of the next operational model is T213 or similar this fraction

will increase to somewhat over two fifth of the time (Simmons, personal
communication).

Two alternatives to the spectral transform method have recently been
considered by Browning et al. (1989). One of them was a "vector-transform"
method, formulated in terms of the horizontal velocity components rather than
in terms of the vorticity and divergence. This avoids raising the differential
order of the equations. The Legendre transform is not avoided but the authors
nevertheless find that the operation count for the vector method is about 30-
percent Jower than that for the conventional spectral method.

It a uniform accuracy over all of the globe is not required one can take

advantage of the conformal transformation of Schmidt so as to achieve a higher

resolution over the area of interest only. This has recently been tested in a
global shallow water model by Courtier and Geleyn (1988).

Various options being considered it may be appropriate to have a more general
1ock at the properties of the spectral method irrespective of the matter of
economy. Two of its most impressWe features which have led to the current
widespread adoption of the method for medium range forecasting are those of
the method having
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* no phase speed error in linear advection; and
* 1o pole problem.

On the other hand, we believe that as it is customarily used the method is not
free of aspects to be concerned about, as follows.

* Effects of "physics” are calculated on the transform grid which is not
completely resolved in spectral space. It is thus to be expected that in each
transformation some of the effects of physics are lost. One alternative to over-
resolution (to avoid aliasing) is in fact being used, although not in weather
prediction models; it is exact energy conservation (e.g., Farge and Sadourny
1989).

* The method is known to have some numerical problems; the Gibbs
phenomenon, and as mentioned and will be elaborated in more detail later,
errors of the pressure gradient force.

* The method has little regard for the physical content of the governing
equations. It is based on the idea of global representation using chosen basis
functions. This is in conflict with the parameterization of physical processes
in which values at points of the transform grid are treated as volume averages.
Note that a simple two-point finite-difference quotient is less subject to this
objection since for two neighboring points its value is consistent with the
interpretation of grid point values as volume averages.

3. Semi-Lagrangian schemes

In recent years a very substantial effort has been devoted to the development of
semi-Lagrangian schemes. They can be (and have been, or are being) applied in
finite-difference, spectral and finite-element models. As stated, three
objectives have and are being pursued: economy, removal of the pole problem of
finite-difference methods, and accuracy in the advection of spatially rapidly
varying quantities (e.g., moisture, cloud water, turbulent kinetic energy and,
perhaps, some contaminants that one might wish to monitor in the model),

The essence of the semi-Lagrangian schemes is discretization along
trajectories and they are thus a combination of space and time differencing.
They will for this reason also be covered in the lecture by Burridge further in
this volume. We shall therefore restrict ourselves to comments which we feel
are needed for putting the remaining parts of our lecture in perspective.

Starting with the pioneering work of Robert (1981, 1982) and Bates and

McDonald (1982) it has been repeatedly demonstrated using various designs of

the semi-Lagrangian schemes that successful integrations are possible with

very long time steps. Tests have been performed either in idealized cases with
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a small scale disturbance being advected by the large scale flow, or,
alternatively, in complex atmospheric models. For time steps which were not
excessively long no visible loss in accuracy has been reported.

If however in reality there are appreciable velocity changes with time scales
less than the chosen time step accuracy of the trajectory calculation will be
poor. The accuracy of the trajectory calculations being thus the critical point
with long time steps, the tests with small scale disturbances advected by large
scale flow do not improve our understanding of the possible problems with such
schemes. On the other hand, the effects of the application of semi-Lagrangian
schemes in complex models are obscured by the presence of a number of other
processes so that important errors occurring at some places some of the time
may be hard to notice, Regarding idealized tests, we believe that severe low
resolution experiments like those of Sadourny (1975), Janjic (1984) or RanCic
and Nickovic (1988) would reveal if indeed there are no demerits of semi-
Lagrangian schemes compared to sophisticated schemes based on other
approaches.

Regarding models with comprehensive physics, we are concerned about the
deceleration of gravity-inertia waves due to the use of very long time steps.
This in turn leads to overestimation of the part of the forcing which remains in
the large scale flow, and underestimation of the part which disperses away as
gravity-inertia waves (Janji¢ and Wiin-Nielsen 1977). While our simulation of
the geostrophic adjustment process may not today be entirely satisfactory one
would Tike to expect that with still higher horizontal resolution and perhaps
also better numerical schemes it shall eventually improve so that these issues
_ may gain in importance.

One should moreover have in mind that the part addressed by the semi-
Lagrangian approach is typically not the one most demanding in computer time.
In comprehensive prediction models physics tends to be more expensive than the
dynamics, and physics can hardly be expected to become simpler as the models
are refined. Physics however can be and frequently is performed at a variety of
time steps chosen for physical and not for computational reasons. In say the
National Meteorological Center (NMC) eta model, to be outlined in more detail
later, with physical parameterizations typical of the state-of-the-art models
physics takes more than two thirds of the total computation time in spite of
being highly optimized in terms of coding and various time steps used. Gravity-
inertia and advection parts which are limited by their respective CFL conditions
take about one fourth of the time. Thus, possibilities for savings in eliminating
the CFL restrictions on these parts of the code are modest.
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It is only somewhat later in the development of the semi-Lagrangian schemes
that their ability of removing the pole problem of global finite-difference
models has been emphasized (McDonald and Bates 1988; Bates et al. 1989). As
stated, the latitude-longitude grid along with a filtering procedure is
associated not only with a severe computational expense but also with a
degradation of the numerical solution, The most recent discussions of the
sub ject may be those of Purser (1988a, 1988D).

Improved accuracy in the advection of spatially rapidly varying fields is yet
another objective of the work on the semi-Lagrangian schemes (e.g., Williamson
and Rasch 1989; Ranci¢ and Sindi¢ 1989). As this objective is common to a
variety of methods we shall cover it as a separate subject, in the following
section. In doing this we shall however not emphasize the semi-Lagrangian
approach since to the extent this is possible at the present stage it has been
amply covered at a variety of other places. Note, for example, the already
mentioned proceedings of the ECMWF workshop on techniques for horizontal
discretization (ECMWF 1988).

4. Representation of sharp gradients

Increasing the spatial resolution is of course the most straightforward way of
trying to improve the representation of rapidly varying fields. To make the idea
practical one can 1imit the area over which the resolution is increased; the
axtreme solution of this type obviously are limited area models. A possibility
of achieving a continuously varying resolution in global spectral models has
already been mentioned (Schmidt 1977; Courtier and Geleyn 1988). Similar
solutions have already earlier been tested in a finite-element model (Staniforth
and Mitchell 1978), and in a global finite-difference model (Sharma et al. 1987).

A related approach which appears to be receiving a vigorous attention récently
is one of choosing the area over which the resolution is increased not on
geographical grounds but on the basis of flow properties. These are the so-
called "adaptive methods”. According to Skamarock (personal communication)
one can distinguish between three kinds of adaptive schemes, as follows.

* Passive schemes. "Passive” would refer to a scheme whereby the mesh
refinement is occurring as a result of flow evolution, rather than as a result of
a decision-making algorithm. An example of a passive scheme is the isentropic
coordinate model: coordinate surfaces approach each other in regions where an
increased resolution is presumably needed, such as frontal zones. Isentropic
coordinate models are of course appealing also from the point of view of the
conservation of potential vorticity, and keep enjoying a considerable degree of
attention for rnore than two decades. The most recent references may be those
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of Hsu (1988) and Bleck and Peng (1989).

#"Local” refinement method. With this method estimates of truncation
error are made, and subsequently higher resolution subgrids are added or deleted
depending on the space distribution of high truncation error points (e.g.,
Skamarock et al. 1989; Skamarock 1989; Skamarock and Klemp 1989).

*"Global” refinement method. With the global method existing grid points
are redistributed from regions of small to regions of large solution variations
(Dietachmayer and Droegemeier, personal communication).

As truncation error in comprehensive atmospheric models is complétely
dominated by physical parameterizations, it would seem that tests with fully- -
developed models are going to be critical regarding possible benefits from the
last two types of adaptive methods.

A requirement more specific than that of an increased truncation error type
accuracy is for the advection scheme not to create negative values during
advection of physically positive quantities. A simple upstream scheme of
course satisfies that requirement but is not a scheme to use if preservation of
sharp features is also desired. Efforts at designing schemes which would be
"positive definite” but at the same time perform better in treating sharp
features were many, in meteorology starting perhaps with the work of
Smolarkiewicz (1983, 1984). For subsequent references see e.g., Bott (1989).

More recently it was realized that preventing false amplification of maxima
may be just as important since the overshoot can erroneously interact with the
parameterizations and produce, for example, spurious precipitation (Williamson
and Rasch 1988). Consider, for illustration, the specific humidity (q) vertical
advection scheme ' '

. 0q o 1 |
a0~ 2an [ﬂkﬂ/z(qkn'qk) +1 k-1/2(qk‘qk-1)] (4.1)

where 1 is the vertical coordinate (o modified to have quasi-horizontal
coordinate surfaces, Mesinger 1984), full values of indices refer to model layers
-and half-values to interfaces. This, in fact, was the scheme used in the
mentioned eta model (Janji¢ and Black 1987; Mesinger et al. 1988), with the
addition of a check for negative moisture so that the "fluxes” in the brackets of
(4.1) would be altered to the extent needed to keep the moisture positive and at
the same time the vertical sum of fluxes constant. Suppose however that
locally in the direction of -1 a downward step in the distribution of moisture
exists as sketched in Fig. 4.1 and the 1 vertical velocity in the region shown is
constant and negative. Inspection of (4.1} shows that at the Jayer k this would
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lead to an appearance of a false maximum in the distribution of g. This might
result in condensation and an enhancement of upward velocity, thereby setting
up an instability-like positive feedback mechanism.

