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Abstract

A comprehensive and practical approach of the 4 dimensional assimilation problem is presented
in the ECMWF seminar proceedings on data assimilation and .use of sai:-elljte data (September
1988), and also in Talagrand and Courtier (1987), Courtier and Talagrand (1987) and Lorenc
(1988). This approach uses variational techniques which minimizes the distance between the
forecast model and the observations: it is called "4DVAR" (4 dimensional variational)
assimilation. The distance between the model and the observations is called "cost function" in
this paper (it is sometimes called "misfit" function or "penalty” function), The technique
relies on the notion of an adjoint operator which provides a very convenient tool for computing
the gradient of the cost function with respect to the variables of the forecast model X (X is
the "control variable" of the variational problem). The gradient of the cost function is
required by all the standard minimization algorithms in addition to the control variable and the
value of the cost function.

The present document is the scientific desigh of the part of the variational analysis dealing
with the distance of the model to the observations. It involves only 3-D aspects as all the
aspects related to the time evolution are treated through the forecast model and its adjoint.
After having set up the ECMWF environment of the variational analysis (section 1), and having
considered the general scientific aspects (section 2), the present paper examines: the scientific
aspects of the processing we need to apply to each observing system (sections 3 to 10).



1. INTRODUCTION: CONTEXT OF THE DEVELOPMENT OF THE VARIATIONAL
ANALYSIS

An "in-core system" is being developed at ECMWF: it contains an in-core forecast model, the

corresponding tangent linear model and its adjoint. It contains also the general architecture
needed to run 4-D assimilation experiments: minimization scheme, plus all the facilities to

"plug" a variational analysis.

From the purely scientific point of view, .the variational analysis consists of computing a cost
function J(X) and its gradient with respect to X (X is the vector containing all the model
variables at the initial time of the assimilation period.) J(X) and Grad J are then passed to the

minimization scheme.
The total procedure is repeated several times until an appropriate convergence is reached.

J=JO+J +chith:

g

. Iy ¢ distance of the model X to the different observations (X now taken at any time of

the assimilation period).

. J _: distance of X to a first guess X

g g

. J c - cost functions describing some physical constraints on the fields. Let us note that

the use of J c is not the only technical way to insure some physical constraints.

A variational analysis reproducing almost exactly the present analysis would contain the
geostrophic constraint on the increments as J o J 0= (HX-d)t 0'1 (HX-d) and J g = (X-Xg)t
P1 (X-Xg), O being the covariance matrix of the obs error, P the covariance matrix of the
forecast error for all the model variables, H the mathematical operator going from the model
variables to the vector of observed data d. (See RD memos R2327/1917 by Courtier and
Pailleux, and R2327/1965 by Pailleux. See also the ECMWF proceedings of the September 1988

seminar).
The different terms of the cost functions can be designed and computed independently.

For a flexible and general design of a 4-D variational analysis, we need comprehensive

specifications for all the input to the analysis, which are:



- All the observations (vector d);

- A statistical set describing all the observau’oﬁ efrbrs (matrix O);
- The first-guess (véctor Xg):

- A statistical set describing all the forecast errors (matrix P);

- An estimate of the covariance matrix of the analysis error for the model variable (i.e.

the "Hessian" to use in the minimization procedure).

The system which is designed in the present document is to be used to run comprehensive
research experiments on the present computefs, and, assuming this research is successful, to
run an operational 3-D variational analysis on the next super-computer (around 1991). In this
context, it is assumed that the variational analysis will be run on top of a traditional Optimum
Interpolation (OI) analysis. The OI analysis will be used for two main purposes: - to provide
an initial point for the minimization scheme, which is close to the final solution; - to perform a

quality control on the data.

For both scientific and practical reasons it might be more convenient to run this preliminary OI
analysis without satellite data. This would at least provide the framework for a 'bétter quality
control of satellite data. Assuming most of the quality control is performed by the preliminary
OI analysis, an extra level of quality control will be developed in the context of the variational
analysis: - because it is necessary if in the variational analysis some data .are used which do
not enter the OI analysis; - because the 4-D variational context provides a framework to
perform extra quality control checks which are more difficult to set up in the traditional OL
This last point is discussed in section 2.6. ‘

2.  GENERAL STRATEGY
2.1 How to split the cost function J o

1 E where O is now the correlation matrix of the observed data, and E

Jo can be writien E' O
is the vector of the departures "observed - HX" normalized by the observation error standard
deviation. Careful: we are used to normalizing the departure by the forecast error, but in
this case we must normalize by the observation error. The feason' for this normalization is

that it is easier in practice to work with a correlation matrix O than with a covariance.