4

kt+1 k k-1

Fig. 4.1. Schematic illustration of the vertical distribution of the specific humidity for which a
spurious increase in the maximum value is possible due to the vertical advection scheme,

This indeed must have been happening in the eta model when it was run for
situations of spring 1988, Monitoring the performance of the model at that time
a repeated occurrence of areas of concentrated and excessively intense
precipitation ("bulls eyes") was noticed, as shown in Fig. 42. Each of the three
centers seen in the figure was associated with a sea level pressure minimum of
the depth clearly not supported by observations. Suspecting thzt the problem
was the described spurious precipitation increase (4.1) was rejstaced by a
scheme based on rewriting its left side as

o) 91 ,
- B +q e (4.2)

For the first term of (4.2) the "first-order upstream-centered” scheme of van
Leer (1977) was used. If consists of the advection of the histogram of g by the
interface m velocities followed by a determination of new layer averages. For
constant eta vertical velocities this scheme reduces to the upward scheme. A
simple centered second-order scheme was used for the second term of (42), If
the eta vertical velocity is constant (linear advection) and if the CFL condition
is observed the described scheme guarantees that neither new maxima nor new
minima of q will be created in the advection process.

Tests have indeed demonstrated that precipitation of some of the bulls eyes
was reduced substantially due to the use of this scheme, as shown in Fig. 4.3.
The two centers over water now show much more credible amounts, with the
maximum value at the center off the coast of Cuba reduced by more than half of
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48HR ETA FCST (CN ADV FORM VMA)
6/17/88

Fig. 4.2. 48 h forecast of 24 h accumulated precipitation, verifying at 0000 UTC 17 June 1988. The
values shown are millingeters in 24 h,

its amount of over 170 mm/24 h seen in Fig. 42. The center on the border
between Kansas and Nebraska is however still too intense, showing the
maximum value of over 110 compared to over 130 mm/24 h in Fig. 42. This
residual tendency for too intense precipitation maxima was subsequently
removed by the refinement of the Betts-Miller cumulus convection scheme.

with the changes in the moisture advection and in the cumulus parameterization
scheme done in reverse order sensitivity to the moisture advection scheme was
reduced but not eliminated. Several tests of this type were made; typically,
higher precipitation amounts obtained at intensive centers using (4.1) were
then associated with sea level pressure values lower by about 1-2 mb. inone
case the difference amounted to more than 2 mb. In all of the cases considered
which were verifiable against the routinely prepared NMC surface analyses the
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48HR ETA FCST (FLUX FORM VMR)
VALID 00Z 6/17/88

A

Fig. 4.3, Asin Fig. 4.2 except that the scheme for the vertical advection of moisture described in the
fext was used.

shallower low centers of the forecasts made using the scheme based on (4.2)
agreed better with the analyses.

Note that the described "histogram advection” scheme is based on the
assumption of constant values of the advected quantity within the layers. It is
in this respect a version of the so-called "piecewise constant” method
introduced by Godunov (1959). Later tests with the eta model have indicated
benefits from a higher accuracy method in which prior to translation humidity
histogram is modified so as to locally minimize steps by permitting a linear
change of ¢ across layers, Thus, this is a "piecewise linear” method. To
quarantee that neither new maxima nor new minima be generated in the
transiation step the change of g across layers is subject to the restriction that
it not generate new maxima and new minima in the humidity profile. This is the
so-called monotonicity constraint (van Leer 1977).
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The scheme 15 applied in the eta model in the following manner. As the first
step of the slope adjustment procedure maxima and minima in the profile of q
are identified. Slopes in these layers are not changed. For efficient
vectorization slopes in the remaining layers are adjusted in an iterative
procedure. With average values within layers kept constant in each sweep end
points of the linear segments of the g profile across these layers which are at
the side of the smaller of the two steps at its interfaces are moved to the
mid-points of that step. This is illustrated in Fig. 44, The dotted line in the
figure represents a hypothetical profile of q prior to the adjustment procedure.
As the Tirst step of this procedure values at layers k and k+3 would be
identified as a minimum and as a maximum, respectively, and flagged not to be
changed. Slopes which layers k+1 and k+2 would obtain as a result of the first
sweep of the slope adjustment are shown by the two full lines in the figure.
The code is at present set to have three iterations performed since inspection
has shown that after three iterations little in view of adjustable steps remains
and that computer time demands of three iterations are modest. |

/

........ -
e

K K+1 k+2 k+3

Fig 4.4. Schematic itlustration of the slope adjustment procedure of the eta model moisture advection
scheme. The dotted line shows the original histogram of . The full lines show the distribution of g in
tayersk+ 1 and k+2 following the first sweep of the adjustment code. ’

The described schemes are in fact Eulerian advection problem versions of a
much more general class of schemes referred to as Godunov-type schemes, or
characteristic based schemes. They have been developed with the objective of
simulating flows which contain discontinuities, such as shock waves. Most of
this work has been done in the fields of aerodynamics and astrophysics;
applications to problems in meteorology are so far few and very recent
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(Priestley 1988; Carpenter et al. 1989). The method was introduced by Godunov
(1959) by taking advantage of the solution to the so-called Riemann’s problem.
This problem describes evolution of the fluid initially containing two constant
states in a tuhe, separated by a discontinuity. As introduced by Godunov, these
two features at the same refer to the two basic aspects of the method: the fluid
is représented by piecewise constant functions, and interactions at the
boundaries of zones of constant states are calculated using the solution to the
Riemann's problem. This involves propagation of appropriate quantities along
the characteristics of the system.

Van Leer has refined Godunov's method by introducing the piecewise linear
method for the advection problem (1977) and for fluid dynamics (1959). With
his approach the slope of a variable within each zone (grid box) is defined based
on the values at neighboring zones, say as with the procedure illustrated in

Fig 4.4. A still more accurate "piecewise parabolic’ (PPM) method was
introduced by Colella and Woodward (1984). It was applied recently to one- and
two-dimensional advection as well as to a convection problem by Carpenter et
al. (1989) and compared with a number of finite-difference methods.

Note that the outlined Godunov-type methods are not finite-difference methods.
With these methods space derivatives are never approximated by finite-
difference quotients or by similar approximations based on series expansions.
Derivatives within the advection terms are handled through the Lagrangian
treatment of the advection process so that advection of the boundaries of fluid
elements occupying grid boxes at the beginning of the time step is calculated
and once the time step 15 completed variables are interpolated back to the
original grid ("Eulerian remap", Carpenter et al. 1989).

Having no assumptions about space derivatives Godunov or characteristic based
methods avoid an inconsistency which exists between dynamics and physical
parameterizations in present weather prediction models. Namely, in space
discretizations grid point values or their equivalent in spectral methods are
treated as point samples of continuous functions, Parameterization schemes, on
the other hand, treat grid point values as grid box averages. Disretization
methods are thus in conflict with the parameterization schemes and as a result
some of the effect of parameterizations is invisible to the dynamics. As hinted
already, we suspect that the conflict may be particularly harmful in currently
used spectral methods because of their additional problem of over-resolution in
physical space. For finite-difference schemes, we have demonstrated recently
(Janji¢ and Mesinger 1989) that in an idealized example the error can be
substantial. Being free of such errors, characteristic based methods look to us
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as a very attractive candidate for eventual application to the weather
prediction problem.

Carpenter et al. in their paper present three cases of 1-D advection and one of
2-D advection. In these they compare results obtained using PPM (with and
without a "steepening” procedure) with piecewise constant and piecewise linear
advection, and with two finite-difference schemes, fourth-order leapfrog and a
version of Smolarkiewicz' (1984) positive definite scheme. 1-D tests were of
the advection of a rectangular wave, of a triangular wave, and of a Gaussian
distribution. The relative strength of the piecewise linear method and of PPM
compared to other methods was particularly evident in case of the rectangular
wave, as shown in Fig. 45. Problems of the reduction or of an increase in the
maximum value of the wave, or of the noise, are absent in the plots of the three
lower panels. They differ only in their ability to maintain the steepness of the
wave. With these three schemes, the greater the computational effort better is
seen 1o be the preservation of the steepness of the wave,

1.2¢ a 1.2 r/\ b 121 C
L A .
® /\ 8 N 8}
A4t K: A \ 1 4 J \\
(s) o/\ /\ /\ // AN 0
| V \/ N Uv
| Piecewise Constant (Upstream) | [ Fourth-order Leapfrog j A Smolarkiewicz
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Fig. 4.5. Solution of the 1-D lingar advection equation in which a rectangular wave of unit hei_at is
advected toward the right in a domain of 40 grid points and periodic boundary condition ( Carpenter et
al. 1989). The true solution is shown after 1.25 revolutions ( 100 time steps) along with solutions
using various schemes as indicated on the plots. Quantities in brackets are maximum and minimum

values, respectively,
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Results of Carpenter et al. for the 2-D advection tests are shown in Fig. 46. The
initial condition, due to Zalesak (1979), is now shown as a separate piot in the
upper left panel of the figure. Results for the fourth-order leapfrog scheme are
missing because of the difficulties the authors had with the stability of the
scheme, Piecewise linear solution is this time of a similar quality to that using
smolarkiewicz' scheme: the groove is more eroded but the sides of the cylinder
are steeper. Resemblance of the PPM solutions in particular of that with the
steepening procedure to the initial condition is remarkable.

As a fest of fluid dynamics application Carpenter et al. have made a number of
2-D simulations of a buoyant thermal. Rising of the thermal in an inviscid and
isentropic fluid was considered. In a half-domain of 1.6 by 4 km the initial
bubble had a radius of 1 km and a potential temperature excess of 2 K at its
center which decreased smoothly to O K at its edge. Rigid, free-slip and
non-conducting boundary condition was used. Grid distance of the control
experiment was 20 m; the computational grid thus consisted of 200 x 80 zones.
This was hoped to be adequate for an explicit representation of turbulent
processes and no paramelerization of turbulence was present.

The evolution of the thermal in the control experiment of Carpenter et al.
(denoted PPM-20S, 20 referring to the grid size and S to "small” integration
region) in its later complex stages is shown in the upper panels of Fig. 4.7.
Departure of the potential temperature is shown, at contour intervals of 2
minutes. The same fields obtained in a simulation using a finite-difference
model are shown in the lower panels of the figure. This is a staggered grid
second-order accuracy model developed by Droegemeier and Wilhelmson (1987)
- with some diffusion aimed at controlling the nonlinear instability.