As there is no correlation between obs errors of different types, the different contributions of

the different obs types will be computed independently: I, =1 + 1+ + J

Synop pilot satem
+.one . For diagnostic purposes they will have to be printed out (or even stored for the
different iterations of the minimization procedure, say, the first and the last one as an
example). The general strategy will be also to split the contribution of one observation type
into as many different sub-contributions as we are interested in. This will be useful in order
to understand how the variational analysis is working and also to detect some data problems.
Examples: compute separately the contributions of land SYNOPs and SHIPs, separate also the

contributions of the different geostationary satellites for SATOBEs...

2.2 The input to the computation of J o

The computation of J o has to be made from two different sources of information:

- The observations which have to be stored before the variational analysis on an ad hoc
file. The file should be in a transportable format, it should contain the comprehensive
information, including the information on the quality control and event flags coming from
the optimum interpolation analysis. The observations should be sorted observation type

per observation type (see 1.1).

- The model variables in grid points as they are available in central memory in the in-core

system.
In addition we need a third source of information: the covariance matrix of observation errors
for all types of observations, keeping in mind that the observation error should also include

the error of the operator H, that is the representativeness error.

2.3  Computation of HX

The operator H which must be applied to the model vector X in order to get the data at the
observation points, is a "post-processing” operator which has to be studied for each
observation type. For a spectral model, X is in the spectral space. However, we can assume
that X contains the model variables on a latitude/longitude grid, as all the spectral transforms

are already designed in the context of the in-core system.

For each observation type, H contains a bilinear interpolation in the horizontal to the
observation point, from the four nearest grid-points. In the vertical, depending on the

observation type, H contains operators such as:



- ordinary vertical interpolation (e.g.: interpolation of the model wind profile to the level

of an observed wind);

- integrations involving both T and Q (e.g.: computation of a geopotential height from

model variables, for radiosondes).
- full radiative transfer computations for radiance data.

Let us call HV the vertical part of the operator H. HV includes non-linear operators which
are much more complicated than an ordinary vertical interpolation. Then the first processing
to apply to X should be the bilinear horizontal interpolation, in order to get the
COMPREHENSIVE SET OF MODEL VARIABLES AT THE OBSERVATION POINT X™V°_ Then all
the remaining parts of HX will be computed from XMVO (and from the observations

themselves.)

Very often there is no horizontal correlation between the errors of two different observations.
In this case the contribution of each observation to J0 can be evaluated very simply as soon

as HX has been computed:

CONTRIBUTION = E' 0"l E with E equal 1o the departures d-HX (= d-H X™"°) normahzed by

the observation error standard deviation.

2.4 Computation of the gradient of J o

The gradient of each contribution to Jo with respect to X can be computed through the

following steps:
- computation of the gradient with respect to E:
PP |
Grad(E) IJ=20"E
- computation of the gradient with respect to the vector H xmvo.
As E is equal to the vector d - Hvxmvo_ normahsed by the observation error, the

gradient with respect to HVvao is obtained by dividing éach component of Grad(E)J by
the observation error, and by changing the sign.



computation of the gradient with respect to the vector X™'°:

Grad J = H‘*,( Grad J ) where, H:; is the adjoint of the vertical

(XY (HVXmVO)
postprocessing operator Hv'
multiply the gradient with respect. to xmvo by thé' ad hoc coefficients of the bilinear
interpolation in order to get the contribution to the gradient at the four nearest

grid-points.

add these contributions to the general dual variable carried by the in-core system.

Depending on the data type, H, might be applied either through a simple analytical

computation or by coding the subroutine which is the formal adjoint of the routine. Hv' For

observations which are not correlated in the horizontal, the computation of the gradient can be

done independently for each observation, like the computation of the cost function.

2.5 Different steps to envisage in the design

For each observation type the design and coding strategy has to envisage two steps:

a)

b)

2.6

STEP 1: for benchmark and validation purposes, reproduce with the variational scheme
something which is as close as possible to the operational OI analysis, which means using
the same pieces of data from the observation as in the present analysis (most of the

time).