Impressive sharpness as well as a variety of features is seen in the PPM plots
neither of which is to the same degree present in the finite-difference (DW)
result. In particular, migration of the potential temperature maximum away
from the symmetry axis is missing in the DW result. Carpenter et al. argue that
this migration is caused by the rigid boundary and note that it has been observed
in other numerical studies. Because of this difference the PPM result shows
two entraining vortices in the upper part of the plume at 14 and 16 minutes,
compared to only one at 16 minutes in the DW result. In the PPM result the
descending branch of the thermal is distorted by a series of Kelvin-Helmholtz
instability features which are absent in the DW resuit.

The reader is referred to the paper by Carpenter et al. for resuits on PPM
experiments with degraded resolution, with piecewise linear and with
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Fig. 4.7. Departure of potential temperature (deg K) for the control experiment of Carpenter et al.
(1989) at 12 min, 14 minand 16 min after the initial time (upper panels). As above, but using the
finite-difference model of Droegemeier and Wilhelmson (lower panels). Figures in square brackets
show minimum value, maximum value and the contour interval, respectively.
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piecewise constant interpolation, and with a larger domain. They also provide
extensive diagnostics. Comparing the PPM results with degraded resolution
against DW results Carpenter et al. conclude that PPM yields a qualitatively
comparable solution at half the spatial resolution of the DW model. At the same
time, at this difference in resolution the two codes were taking similar
amounts of computer time. However, the DW code they used was taking
advantage of two efficiency stratagems, time splitting and artificial sound '
speed reduction, which were not available to their PPM code. With these two
techniques eventually introduced into the PPM according to Carpenter et al. the
two could become about equally demanding of computer time at the same
resolution. In this case the benefit resulting from PPM would come with no or
with little demands for an increase in computing power.

It s our impression that PPM looks as a very attractive candidate for
experimental work with full primitive equations with a view towards eventual
application in weather prediction. It may not be obvious what improvements
one might hope for. Elimination of the problem to be pointed out in the
following section is one possibility. .

5. Forcing at individual grid columns

~ As noted, an inconsistency exists between the methods used for physical
parameterizations and those used for space discretization in weather prediction
models. Inphysical parameterizations, grid point values are treated as mesh

(grid box) averages. In space discretization, they are treated as point samples
of continuous functions. ‘

For an estimate of a possible magnitude of the problem we have performed
numerical experiments using two grids commonly used in weather prediction
models. Results have already been reported in an ECMWF publication as well as
published (Janjic et al. 1988; Janji¢ and Mesinger 1989) so we shall summarize
them only very briefly here. Shallow water integrations were performed using
two limited area models with the Coriolis terms included. One of the models
was defined on the staggered C grid, and the other on the semi-staggered E/B
grid. For each grid, experiments were performed with grid sizes of 250, 125
and 62.5 km. A source and a sink, of constant intensity, were placed
symmetrically at two sides of the central part of the domain. They covered, for
the three resolutions considered, areas on one, four and sixteen grid points,
respectively.

Deviation from the mean height at the sink after 24 hours is shown in Fig. 5.1.
For the 125 and 62.5 km resolutions the values shown are averages over the
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Fig. 5.1. Deviation from the mean height at the sink point after 24 h of forcing in the cass of 250 km
experiments, and the deviations from the mean height averaged over four and sixteen points of the sink

in the cases of 125 and 62.5 km resolutions, for the C grid (1ight solid line) and the E grid ( heavy solid
ling). ’

four and over the sixteen points of the sink. At the lowest resolution
substantial differences are seen in the depth of the sink on the two grids. The
differences are very much reduced in the two 125 km experiments and are
virtually absent in the highest resolution, 62.5 km experiments.

Assuming the asymptotic value to approximate the true solution, each of the
models is seen to be grossly in error with forcing at a single point. Yet it is
very much through forcing at individual grid points that most of the physical
parameterizations are performed in weather prediction modeis.

Perhaps the Targe error obtained in our experiment is not representative of the
situation which generally exists in models. But even if the typical error were
to be much smalier and large errors occurred only occasionally it should still be
helpful to reduce or eliminate them. :

We can see three possibilities of trying to achieve this, as follows.
*® With forcing kept at individual grid points, one could attempt to develop
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parameterization schemes which would be consistent or approximately
consistent with the appropriate part of space discretization. For example, in
the source/sink experiment performed, for a constant intensity of the source
and the sink the forcing actually applied at the source and the sink grid points
would be designed around the grid and space discretization used so as to give an
approximatelly correct result. This approach however would appear to require a
reexamination of the energy and perhaps other conservation aspects of the
space discretization,

* Parameterization schemes could be designed which would minimize or
avoid forcing at single grid points. Instead, simultaneous forcing at several
neighboring points would be performed. This idea was suggested a long time ago
by Egger (1971) and has recently been applied in construction of the four-point
mountains on the E grid (Mesinger 1985; Mesinger et al. 1988).

* PPM or PPM-like discretization for weather prediction models could be

developed presumably able to handle the small scale forcing in a physically
consistent way.

6. The pole problem

There are two aspects to the pole problem of the finite-difference models using
the standard latitude-longitude grid, as follows.

* CFL condition requires a filtering procedure to avoid the need for
excessively small time steps. Filtering is not only time consuming but in
addition removes some of the effects of physical parameterizations performed
on a dense grid in high latitude regions. Finally, the possibilities of detrimental
effects on the accuracy of the schemes and of other spurious effects have to be
considered (Purser 1988a; Takacs and Balgovind 1983).

* Irrespective of numerical problems, there is an overhead of having 7t/2
the number of points one would have in a hypothetical uniform grid on the
sphere. The extra resolution in one direction and in some of the regions only is

not likely to be of any help but is in fact the reason for the problems listed
above,

A rather substantial effort has gone into grids which have the number of points
along latitude circles decrease as the poles are approached, most notably into
the well known "Kurihara” grid. The idea has recently been looked into again
from the Taylor series type accuracy point of view (Purser 1988b).

We however are of the opinion that grids with geometrical regularity as needed
to enable the design of schemes imposing various properties of physical

relevance such as enstrophy conservation are a better candidate for achieving a
high level of performance. At the same time we find it difficult to believe that
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with all the demerits listed above the latitude-longitude grid is the final word
on regular grids for the domain as simple as the sphere. It is true that a
substantial effort has gone also into the design of schemes on quasi-
homogeneous regular grids for the global domain such as the icosahedral-
hexagonal grid (as reviewed e.g., by Williamson 1979). But these efforts were
made in very early days of the development of numerical techniques for the
primitive equations when little was known about various mechanisms of the
spurious noise generation. Perhaps the hexagonal grid is indeed a questionable
choice because of its problem of having three velocity component points for
each mass grid point rather than two. But the expanded cube approach taken a
long time ago by Sadourny (1972) we feel deserves a reexamination. The
experiments of Sadourny were plagued by a noise problem. Considering
therefore the possibility of an enstrophy conserving scheme he ends his-paper
stating that "this would require the use of a staggered grid, which may lead to
larger truncation errors on the boundaries.”" But we now know that it is
precisely the staggered grids, C or E/B, which are needed to use schemes that
impose controls on false energy cascade and which have favorable geostrophic
adjustment properties, features removing and reducing, respectively, the two
major sources of spurious noise in primitive equation models.

There 1s a number of attractive features of the expanded cube grid additional to
its quasi-uniform distribution of points. The cube can of course be expanded in
such a way as to have all coordinate lines segments of great circles so that the
curvature terms are eliminated. If its two vertices are placed to coincide with
the two poles as done by Sadourny (Fig. 6.1) then all six of its sides are in the
same position relative to the earth's axis of rotation. From the numerical point
of view eight singular points and singular lines could be a source of difficulties.
Note however that if say an E grid were to be used on each of the sides then the

SOUTH POLE

Fig. 6.1. Aglobal grid obtained by expanding a cube to become a sphere; after Sadourny (1972).
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eight vertex points would be surrounded by three velocity points each; three
points would appear to be just the number needed for second order schemes o
be noise free since a linear velocity change can fit three points exactly and not
four. Conversion of a limited area code into an expanded cube model seems to be
arelatively straightforward project in the sense that it can be broken up into a
number of independent tasks. Use of a nonorthogonal coordinate system may be
one more reason of concern; but some experience is as pointed out available

(Sadourny 1972; see also references in Sharman et al. 1988) with no alarming
results.

7. The sigma system problem

Reference has already been made to a number of problems associated with the
use of the sigma system. Most attention has received the problem of the non-
cancellation of errors of the two terms of the pressure gradient force in finite-
difference models (e.g., Mesinger and Janji¢ 1987b). The pressure gradient force
errors in g-coordinate spectral models are perhaps often believed to be small or
unimportant although Tittle evidence has been published to support such a view.

The principal difficulty in assessing the significance of this and other
a-coordinate problems (advection, horizontal diffusion) arises due to the fact

that a competitive technique for representing mountains in spectral models is
missing. '

Following Janjic (1989a), simple examples will be summarized here aimed at
assessing the order of magnitude of the pressure gradient force errors in
o-coordinate spectral models, and at examining the spatial distribution of the
errors. As usual, in these examples small-scale mountains were considered.
For reference, the errors of a finite-difference scheme were also calculated.
Calculations were performed for an idealized atmosphere following an example
of Mesinger (e.q., Mesinger and Janji¢ 1987b).

The examples refer to a horizontally homogenous atmosphere at rest, and in
hydrostatic equilibrium. In such an atmosphere the pressure gradient force is
zero everywhere, and the computed pressure gradient force in a discretized
system represents the error of the discretization method. Let the following
information about this atmosphere be available in a vertical cross section along
a constant latitude:

(1) Surface pressure pg on an equidistant horizontal grid with M independent
points;
(i1)  Surface geopotential @ on the same M-point horizontal grid; and,
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(1i1) Geopotential @ on the same M-point horizontal grid, and on L, equidistant
U levels.

Let us now consider the spectral horizontal representation in terms of
trigonometric functions which is equivalent to the grid-point representation on
the M-point grid. The term "equivalent” is used here to denote the requirement
that the spectral representation have the same number of degrees of freedom as
the grid-point representation, and yield the same values at the grid points of
the M-point grid. This requirement will be satisfied if the coefficients of the

truncated trigonometric series are computed using the approximate Fourier
transform formulae,

In order to calculate the pressure gradient force error, spectrally represented
temperatures on the o levels are needed. Following e.g., Mesinger and Janjic
(1987b), the temperatures are retrieved from the geopotentials. For this
purpose we choose the hydrostatic equation introduced by Bourke (1974), which
can be reformulated in the finite-difference form as

‘DL = ®L+1+ R[(TL+1+TL)/2] ln(d‘_,,]/O'L), forL« Lm,'
(7.1)

¢’Lm = CDS“* R{TLm *[(TLm"TLm_1)/]n(O'Lm/O'Lm_1)]. In(1 /GLm)/Z} In(1 /GLm).

Here, Lm is the lowest model level. The other symbols used have their usual
meaning,

The pressure gradient force error of the finite-difference method is calculated
by the formula;

- 8,05 -RT*8,Inps.

Here, the symbol &, and the overbar with subscript x, denote the simplest two-
point differencing and averaging operators applied in the zonal direction. The
subscript ¢ indicates that the differencing is performed on a ¢ surface.

The geopotentials on the o levels are calculated analytically from chosen

. continuous temperature profiles T(p). Following Mesinger (1982), two vertical
temperature profiles are considered. The temperature at 800 mb level is taken
to be 0°C in both cases, and it varies linearly with Inp, reaching, respectively,
10°C ("No inversion case”) and -10°C ("Inversion case”) at the 1000 mb level.
Above 8OO mb the two profiles coincide, decreasing linearly with the same
lapse rate as in the no inversion case below 800 mb. This situation is
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schematically shown in Fig. 7.1. Note that with the profiles chosen, the
temperatures become unrealistically Tow at higher model levels. This, however,
has no impact on the errors at the lower levels.

In(800)

In(1000)

-10°C 10°C

Fig. 7.1. Temperature profiles prescribed in the "Inversion” {dotted) and “No inversion” ( solid)
Cases.

The numerical values of M and Ly, used in the calculations are 120 and 15,
respectively. In the main experiment, a single-grid-point mountain is located in
the middie of the horizontal domain, i.e., at the point with the horizontal index
M/2+1. The remaining part of the domain is assumed to be flat. The surface
pressure is set to 800 mb at the top of the mountain, and to 1000 mb over the
flat terrain. This experiment setup is identical to that of Mesinger (e.g.,
Mesinger and Janjic 1987h).

In order to examine the possible impact of the horizontal scale and the shape of
the mountain, the experiments are repeated with three different shapes of the
three-point mountain: a triangular mountain with the slopes linear in Inp, an
obelisk-shaped mountain, and a trapezoidal mountain (three-point elevated
plateau). Note that the single-point mountain and the trapezoidal three-point
mountain can be considered as extreme cases of the obelisk-shaped mountain.
The triangular mountain can also be viewed as a special case of the obelisk-
shaped mountain, The surface pressures at the tops of the three-point
mountains are again set to 800 mb. In the case of the obelisk-shaped mountain,
the surface pressures at the two mountain points other than the top point are
[1000 - 200 exp (-.25)] mb = 844.24 mb.

The single-point mountain and the three-point mountains are shown
schematically in Fig. 7.2. As indicated in the figure, with the currently used
horizontal resolution, the widths at the bases of the single-point, and the
three-point mountains are 6° and 12°, respectively. Note that the heights and
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Fig. 7.2. Shapes of mountains used in the tests of Janjié ( 1989a): (a) single-point mountain; (b)
three-point triangular mountain with the slopes linear in Inp; (¢) three-point obelisk-shaped

mountain; and, (d) three-point trapezoidal (elevated plateau) mountain. The heights of the mountain
points and the base widths of the mountains are also indicated.

the slopes of the mountains chosen are-rather modest compared £o the examples
of actual discretized topography given e.g., by Mesinger and Collins (1987),
Nevertheless, difficulties may be expected with the spectral technique due to
slow convergence of the Fourier series in the case of orography restricted to
only several grid points.

In the finite-difference case irrespective of the shape of the mountain there
were only hardly detectable errors for the no inversion profile. This should
come as no surprise considering that this profile is linear in Inp, and that the
"same profile is assumed in (7.1) (e.g., Mesinger and Janji¢ 1985). Thus, the
small discrepancies observed can be explained as the round-off errors.
However, in the vertical columns with inversion, two-grid-interval noise
appears, with the amplitude of slightly less than 2°K. This can be attributed to
the averaging of temperature in (7.1).

In contrast to the finite-difference pressure gradient force error which is
restricted to the points over the sloping terrain, the error of the spectral
representation is spread over the horizontal domain. For this reason, the rms
error 15 a more convenient measure of the pressure gradient force error than the
grid point values,



The spectral rms pressure gradient force errors on the o levels for the single-
point mountain are shown in Fig. 7.3 (1ightly shaded bars). The upper panel
corresponds to the inversion, and the lower panel to the no inversion case. For
comparison, the rms errors of the finite-difference method (cross hatched bars)
are also displayed. Pressure gradient force errors of the spectral method shown
in the figure are considerably larger than those of the finite-difference method,
particularly in the no inversion case; in this case, as stated, the errors of the
finite-difference method are hardly detectable,

In order Lo examine their spatial distribution, the pressure gradient force
errors of the spectral method around the mountain point are plotted for the six
lowest model levels in Fig. 7.4 (Tightly shaded bars) for both inversion (left
panel) and no inversion (right panel) cases, Going further up, the error patterns
of levels 11 and 10 very much repeat themselves, switching from one to the
other, depending on whether the vertical index is even or odd. For comparison,
the finite-difference pressure gradient force error is also displayed (cross
hatched bars) at the two points adjacent to the mountain point. It should be
noted that the finite-difference errors are actually defined in between the
mountain point and the two adjacent points. Thus, in the figure, they are
shifted for half a grid distance away from their actual location.

Note that in the inversion case the amplitude of the spectral error wave packet
15 generally of the same order of magnitude as the errors of the
finite-difference method.

The rms pressure gradient force errors obtained by Janji¢ for the trapezoidal
shaped three-point mountain were slightly smaller but generally similar to
those in Fig. 7.3. Errors for the three-point triangular and the obelisk-shaped
mountain were significantly reduced but again clearly greater for the spectral
than for the finite-difference method. Each time the errors of the finite-
difference method in the no inversion case were at the round-off level as
opposed to relatively large errors of the spectral method.

The four examples of small-scale rgountains considered indicated that the
o-coordinate pressure gradient force errors of the spectral method can be
large, and that the errors spread away from the mountains. In the rms sense,
these errors were larger than the errors of the finite-difference method. In the
inversion case, the amplitudes of the spectral error wave packets were

generally of the same order of magnitude as the errors of the finite-difference
method.
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Contrary to the situation with the finite-difference method, the magnitude of
the rms pressure gradient force error of the spectral method showed much less
sensitivity to the absence of the inversion. Namely, the error of the latter
remained relatively large, while the error of the former almost vanished.

Inversion case, singie point
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Fig. 7.3. The rms pressure gradient force errors corresponding to the single-grid point mountain for
the inversion (upper panel) and no inversion (Tower panel) cases {Janji¢ 1989a). The errors of the
spectral and the finite-difference methods are represented by lightly shaded and cross-hatched bars,
respectively. The plotted values are in units of geopotential. ‘

230



20 Inversion cese, single-point mountain Ho invarsion cese arror
Level 10 SR

o 8888

"OJ
-w_
-120)
~160)
200

Level 11 204

20
w—. - -
40_
[}

Level 13 0. . .

120/
w.
w<

o]

~40

-0}
“120]
-1eaf

~200 |

200 I
Level 14 290, . . L o T o
160,

1ot LI S T | ] (R T T T T T Y TN T T Y SO I AN T A O T N S I
05152534 TTF6STSCTFE061 6263 64 63666768630 T2 S0519253 4 I3 T6I7VIVGET 6263 A 6T 6667606570 T2

Hspectral  Elorid point Clopeotral  Slorid potmt

Fig. 7.4. Pressure gradient force error pattern around the mountain point at six lowest mode! levels
for the spectral method (1ightly shaded bars) and the finite-difference error (cross-hatched bars) for
the "Inversion” (1eft panel) and the "No inversion” (right panel) cases (Janji¢ 1989a). The finite-
difference error bars are shifted for half a grid distance in the direction away from the mountain from
the actual error locations. The plotted values are in units of geopotential.

231



The experiments with varying the horizontal scale and the shape of the
mountain, showed sensitivity of the spectral method to the steepness of the
mountain. Generally, the steeper the mountain, the larger the pressure gradient
force error. However, in the no inversion case, the rms errors of the generally

steeper obelisk mountain were slightly smaller than those of the triangular
mountain.

The pressure gradient force errors of the spectral method, as well as those of
the finite-difference method, showed little sensitivity to changing from the
single-point mountain to the trapezoidal three-point mountain. Note that the
steepnesses of the slopes of these two mountains are the same. This suggests

that the errors are less sensitive to the horizontal scale of the mountain than
to its steepness.

Relatively large pressure gradient force errors of the spectral method observed
in the no inversion case indicate that the mechanisms responsible for the error
are different from those of the finite-difference o-coordinate models.

'As already pointed out, it seems natural to expect difficulties with spectral
representation in the presence of small-scale topography because of slow
convergence of the Fourier series. In this situation, in order to calculate the
pressure gradient force in g-coordinate spectral models, it may be |
advantageous to use the finite-difference technique on the finer grid used to
eliminate aliasing.