STEP 2: try to use all the information which is available in the observation type. If the
same information can be used in two different forms, try to use the one which is closer
to the observed quantity. Examples of observations available in different forms: - in
radiosonde observations, the geopotential height is redundant with the temperature and
humidity profiles; - all the wind data can be handled either by using the components, or

by using speed and direction...

Quality control of observations

Before the variational analysis a traditional OI analysis is expected to be run for at least two

reasons: to provide an initial solution to the minimization algorithm, and also to perform the

quality control. All the information about the OI quality control has to be passed to the



variational analysis (flags, events, departures to the first-guess...). Then the variational
analysis can be done without any specific quality control, and all the first research
experiments are expected to be run in this way.

However, an extra quallty control procedure has to be planned in the variational analys1s

because:

- We might want to use extra data which are not used in the operational OI system (e.g.:

temperature data from parts B of radiosondes);

- We might want to take advantage of the variational context to improve the OI quality
control, by using a sequence of model values at the data points for different steps of the
minimization algorithm. Possibly one or two iterations of the minimization procedure
could be run before the main analysis with the unique goal of checking the data. This
would be especially interesting in the 4D context. |

The following ideas will have to be tried at some stage through assimilation experiments:

a) IMPROVED TIME CONTINUITY CHECK.
For stations or platforms reporting with a high time frequency, the differences
"observation - model" can be examined before the minimization (step 0) and éﬁer 1 or2
steps of the minimization procedure. The time evolution of these differences can be
examined as well: performed at step O it is nothing but a classical time continuity check
which is expected to be helpful for quality control of SYNOPs or buoys in cases such as
rapid deepening of a low. The differences "observation - model" compared at steps
0,1,2... for a particular observation, are likely to detect some wrong observations, as
the minimization scheme will find it difficult to find a model trajectory which fits the
wrong observation as well as the other sources of information (model dynamics, other

observations of the assimilation period in the area of the wrong observation...)

b)  INTERCOMPARISON OF SATELLITE DATA ON A GIVEN AREA.
Having split the globe in different geographical areas (or different air-masses), the
distance of the model to each independent subset of satellite data can be computed over
each area, allowing some intercomparisons. Examples: comparison of the distance to the

model over a polar cap of:



- NOAAI0 clear soundings,

- NOAAI10 non-clear soundings,
- NOAAT11 clear soundings,

- NOAA11 non-clear soundings,
- each DMSP satellite.

One bad satellite subset is then likely to be detected through the intercomparison of the
different distances as it will show a bigger distance than the other subsets. This kind of
“regional subset check" can be applied even in the context of the current OI analysis;
however a 4D assimilation provides the possibility to improve the satellite intercomparisons,
especially if the quality control version of the 4D variational system is run on a 12h period, as

the data coverage of each polar orbiting satellite is global on such a 12h period.

All the quality control information of the preliminary OI has to be kept in order to leave open
all the possibilities in the variational quality control step (same basic idea as the one
suggested by Gandin (1988)). As an example, an observation rejected by the OI must still
have the possibility to be used in the variational analysis. ‘

3. COMPUTATION OF J o FOR SYNOPS
For each SYNOP observation, the contribution to the cost function and its gradient can be

computed separately for the following parameters, as the observation errors associated to

these parameters can generally be assumed to be uncorrelated:

surface pressure (or mean sea level pressure);

10m wind (not used for the moment from land SYNOPs over most areas);

2m temperature (not used in the present mass/wind analysis);

2m relative humidity.

Then Joonop = Ipress * Twind * It * I



3. 1» Computation of Jpress and its gradient

Assuming p is the independent vertical coordinate, the observed quantity is actually one
geopotential Z0 (either the station geopotential height, or 0 meter..) at level P0 (either the

station pressure or the pressure reduced to mean sea level).

Jp ress = (z - H vXmVO)ISO)"‘*Z with S0 being the standard deviation of the observation

€ITOr.

In this case, Hv is the post-processing operator for geopotential height which we apply to
the model variables at the SYNOP point.

When computing Hvavo

vao

= geopotential value at observed pressure Po’ the components of
which are used are the surface pressure PS and all the thermodynamic variables of the

model. So, the gradient of J has a non-zero component with respect to these variables.