8. Conservation of integral quantities

The work of Arakawa and Winninghoff in late 1960ies (Winninghoff 1968,
Arakawa 1970) can probably be considered as marking the beginning of the
studies of space discretization schemes for the primitive equations. In the
course of two decades that have passed since that time a variety of properties
of the discretized system have been looked into; see e.g., our earlier review
paper on the present topic (Mesinger and Janji¢ 1987a). Some of the features
frequently emphasized are those of the conservation of integral quantities, in
particular of enstrophy in order to prevent a false energy cascade (Arakawa
1966, 1970; Arakawa and Lamb 1981; Janji¢ 1984); of the simulation of the
geostrophic adjustment as a result of the choice of horizontal grid (Winninghoff
1968; Arakawa 1970); of the lack of aliasing; of the representation of
mountains; and of a high Taylor-series type accuracy. Not ail of these and other
presumably desirable properties can however be achieved simultaneously and
choices have to be made as to which of them if any will be sought. In doing this
various authors have made different decisions. For example, a fully staggered
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grid C or the semi-staggered grid E/B are needed from the point of view of the
first two of the mentioned features and have repeatedly been chosen for these
reasons. A nonstaggered A grid on the other hand has also more than once been
chosen for its feature of being able to "accommodate high-order differencing
with comparative ease” (Purser and Leslie 1988) even though it is highly
undesirable from the former point of view.

This situation obviously reflects the difficulties of arriving at a convincing
demonstration of the benefits of a given set of choices compared to other
choices with a system as complex as the atmosphere. A general regard for a
given approach is thus changing only as a result of the total body of evidence
available and perhaps also as a resuit of the awareness of the existence of
alternative technigues which eventually can be used.

In addition to points made so far which may contribute to assessments of this
kind we wish to make two more points in the remainder of this lecture. One is
to emphasize recently published results of Takacs (1988) concerning the
effects of the conservation of enstrophy in horizontal advection and the choice
of grid favorable from the point of view of geostrophic adjustment compared to
those of a high Taylor-series accuracy and the high accuracy along with an a
posteriori conservation techniqgue. In Takacs' experiments two models were
considered; one was an A-grid mode] with fourth-order accuracy and an optional
a posteriori conservation of potential enstrophy. The other was a C grid model
with fourth-order accuracy in horizontal advection terms only and an algebraic
conservation of potential enstrophy. In the control experiment both model
performed well at a relatively high 4° x3° resolution and gave similar results.
Run at a course 8° x9° resolution the C grid model results did not change much,
while those of the A grid model suffered a considerable degradation. Activation
of the a posteriori enstrophy restoration feature of the A model achieved the
enstrophy conservation but was of no help in alleviating the problems of the
solution. It is pertinent in this respect to recall that the point of the enstrophy
and energy conservation as introduced by Arakawa was not the conservation of
these guantities in themselves but was the prevention of a false energy cascade
through nonlinear interactions into small scales and degradation of the accuracy
of the solution as a result. Filtering of smaliest scales and an a posteriori
restoration removes some of the resulting errors but not the erroneous energy
cascade which appears to be the dominant problem of the course resolution
experiment.

Since there is more than one important difference however between the two
models compared by Takacs one cannot be certain as to which feature of the C
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grid model to what extent contributed to the success of its course resolution
experiment. But this is not critical from the practical point of view. Our
remaining point is of the same nature in the sense that again the effect of a set
of features is compared against that of another set. It consists of the examples
of the results of the eta model compared against those of the U.S. operational
regional model. As stated in the Introduction, a forecast of a surge of cold air
and results of precipitation forecasts will be shown.

9. E&xamples

The two models we consider here are the so-called eta model of the U.S.
National Meteorological Center, developed from the "minimum physics” HIBU
(Hydrometeorological Institute and Belgrade university)'model, and the US.
operational regional model ("Nested Grid Model”, NGM). They are different in
three aspects of their space discretization schemes, as follows.

The eta model is using

® the eta vertical coordinate (Mesinger 1984) which permits step-like
representation of mountains and quasi-horizontal coordinate surfaces;

® Arakawa E grid; and

®  Janjic (1984) horizontal advection scheme which.imposes a strict control
on false energy cascade (e.g., Janji¢ and Mesinger 1984; Fig. 3.12).

The NGM 1s using

® the sigma vertical coordinate;

® Arakawa D grid; and

L Lax-Wendroff horizontal advection scheme (Phillips 1979; see also

Mesinger and Arakawa 1976) with additional periodic filtering of 2 to 4Ax.
waves,

Both models include comprehensive physics packages (see, e.g., Jan]i¢ and Black
1987; Janji¢ 1989b, for the eta model physics; Tucciilo 1988 for the NGM
physics). There are major differences in these; it is however believed that
these differences do not have a significant impact on the first example to be
shown (Subsection 9.1); and that their effect has been for the most part
identified in the precipitation forecasts which will be discussed (Subsection
8.2) since along with the operational version of the NGM they have also been
made with the NGM in which its Kuo convection scheme has been replaced by the
Betis-Miller scheme (Betts 1986; Betts and Miller 1986) of the eta model.
Reports on other comparisons of which perhaps most should also be largely
independent of the differences in physical packages were made on earlier
occasions (e.g, Black and Janjic 1988; Mesinger and Black 1989a, 1989b; Black
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and Mesinger 1989a, 1989b).

Still another difference to be aware of is the treatment of the boundary
conditions. NGM is a two-way triply nested model with its highest resolution
domain (e.g., Hoke et al. 1985) perhaps slightly larger than that of the eta model.
Lateral boundary conditions of the eta model are prescribed in a one-way mode
using the results of the NMC global medium-range forecast (MRF) model. They
are however taken from the 12 hours earlier MRF (aviation) run in order to
simulate an operational situation in which the short-range model is run prior to
the medium-range one,

9.1 Thecold air outbreak of February 1989

A severe failure of the U.S. operational regional model took place-in early
February 1989. Following accumulation of an exceptionally cold air over
northwestern North America, with values of pressure reduced to sea level
among the several highest on record, a major cold air outbreak occurred along
the eastern slopes of Rockies. The operational model however developed a low
in the lee of Rockies which inhibited the southward movement of the cold air.
This is shown in Figﬁ 9.1.1. NMC analysis for 1200 UTC 2 February is shown in
its upper left hand panel. In this analysis for example the 1020 mb isobar is
seen reaching as far south as the central Oklahoma. In the NGM 36 h forecast
valid at that time, lower left hand panel, the 1020 isobar is much further to the
riorth barely crossing the border from the North into the northwestern South
Dakota. Run from the same initial condition and with about the same horizontal
and vertical resolution the eta model is giving a much more accurate forecast,
shown in the upper right hand panel of the figure.

The reduction to sea level usually used in the eta post-processing code and also
to display the forecast in the figure is the so-called horizontal (or “relaxation
temperature”) reduction. It is based on underground virtual temperatures
computed in each model layer which contains mountains by solving the Laplace
equation with virtual temperatures next to the sides of mountains as boundary
conditions. It is our impression that this horizontal reduction method although
very different from the one used in synoptic practice nevertheless results in
sea level pressure maps which are generally more like the analyzed maps than
those obtained by a "standard” reduction based on temperatures immediately
above ground and a lapse rate of 0.0065Km~1. It is perhaps the optimal
reduction method possible since it involves replacing the mountain by an
atmosphere which is most like the air around the mountain at a given time and
place. But with surface air as cold as in the situation of Fig. 9.1.1 the reduction
based on temperatures immediately above ground does give a sea level pressure
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field which is more like the analyzed field seen in panel (a) than the one of
panel (D). Namely, with standard reduction, a band of very closely packed
isobars appears across Montana and Wyoming very much in the manner of panel
(a) and the 1020 isobar is obtained several hundred kilometers further south
than in panel (b), about half-way between its positions in these two parals.

Experiments performed with the eta model run in the sigma mode and with
mountains interpolated from the NGM mountains indicate that the geometry of
the eta model mountains, presumably their steepness, was a major contributor
to the successful eta result in this case.

Q0.2 Precipitation forecasts and scores

While successful forecasts for difficult situations of special interest are most
gratifying it is only through examination and if possible statistical analysis &f
a large sample that one gains confidence regyarding the overall performance of a
model including its discretization schemes. We have from this point of view
paid most attention to precipitation forecasts for a number of reasons. One is
that weather is of course the ultimate objective of weather forecasting and
precipitation can hardly be surpassed in terms of priority from that point of
view. Another is that precipitation in particular of convective type tends to
occur on a rather small scale and thus seems to be the element to improve upon
through development of limited area models such as the eta model. Sti:i another
of our reasons is that increasing the accuracy of precipitation forecasts has
proven to be notoriously difficult ("quantitative precipitation forecasts remain
elusive” states a recent yearly report of an elite laboratory). Indeed, numerical
values of precipitation scores are low and if one believes to have improved on
relevant components of a prediction model without neglecting its other relevant
components one should expect to see the improvements result in increased
precipitation scores. |

The score we here have in mind is the threat score (e.g., Anthes 1983)

CF
e (9.2.1)

where CF is the correctly forecast, F the total forecast and O the observed area,
respectively, of the accumulated precipitation above a given amount. Threat
scores, and bias scores, F/0, can routinely be obtained at NMC for precip:tation
accumulated over 24-hour intervals, verifying at 1200 UTC, and averaged over
grid boxes of the so-called Limited Fine Mesh (LFM) model (190° x190° at 60°
latitude on stereographic projection). Scores are calculated for about the
eastern two thirds of the continental United States, and for the categories of
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precipitation amounts equal to and greater than 0.01, 0.23, 0.50, 0.75, 1.00,
1.25, 1.50, 1.75, 2.00, 2,50, 3.00, 3.50 and 4.00 inches in 24 hours.

The period particularly suitable for the present purpose was that of 1200 UTC
16 June - 5 July 1989 since during that time (a) there was no change in the
semi-operationally twice-daily run version of the eta model and (b) resuits of
the NGM run as stated with the Betts-Miller convection scheme of the eta model
were also available, Condition (a) was not fulfilled prior to 16 June and the
condition (b) not after 5 July so that the considered 20-day verification period
is the longest for which both of these conditions are satisfied and the
three-way model comparison possible.

weather during 16 June -5 July 1989 over the eastern two thirds of continental
United States was perhaps exceptionally wet so that for example on two of
these 20 verification periods average LFM grid box precipitation of over 4
inches in 24 hours was recorded, and only on 5 periods maximum precipitation
was less than 1.75 inches in 24 hours. This was largely due to tropical storm
Allison which slowly approached the Texas-Louisiana coastline at about the
middie of this period and then although its center moved over land remained
near the Gulf Coast for about four days causing heavy rains and flooding in
regions around the Texas-Louisiana border.

Since forecasting correctly the location of the precipitation maximum in such
and other cases {s of special interest and not something prediction models as of
yel are famous for we have searched the considered sampie for cases in which
the models retained skill greater than zero through the highest category of the
"observed” precipitation. One should note that positive skill can be retained
through the highest category as a result of model's tendency to overforecast the
amounts of precipitation but this for the most part was not happening within
the considered sample as we shall document later on. Each of the three models
has been run out to 48 hours starting every 0000 and 1200 UTC within the
considered period and the 24 hours prior to it. Two forecasts, for all of the
models, were however not accessible to the verification code because of |
archiving problems; the sample thus consisted of 39 forecasts of each of the
three models. We should in addition note that the forecasts starting at 1200
UTC were each verified for two of their forecast periods, 00-24 and 24-48 h;
and those starting at 0000 UTC once, for their 12-36 h forecasts. The two
forecasts missing were forecasts starting at 0000 UTC, verifying once. Thus,
within the 20 verification periods, we have verifications for 58 accumulated
precipitation forecasts, for each of the three models.

238



in this sample of 58 verifications, the NGM retained skill greater than zero
through all of the precipitation categories observed 2 times; NGM with the
Betts-Miller convection (NGMx, for experimehtal) 12 times; and the eta model
14 times,

We want to discuss two points in connection with these numbers. One is the
extent to which they are a result of the biases of the models for heavier
precipitation amounts. For the NGM the effect is large. Its Kuo scheme has a
severe bias problem in the sense of being deficient in heavier precipitation
amounts. For example, of the 58 24-hour verifications it has never produced
LFM grid box amounts of 3.5 inches and greater even though the amounts of 4
inches and greater have been observed at 2 verification periods, that is, for 6
verifications. With the Betts-Miller scheme NGM's precipitation patterns are
much more concentrated (see also Plummer et al. 1989) as are those of the eta
model, and the ability to retain positive skill through all of the categories
observed is much improved.

For an assessment now of a possible difference between the two models using
the Betts-Miller scheme in the tendency to benefit from overforecasting the
precipitation amounts we have looked at the bias scores for their 12 and 14
realizations of positive skill. One should note that in this way we are looking
al a sample from which occurrences of zero bias score have been removed so
that an unbiased model, with average bias score equal to one, should have a bias
greater than one for a sample remaining after this elimination. Indeed, the
ratios of forecast and observed LFM grid boxes ("points”) for the 12 realizations
of the NGMx mode] were

= - -

2 1
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which gives an average over the 12 values of 2.64; and the ratios for the 14
realizations of the eta model
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with an average of 1.96. If, on the other hand, the average value of the bias
score for these realizations is calculated by dividing the total number of
forecast points by the total number of observed points, the values obtained are
2.32 and 1.88, respectively. In any case, the numbers looked at above do not
support a possible suspicion that the slightly higher number of realizations of
the eta model, 14 versus 12, came as a result of overforecasting the highest
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precipitation amounts. Both models, in fact, underforecast the highest
precipitation amounts, the eta model somewhat more than the NGMX, as one can
verify by calculating the averages over all 58 verifications. One obtains
averages of 0.55 and 0.47 for the NGMx and for the eta model, respectively,
using the former of the two calculation methods.

The second point we want to discuss concerns the distribution of the cases of
positive skill at the highest observed category. We here restrict our attention
to the eta model only. This distribution, along with the maximum categories
observed, is displayed in Table 1.

Table 1. Forecast periods within the sample of 58 verifications for which the eta model had skill at the
highest observed precipitation category, and values of these highest categories

Yerification date Forecast period Highest category observed
1o June 00-24 h ‘ 3.00 inches/24 h
17 June 24-48 n 2.00 inches/24 h
24 June 00-24 h 12-36 h 24-48 h 1.75 inches/249 h
b June Q0-24 h 12-36 h 24-48 h 1.50 Inches/24 h
27 dJune 00-24 n 12-36 h 4.00 Iinches/24 b
29 June 24-48 h 2.50 Iinches/24 h

I July 00-24 h 12-36h 24-48& h 2.00 inches/24 h

A remarkable feature of this table is the tendency of the 14 realizations to
occur for the same verification periods, that is, irrespective of the initial
times. At three of the 18 periods when this was possible positive skill at the
highest observed category was present for all three forecast periods; and of the
remaining 5 realizations 2 have once more occurred for the same verification
period. Given the overall probability of arealization in a given verification, of
14/58, and the total number of 14 realizations, probability of such clustering by
chance is less than 3/10,000. We see this as giving strong support for the
ability of the model to forecast the location of the precipitation maxima, not by
chance, but because of model's capability to handle certain situations given its
present resolution, numerical schemes and physics. Perhaps, with
~improvements in each or in some of these components, the repertoire of model's
heavy precipitation situations should increase, so that more of them become
predictable.

we shall show examples of precipitation forecasts for two of the verification
periods of Table 1. One are the three forecasts verifying at 1200 UTC 27 June.
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They are shown in the upper right hand and in the two lower panels of Fig. 9.2.1.
Analyzed precipitation verifying at the same time is shown in the upper left
hand panel of the same figure. This is the first verification period for which
the center of precipitation due to tropical storm Allison was located over land
and is also the period of Table 1 with the highest observed precipitation. Note
that the ratios (9.2.3) of forecast and observed LFM points at the maximum
category are written in the same order as the forecast periods of Table 1; one
can thus locate in this sequence the ratios of forecast and observed LFM points
of 1/1 ana 2/1 of the 00-24 and 12-36 h forecasts shown in the figure,
respectively. Thus, in both cases the model has correctly forecast the single
LFM grid box with precipitation over 4 inches in 24 hours; and in the 00-24 h
forecast this was at the same time the only point of that precipitation category
forecast.

Following landfall the Allison precipitation center moved east and was located
over southern central Louisiana at the next verification time. Subseguently
while reducing its intensity it moved back to the Texas-Louisiana border and at
1200 UTC 29 June was located north of its position seen in Fig. 9.2.1. During
the following 24 hours while weakening again a little it moved back south to
about the same position as the one of the 27 June. Finally during still another
24 hours the center moved north-northeast so that at 1200 UTC 1 July it was
located at the Arkansas-Louisiana border. The three forecasts verifying at that
time are our second example shown in Fig. 9.2.2 in the same layout &s the one of
the preceding figure. Note that this is the first verification time for which the
precipitation center has moved deeper inland after staying at or close to the

Gulf Coast for the preceding four to five days and that in all three forecasts
this movement was predicted.

we finally show in Fig. 9.2.3 the threat scores for the three models averaged for
all 58 verifications. "Averaging” is performed by adding all the correctly
forecast, total forecast and observed points prior to inserting the values into
(9.2.1). Note that in this way incorrectly forecast points at categories above
that of the maximum observed penalize the values of the average score which is
of course desirable but would not happen if the threat scores were first
calculated for individual verifications and then averaged over categories for
which precipitation was observed and individual values thus available.
Comparison of the eta and the NGM results is shown in the upper panel of the
figure. The eta model is seen to lose the lightest precipitation category of .01
inches and greater. Its bias score (not shown) at this category for the
considered sample was only .74, compared to 1.10 for the NGM. The next higher
category of .25 inches and greater is about a tie. The eta models wins all the
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24-HR ACCUM PRECIP (MM) VERIFICATION -
VALID 127 27 JUN 88 LFM GRID 2 Egﬁ gg%é

36-H ETA FCST 48-H ETR FCST
LFM GRID LFM GRID

Fig. 9.2.1. 24-h accumulated precipitation, in millimeters, verifying at 1200 UTC 27 June 1989:
(a) NMC analysis; (b) 00-24 h, (c) 12-36 h, and (d) 24-48 h eta model forecast, respectively.
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24-H ACCUM PRECIP (MM) . VERIFICATION 24~-H ETR FCST
LFM GR{P

VALID 127 01 JUL 89 : LFM GRID

.........

36~H ETR FCST 48-H ETR FCST
LFM GRID

LFM GRID

Fig. 9.2.2. 24-haccumulated precipitation, in millimeters, verifyingat 1200 UTC | July 1989
{a) NMC analysis; (b) 00-24 h, (¢) 12-36 h, and (d) 24-48 h eta model forecast, respectively.
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Fig. 9.2.3. Threat scores for various precipitation categories, in inches, of 24-hour accumulated
precipitation of the eta modsl, NGM, and NGMx (NGM with Betts-Miller convection scheme) for 58
forecasts verifying every 1200 UTC within the period 16 June - S July 1989, See text for additional
details. Eta model and NGM, upper panel; eta model and NGMx, lower panel.
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remaining categories, more and more convincingly as the amounts are greater,

Al the higher categories, as stated earlier, it 1s the NGM Kuo scheme that has a
severe bias problem. For example, at 2.00 inches and greater NGM had the bias

score of only .62 compared to 1.11 for the eta model.

Regarding the effect of differences in space discretizations however of more
interest is the comparison between the eta model and the NGMx, shown in the
lower panel of the figure. With the same convection scheme of these two
models the eta model wins all of the categories, perhaps about equally
convincingly for the light and for the intense precipitation. The bias problem of
the eta model for the light precipitation categories is even more severe for the
NGMx, indicating that this problem is a feature of the convection scheme and not
of the space discretization of the models. Further work aimed at ref ining the
Betts-Miller scheme of the eta model and its related parameterizations with
respect to the extent of light precipitation is in progress at the National
Meteorological Center and is expected to be reported on at another occasion.