This means that a pressure (I));:z:vaﬁon from SYNOPs has a direct impact on the humidity
variables of the model, and not only on Ps and temperature. It means also that in such a
variational scheme, the distinction between mass/wind analysis and humidity disappears: each
observation is used to update all the model variables to which they are linked through .the

"post-processing " operator Hv‘

3.2 Computation of J

wind and its gradient

The post-processing operator Hv is the one computing the 10m wind from the model variables
through the flux evaluation. The inputs to this operator are the model variables at the first
level and at the surface. The gradient of Jwind will have a non-zero component with respect
to these input parameters, and it can be computed through the adjoint of the routine

post-processing the 10m wind.

J

wind €30 be evaluated in two ways:

- from the wind components:

((Uo-Umodel)/Sou)**Z + ((VO-Vmodcl)/SOV)**Z (Sou and S0 are the standard

Jwind \'

deviations of the observation errors for wind components)



- from the direction and speed:

_ ) * R . . .
J wind = ((DO Dmodel)/sod)* 2 + ((FO Fmodel)/sof)**z' This second formulation is in
principle equivalent, but might be more convenient for some special observations, when we
trust more the direction than the speed or vice-versa, when we want to use one of them only,
or when we want to have a direct control of either the direction or the speed observation

CITOr.

3.3 Computation of Jt and its gradient

The post-processing operator is the one computing the 2m temperature from the model
variables. We need to compute the temperature at the real observation point, so the operator
Hv should include a correction (0.0065K/m) taking into account the difference between the
station height and the model orography. Also stations should not be used when this

difference is too large.
5= (T5 - Troder/Sp)**2

Tmodel is the 2m post-processed temperature HVX ,and S o is the 2m temperature observation
error which includes also the error of the operator Hv (representativeness error). Two

remarks must be made on the representativeness error:

- On many occasions this representativeness error dominates the instrumental error for the

2m observations;

- On many occasions it is also reasonable to assume that the representativeness errors

between two different SYNOPs are correlated.

Example: land SYNOPs over a cold area with a night inversion, where the operator Hv will
be affected by the same type of large error for all the different observation points. If we want
also to take this correlation into account, then Jt cannot be computed independently for each
SYNOP:

Jt = (To'Tmodel)t O'1 (To'Tmodel)’ where T0 and Tmodel are now vectors corresponding to

an ensemble of SYNOPs, and O is a non diagonal covariance matrix of observation errors.



The gradient of Jt has a non zero component with respect to all the input parameters of H,,
that is the variables at the first model level and the surface variables Ts and WS (soil
moisture). Again the adjoint’ of the 2m temperature postprocessing operator can be used to

determine the gradient.

34 Computation of J th

For the humidity parameter the actual measurement is the wet bulb temperature, and bthe
quantity transmitied in SYNOP code is the dew point temperature. However it is more
convenient to work out the cost function Iy, from the observed relative humidity (recomputed
from the temperature and dew point), and from the relative humidity post-processed from the

model.

Then Jrh = ((RHO-RHmodel)/Srh)**Z, with Srh the standard deviation of the RH observation
error. The postprocessing operator to evaluate RHmodel uses the temperature and specific
humidity at the lowest model level and the surface pressure. It has been studied in more
detail by Vasiljevic (1988).

Remarks:
- The relative humidity data will have a direct impact on the same variables as for Jt:
let us note again that the mass/wind and the humidity analyses are completely

simultaneous.

- As for 2m temperatures, we might introduce a horizontal correlation between humidity
observation errors belonging to different SYNOPs, over one given area, in order to take

into account the representativeness error of the operator Hv'
- Another possibility to investigate is the use of a correlation between the temperature
observation error and the humidity observation error, as we expect the accuracy of the

thermometer to have a direct impact on the accuracy of the SYNOP relative humidity.

3.5 Strategy for carrying out analysis experiments

a) STEP 1. the experiment which is close to the present operational analysis should not

include Jt; it should include Jpress’

tropical land SYNOPs. The correlation between observation errors from different data

Jrh and Jwindfor SHIPs and for a selection of

should be assumed equal to zero.

10



b)  STEP 2: the following versions have to be tried:

- Use the 2m temperatures (include Jt in the cost-function);

- Use all the 10m winds;

- Use the direction and the speed for winds rather than the wind cemponents.

- Introduce a positive horizontal correlation between observation errors for 2m

temperatures and relative humidities.

- Introduce a cross-correlation between temperature and relative humidity observation

errors (i.e. do not separate Jt and Jrh)'

- Possibly use snow and precipitation observations to update the snow and soil moisture

variables of the model.