We see the results of the lower panel of Fig. 9.2.3 as yet another addition to the
body of evidence in favor of the space discretization features of the eta model
compared to those of the control model as given in the introductory part of the
section. At the same time, along with data of Table 1 we find them a welcome
encouragement from the point of view of progress in the predictability of
precipitation patterns, a long-standing issue of concern in numerical weather
prediction. ’

10. Summary

Rather than review the basic properties of space discretization schemes for the
primitive equations we have attempted in this lecture to outline recently
completed work and work in progress in this field, emphasizing motivations for
various efforts. We have also commented on outstanding problems which in our
opinion if and when resolved could lead to further progress.

Perhaps most numerous of recent and present efforts are those aimed at
increasing the efficiency of space discretizations through the development and
use of semi-Lagrangian schemes. They are addressed not only at increasing the
time steps but also at the pole problem of the global finite-difference models.
Still another objective of this but also of other work is to increase the ability
0f models to generate and maintain sharp features in predicted fields.
Extensive testing of the step-mountain approach in finite-difference models is
in progress at NMC with perhaps very encouraging results as reported to some

extent in this lecture. )
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We have stressed a number of challenging problems on which 1ttle work has
been and is being done. One is the inconsistency between methods used for
space discretization and those used for physical parameterization schemes.
Another is the inefficiency of global latitude-Tongitude finite-difference
representation not only because of the CFL time step condition but also from the
point of view of redundant resolution in zonal direction in extratropical
latitudes. Still another is the treatment of mountains in spectral models.

Reflecting back on the past two or three decades of the development of methods
for space discretization in weather prediction we find as perhaps remarkable
the degree to which this development was in many ways leading that of
numerical analysis and other applied fluid dynamics fields. Thus, fundamental
advances have been made as part of the numerical modeling work in meteorology
and some have found its way into other computational fluid dynamics fields,
Outstanding examples include the discovery and the explanation of nonlinear
instability by Phillips; the Arakawa approach in designing finite-difference
schemes which maintain chosen integral properties of the continuous equations,
or reproduce their other features of physical importance; several major steps in
the development of the present global spectral transform method in particular
the introduction of the transform itself by Eliasen, Machenhauer and Rasmussen
independently of Orszag; and the discovery of the semi-Lagrangian schemes by
Robert. But it may be that a turn has come for a method developed outside
meteorology, the piecewise parabolic method, to becomes increasingly used in
weather prediction enabling further and perhaps unexpected progress.

Acknowledgments. Collaboration of Tom Black of the U.S. National
Meteorological Center has been essential in obtaining the results reported in
Section 9 of this lecture. John Ward of the same Center has written the
precipitation verification code and has implemented the archiving system
indespensable for processing of the large three-model sample dealt with here.
Support and encouragement of William Bonner, Director, and Eugenia Kalnay,
Chief of the Development Division of the Center was vital for the succcess of a
project as comprehensive as the substantial part of the development as well as
the semi-operational implementation of the eta model and is gratefully
acknowledged. Our work on some of the material presented has been partly
supported by the Science Association of Serbia; and by the Serbian Academy of
Sciences and Arts, Belgrade.

246



References

Anthes, R. A., 1983: Regional models of the atmosphere in middle latitudes. Mon. Wea. Rev., 111,
1306-1335,

Arakawa, A., 1966: Computational design for long-term numerical integration of equations of fluid
motion: Two dimensional incompressible flow, Part |, J. Comput, Phys., 1, 119-143,

Arakawa, A., 1970: Numerical simulation of large-scale atmospheric motions. Numerical Solution of
Field Problems in Continuum Physics, Vol. 2. SIAM-AMS Procesdings, 6. Birkhoff and S. Yarga, Eds.,
Amer. Math. Soc., 24-40.

Arakawa, A. andV. R. Lamb, 1981: A potential enstrophy and energy conserving schems for the shallow
water equations. Mon. Wea. Rev., 109, 18-36. :

Bates, J. R., and A. McDonald, 1982: Multiply-upstream, semi-Lagrangian advective schemes:

analysis and application toa multi-level primitive equation model. Mon. Wea, Rev., 110,
1831-1842,

Bates,J. R., F. H. M. Semazzi, R. W. Higgins and S. R. M. Barros, 1989: Integration of the shallow

water- equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver, Subm.
to Mon. Wea, Rev.

Betts, A K., 1986: A new convective adjustment scheme. Part |: Observational and theoretical basis.
Quart. J. Roy. Meteor. Soc,, 112, 677-691,

Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part I1: Single column tests
using GATE wave, BOMEX and arctic air-mass deta sets. Quart. J. Roy. Meteor. Soc., § 12, 693-709,

Black, T. L., and Z. I. Janji¢, 1988: Preliminary forecast results from a step-mountain eta coordinate
regional model. Preprints, Eighth Conf, Numerical Weather Prediction, Baltimore, Amer. Meteor. Soc.,
442-447. [Boston, MA 02108.]

Black, 7. L., and F. Mesinger, 1989a: Forecast performance of NMC's eta coordinate regional model.
Preprints, Twelfth Conf. Weather Analysis and Forecasting, Monterey, CA, 2-6 October 1989 Amer,
Meteor. Soc., (in press). [Boston, MA 02108.]

Black, T. L., and F. Mesinger, 1989b: Forecasting for the South American Region using an eta
coordinate regional model. Preprints, Third Int. Conf. Southern Hemisphers Meteorolog{ and
Oceanoggaphy, Buenos Aires, 13-17 November 1989; Amer., Meteor. Soc., (in press). |Boston, MA
02108. :

Bleck, R.,and G. Peng, 1989: Numerical model errors affecting the simulation of 1ee cyclogenesis.
Preprints, int. Conf. Mountain Meteor. and ALPEX, Garmisch-Partenkirchen, 53-54. [Available from
Inst. Physik Atmos., DLR, D-8031 Oberpfaffenhofen, FRG.]

Bott, A., 1989: A positive definite advection scheme obtained by nonlinear renormalization of the
advective fluxes. Mon, Wea. Rev., 117, 1006-1015.

Bourke, W., 1974: A multi-level spectral modsl. |. Formulation and hemispheric integrations. Mon.
Wea. Rev., 102, 687-701.

B}‘owning, G. L.,J.J. Hack and P. N. Swarztrauber, 1989: A comparison of thres numerical methods
for solving differential equations on the sphere. Mon. Wes. Rev., 117, 1058-1075S.

Carpenter, R. L., Jr., K. K. Droegemeier, P. W. Woodward and C. E. Hane, 1989: Application of the
piecewise parabolic method (PPM) to meteorological modeling. Mon. Wea. Rev., 117, (in press).

Colella, P., and P. R. Woodward, 1984: The piecewise parabolic method (PPM) for gas-dynamical
simulations. J. Comput. Phys., 54, 174-201,

247



Courtier, P., andJ.-F. Geleyn, 1988: A global numerical weather prediction model with variable
resolution: Application to the shallow water equations. Quart. J. Roy. Meteor. Soc., 114, 1321-1346.

Droegemeier, K. K., and R, B. Wilhelmson, 1987 Numerical simulations of thunderstorm outflow
dynamics. Part |: Outflow sensitivity experiments and turbulence dynamics. J. Atmos, Sci., 44,
1180-1210.

ECMWF, 1984; Numerical Methods for Weather Prediction. Seminar 1983, ECMWF, Reading,
Shinfield Park, UK., 280+300 pp.

ECMWF, 1988: Techniques for Horizontal Discretization in Numerical Weather Prediction Models.
Workshop 1987, ECMWF, Shinfield Park, Reading, UK., 378 pp.

Egger,J., 1971: Mindestgriisse von Gebirgen und Konvektionsgebieten, die in den Modellen der
numer-ischen Yorhersage ber{icksichtigt werden konnen. Beitr. Phys. Atmos., 44, 245-271.

Farge, M., and R. Sadourny, 1989; Wave-vortex dynamics in rotating shallow water, J. Fluid Mech.,
(in press). o
Godunov, S. K., 1959: Finite difference methods for numer-ical computation of discontinuous solutions
of the equations of fluid dynamics. Mat. Sb., 4, 271-306. (Cornel] Aeronautical Lab. Transl.)

Hoke, J. E., N. A. Phillips, G. J. DiMego and D. G, Deaven, 1985: NMC's regional analysis and forecast
system - results from the first year of daily, real-time forecasting. Preprints, Seventh Conf:
Numerical Weather Prediction, Montreal, Amer. Meteor. Soc., 444-451. [Boston, MA 02108.]

HSu, Y.-J., 1988: Numerical modeling of the atmosphere with an isentropic vertical coordinate. Ph. D.
Thesis, Dept. Meteor. Univ. California, Los Angeles, CA 90024.

Janjié, Z. 1., 1984: Non-linear advection schemes and energy cascade on semi-staggered grids. Mon.
Wea. Rev., 112, 1234-1245. ,

Janji¢, Z. 1., 1989a: On the pressure gradient force error in G-coordinate spectral models. Mon. Wea.
Rev., 117,2285-2292.

danjié), Z ., 1989b: The step-mountain coordinate: physical package. Mon. Wea. Rev., 117, (in
press).

“Janjié, Z.1., and 7. L. Black, 1987: Physical package for the step-mountain, eta coordinate model, Res.
Activ. Atmos. Oceanic Modelling, No. 10, 5.24-5.26,

Janji¢, Z. I., and F. Mesinger, 1984: Finite difference methods for the shallow water equations on
var-fous horizontal grids. Numerical Methods for Weather Prediction. Seminar 1983, ECMWEF,
Reading, Shinfield Park, UK., 29-101,

Janjic, Z. 1., and F. Mesinger, 1989: Response to small-scale forcing on two staggered grids used in.
finite-difference models of the atmosphere. Quart. J. Roy. Meteor. Soc., 115, 1167-1176.

Janjié, Z. 1., F. Mesinger and T. L. Black, 1988: Horizontal discretization and forcing. Workshop on
Numer-ical Technigues for the Horizontal Discretization in Numerical Weather Prediction Models.
Workshop 1987, ECMWF, Shinfield Park, Reading, UK., 207-227.

Janjié, Z., and A, Wiin-Nielsen, 1977: On geostrophic adjustment and numer-ical procedures ina
rotating fluid. J. Atmos. Sci., 34, 297-310.

McDonald, A., and J. R. Bates, 1989: Semi-Lagrangian integration of a gridpoint shallow water- model
on the sphere, Mon, Wea. Rev., 117, 130-137.

Mesinger, F., 1982: On the convergence and error problems of the calculation of the pressure gradient
force in sigma coordinate models. Geophys. Astrophys. Fluid, Dyn., 19, 105-117.

248



Mesinger, F., 1984: A blocking technique for representation of mountains in atmospheric models. Riv.
Meteor. Aeronautica, 44, 195-202.

Mesinger, F., 1985: The sigma system problem. Preprints, Seventh Conf. Numerical Weather
Prediction, Montreal, Amer. Meteor. Soc., 340-347. [Boston, MA 02108.]

Mesinger, F., and A. Arakawa., 1976: Numerical Methods used in Atmospheric Models. GARP Publ.
Ser., No. 17, Vol. |, WMO, Geneva, 64 pp. [Pub. WMO/ICSU, Case Postale No. 2300, CH-1211 Geneva
20, Switzerland.]

Mesinger, F.,and 7. L. Black, 1989a: Verification tests of the eta model, October-November 1988,
NOAA/NWS National Meteorological Center, Office Note No. 355, 47 pp.

Mesinger, F.,and T. L. Black, 1989b: A mountain-induced secondary development associated with
severe weather east of Appalachians. Preprints, Int. Conf. Mountain Meteorology and ALPEX,
Garmisch—Partenkirchen, F.R.G., 5-9 June 1989; DLR-institute for Atmospheric Physics,
Oberpfaffenhofen, 55-58.

Mesinger, F., and W. 6. Collins, 1987: Review of the representation of mountains in numerical
weather prediction models. Observation, Theory and Modelling of Orographic Effects,
Seminar/workshop 1986, Yol. 2, ECMWF, Shinfield Park, Reading, UK., 1-28,

Mesinger, F., and Z 1. Janji¢, 1985: Problems and numerical methods of the incorporation of
mountains in atmospheric models. Large-scale Computations in Fluid Mechanics, Part 2. Lect. Appl.
Math., Yol. 22, Amer. Math. Soc., 81-120. ‘

Mesinger, F.,and Z. |. Janji¢, 1987a; Numerical Methods in NWP modsls, Short- and Medium- Range
Numerical Weather Prediction: Collection of Papers Presented at the WMO0/IUGG NWP Symposium,
Tokyo, 4-8 August 1986, Special Yolume of J. Meteor. Soc. Japan, Ed. T. Matsuno, 215-222,

Mesinger, F., and Z. |. Janji¢, 1987b: Numerical techniques for the representation of mountains in
atmospheric models. Observation, Theory and Modelling of Orographic Effects, Seminar /workshop
1986, Yol. 2, ECMWF, Shinfield Park, Reading, UK., 29-80.

Mesinger, F., Z. 1. Janji¢, S. Nitkovi¢, D. Gavrilov and D. G. Deaven, 1988: The step-mountain
coordinate: model description and performance for cases of Alpine lee cyclogenesis and for a case of
Appalachian redevelopment. Mon, Wea, Rev., 116, 1493-1518.

Phillips, N. A., 1979: The Nested Grid Model. NOAA Tech. Rep. NWS3 22, National Weather Service,
Silver Spring, MD., 80 pp.

Plummer, D. W., T. L. Black, N. A. Phillips and J. E. Hoke, 1989: Tests of the Betts-Miller convective
parameterization in the Nested Grid Model. Research Highlights of the NMC Development Division:
1987-1988. U.S. Dept. Commerce, NOAA, National Weather Service, 23-32.

Priestley, A., 1988: The use of a characteristics based scheme for the 2-D shallow water equations.
Techniques for Horizontal Discretization in Numerical Weather Prediction Models. Workshop 1987,
ECMWF, Shinfield Park, Reading, UK., 157-185.

Purser, R.J., 1988a: Degradation of numerical differencing caused by Fourier filtering at high
latitudes. Mon. Wea. Rev., 116, 1057-1066.

Purser, R. J., 1988b: Accurate numerical differencing near a polar singularity of a skipped grid.
Mon. Wea. Rev., 116, 1067-1076.

Purser, R.J.,and L. M. Leslie, 1988: A semi-implicit, semi-Lagrangian finite-difference scheme
using high-order spatial differencing on a nonstaggered grid. Mon. Wea. Rev., 116, 2069-2080.

Rantic, M., and 5. Nigkovi¢, S., 1988: Numerical testing of E-grid horizontal advection schemes on the
hemisphere. Contrib. Atmos. Phys., 61, 265-273.

249



Ran&i¢, M., and G. Sindi¢, 1989: Noninterpolating semi-Lagrangian advection scheme with minimized
dissipation and dispersion errors. Mon. Wea. Rev., 117, (in press).

Robert, A., 1981: A stable numerical integration scheme for the primitive meteorological equations.
Atmos.-Ocean, 19, 35-46.

Robert, A., 1982: A semi-Lagrangian and semi-implicit numerical integration scheme for the
primitive meteorological equations. J. Meteor. Soc. Japan, 60, 319-324.

Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on
quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136-144,

Sadourny, R., 1975: Compressible model flows on the sphere. J. Atmas. S¢i., 32, 2103-2110.
Schmidt, F., 1977: Variable fine mesh in spectral global model. Beitr. Phys. Atmos., 50, 211-217.

Sharma, 0. P., H. Upadhyaya, Th. Braine-Bonnaire and R. Sadourny, 1977: Experiments on regional
forecasting using a stretched coordinate general circulation model. Short- and Medium- Range
Numerical Weather Prediction: Collection of Papers Presented at the WMO/1UGG NWP Symposium,
Tokyo, 4-8 August 1986, Special Yolume of J. Meteor. Soc. Japan, Ed. T. Matsuno, 263-271.

Sharman, R. D., T. L. Keller and M. 6. Wurtele, 1988: Incompressible and anelastic flow simulations
on numerically generated grids. Mon. Wea. Rev., 116, 1124-1136.

Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical
finite-difference scheme and hybrid vertical coordinates. Mon. Wea, Rev., 109, 758-766.

Simmons, A. J., and R, Striifing, 1981: An energy and angular-momentum conserving finite-difference
scheme, hybrid coordinates and medium-range weather prediction. Tech. Rep. No. 28, ECMWF,
Shinfield Park, Reading, UK.

Skamarock, W. C., 1989: Truncation error estimates for refinement criteria in nested and adaptive
models. Mon. Wea, Rev., 117, 872-886.

Skamarock, W. C., andJ. B. Klemp, 1989: Adaptive models for 2-D and 3-D nonhydrostatic
atmospher-ic flow. Preprints, Sixth Int. Conf. on Num. Methods in Laminar and Turbulent Flow,
Suansea, Wales, UK.

Skamarock, W., J. Oliger and R, L. Strest, 1989: Adaptive grid refinement for numerical weather
prediction. J. Comput. Phys., 80, 27-60.

Smolarkiewicz, P. K., 1983: A simple positive definite advection scheme with small implicit diffusion.
Mon. Wea. Rev., 111, 479-486.

Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection transport algorithm
with small implicit diffusion. J. Comput. Phys., 54, 325-362.

Staniforth, A., and H. Mitchell, 1978: A variable resolution finite glement technique for regional
forecastmg with the pmmltive equations. Mon. Wea. Rev., 106, 439- 447

Takacs, L. L., 1988: Effects of using a posteriori methods for the conservation of integral invariants.
Mon. Wea. Rev., 116, 525-545.

Takacs L. L.,and R. C. Balgovind, 1983; High-latitude filtering in global grid-point modsls, Mon.
Wea. Rev III 2005-2015.

Tuccillo, J. J., 1988: Parameterization of physical processes in NMC's Nested Grid Model. Preprints,
Eighth C]onf Numerlcal Weather Prediction, Baltimore, Amer. Meteor. Soc., 238-243. [Boston, MA
02108

Van Leer, B., 1977: Towards the ultimate conservative difference scheme. V. A new approach to
numer-ical convection. J. Comput, Phys., 23, 276-299.

250



Yan Leer, B., 1979: Towards the ultimate conservative difference scheme. 1V, A second-order sequel to
Godunov's method. J. Comput. Phys., 32, 101-136.

Williamson, D. L., 1979: Difference approximations for fluid on a sphere. Numerical Methods used in
Atmospheric Models. GARP Publ. Ser., No. 17, Yol. I, WMO, Geneva, S1-120. [Pub. WMO/ICSU, Case
Postale No. 2300, CH- 1211 Geneva 20, Switzerland.]

Williamson, D. L., and P. J. Rasch, 1988: Shape preserving interpolators for semi-Lagrangian
transport. Techniques for Horizontal Discretization in Numerical Weather Prediction Models.
Workshop 1987, ECMWF, Shinfield Park, Reading, UK., 117-141,

Williamson, D. L., and P. J. Rasch, 1989: Two-dimensional semi-Lagrangian transport with
shape-preserving interpolation. Mon, Wea. Rev., 117, 102-129.

WMO/ICSU, 1979. Numerical Methods used in Atmospheric Models. GARP Publ. Ser., No. 17, Yol. I,
WMO, Geneva, 500 pp. [Pub. WMO/ICSU, Case Postale No. 2300, CH-1211 Geneva 20, Switzerland.]

Winninghoff, F. J., 1968: On the adjustment toward a geostrophic balance in a simple primitive
equation mode! with application to the problems of initialization and objective analysis. Ph. D. Thesis,
Dept. Meteor. Univ. California, Los Angeles, CA 90024,

Zalesak, S. T. 1979 Fully multidimensional flux-corrected transport for fluids. J. Comput. Phys.,
31,335-362.

251