4. COMPUTATION OFJ o FOR BUOYS

Similar to SYNOPs. Most of the time the buoys report only the pressure, so-the term Jpress

is the only relevant one.

5. COMPUTATION OFJ o FOR AIREPs

The AIREPs are reporting wind and temperature data, of which only the wind is used in the
present OI analysis. Then, in STEP1 of the variational analysis, only the wind data will be
used. But in STEP2, a version of the variational analysis which includes the temperatures has

to be tried. In addition to the wind cost function J it includes a temperature cost

wind’
function Jt' Jt and Jwind being completely independent (temperature and wind observation

errors are uncorrelated).

5.1 STEP1: computation of the cost function J wind and its gradient

The AIREP data are normally reported at one given pressure level. To evaluate Y wind and
its gradient, the postprocessing operator HV is straightforward: vertical interpolation of

the wind from the model level to the observed pressure level.

11



5.2 STEP2: computation of the cost function Jt and its gradient

The postprocessing operator is also - straightforward: standard postprocessing operator for

the upper-air temperature; vertical interpolation from the model levels.

6. COMPUTATION OF]J o for SATOBs

SATOBs are mainly cloud motion winds derived from the imagery of the geostationary
satellites. The observed quantities are radiance patiemns at different times. As it is very
difficult to compute such quantities from the model variable X, it is very difficult to assimilate
these quantities directly although this possibility has been studied (Eyre, personal

communication).

The wind observations are chosen as input to the variational analysis like in the present OL
The postprocessing operator H, is the same as for AIREPs. In STEPI, the different SATOB
observation errors are assumed uncorrelated in the horizontal, like in the present operations.
In STEP2 such a horizontal correlation has to be tried.

7. COMPUTATION OFJ o FOR TEMPs

For each individual radiosonde, the contribution to the cost-function and its gradient can be
computed separately for the following parameters, as the observation errors associated with
these parameters can be assumed uncorrelated:

- wind data;

- geopotential or temperature or both;

relative humidity.

Io=1

I +Jzt'”rh

wind
The postprocessing operators which are involved for the different parameters are the standard
ones. The observation error correlation matrices which are involved in the computation of

Jwin @ J " and J th are small (size = number of observed levels).

12



7.1 STEPI does not use any temperature data, but geopotential data at standard levels only

mnl x J

2t Jwing uses also only standard levels.

7.2 In STEP2, the following versions have to be tried:

- Use of non-standard wind level data in Jwind'

- Use of non-standard height levél data in Jzt: no température data used directly; the
temperatures at characteristic levels are used to recompute extra geopotential height

values.

- Insert in the computation of JZt both geopotential data (at standard levels) and

temperature data at all the levels when they are available.
- For the radiosondes where all parts are available, use the temperature data rather than
the geopotential height data. REMARK: the need to insert an observation error

correlation between different radiosondes is not foreseen.

8. COMPUTATION OFJ o FOR PILOTs

The computation is the same as for the cost function J_. . in a radiosonde. In STEP2, the
PILOTs reporting winds at a given height level z (instead of a pressure level p) have to be

treated through a specific postprocessing operator to be developed.

9. COMPUTATION OF]J o FOR SATELLITE SOUNDINGS

9.1 Interface between satellite data and variational analysis

Currently the information of the polar orbiting satellites is used as SATEM retrieved soundings
in the OI analysis. However the SATEMs are not the genuine observed quantities, but an
"interface” produced by a specific "retrieval" technique. An important part of the SATEM
information is coming from the retrieval technique (inversion algorithm, and possibly initial
profile to start the inversion with). The retrieval technique is also probably responsible for a

large part of the correlation between observation errors of different SATEM observations.

In the variational context, the natural way is to avoid interfaces such as SATEMSs, and to use
data which are as close as possible to the observed quantity. The only restriction is that the
observed data d has to be related to the model variables X through a mathematical operator H

which is well defined (HX = d), differentiable (because of the gradient computations), and

13



accurate enough (otherwise we will insert only noise in the model instead of real information).
The error of the operator H is the representativeness error and should be included in the
matrix O,

For satellite data the real observed quantities are raw radiances, so the target should be tc;
use raw radiances in the variational analysis. However raw radiances are strongly affected by
clouds, so the corresponding operator H would involve the model clouds to a. large extent, and
the quality of the present model clouds is not good enough to rely on them. Then one safe
solution consists in trying to USE CLEAR RADIANCES in the variational analysis, after an
appropriate cloud clearing algorithm which does not involve the model variables X at all (e.g.:
the N* cloud clearing technique or the 3I algorithm does not use any forecast model - then the

resulting clear radiances can be used in the analysis without any "incest problem").

Eyre (1987) chose a different approach in which the cloud-clearing algorithm is integrated with
the retrieval procedure in a single variational problem. Then his cloud-clearing algorithm is
helped by the temperature and humidity profile of the model. This approach is in principle
better (especially if it is generalised to the 3D or 4D context) as better clouds should mean
better cleared radiances and better retrieval. If the clouds are "over-constrained” in such a
minimization scheme (kept close to a preliminary evaluation), it is then almost equivalent to the

one using clear radiances.

The radiances are the best example of data which are linked to the model variables through an
operator H_ which is not linear and rather complicated (radiative transfer equation), and
which can still be used in the variational analysis. For STEP1 of the project the use of clear
radiances will be considered, although it is against the general strategy defined in 1.5.

The design of the code using SATEMs is still useful for further comparisons; it is described
in the annex. The main technical points treated in this annex are related to the computation
of J o when the matrix O is large and non-diagonal. Other points are technical details such as
possibilities of filtering an observation bias. These points may be sometimes also relevant for

the use of clear radiances, and even other observation types.

The vertical part of the variational analysis using radiances is referred to as the "1D VAR": it
has to be seen as one particular module of the 3D VAR, but it could be used also to perform a
1D vertical analysis... which is a production of some kind of SATEMs. Although the initial

goal is to concentrate first on the use of cloud-cleared radiances, it is better to keep the

14



possibility of running also the more general approach when developing the variational analysis:
this leaves the possibility to use also the raw radiances and to integrate the cloud-clearing

algorithm in the variational system.

9.2 Computation of J o and its gradient for clear radiances

The operator H,, which is needed to compute clear radiance values from the model variables is
a direct radiative transfer model tuned to compute the radiances of the different channels
available on the satellite instruments (TOVS for the moment).

For the computation of the gradient of the radiance cost function Jrad,"we apply the adjoint
Tr* of the radiative transfer equation to derive the gradient with respect to the model
quantities from the gradient with respect to the radiances (some code for the adjoint of T, is
available in France (Moll(1988)). The computations are also made in Eyre (1987)).

If we can assume that the radiances are uncorrelated in the horizontal each satellite point
contributes to the gradient computations only at the 4 grid points surrounding the
observation. Then the computations can be organized observation by observation, like for say
the radiosonde observations. However, this assumption might not be the more realistic one as
a horizontal correlation between clear radiance observation errors might come from the
cloud-clearing algorithm; we need to keep the possibility of treating them as SATEMs by
handling big matrices O to invert. Because the radiance computation is often affected by
biases which are air-mass dependent, we need also to keep the bias-filtering possibility for the

radiances as it is described for SATEMSs (see annex).

As the radiative transfer equation T, is strongly non-linear, the use of the variational
technique should be a significant improvement compared to the present OI technique: the main
reason is that the gradient computations will be made about the genuine model profile; only
profile-dependent statistics (with an infinity of profile types!) could achieve a similar
description of the link between radiances and model variables. Another implication of the

non-linearity of Tr is that the cost-function J__ . has to be studied carefully and separately, in

rad
order to understand its behaviour with respect to the model variables. Of particular interest

is the possible existence of multiple minima (see Moll (1988)).

9.3  Strategy for developments and experimentation

In STEP 1 of the experimentation program, we will use the clear radiances. In order to make

sure that this research will be successful, some work has to be done on the satellite data side

15



in parallel. This work includes:

- The best strategy for cloud-clearing algoﬁtﬁms (as the success of the scheme u'sing

clear radiances is highly dependent on the quality of #e these cloud-cleared radiances);

- The determination of one suitable code for the forwards radiative transfer computations
T together with the adjoint code. We must try to reach a standardization of the
postprocessing operator for T, and its adjoint, like for the other postprocessing

operators.

In STEP 2 of the experimentation program, the use of clear radiances will be compared to the
use of SATEMs. Experiments have to be made also on the horizontal cormelation of observation
error for radiances, and on the techniques to remove the radiance bias (see annex). Finally
some experiments have to be made with raw radiances, using Eyre’s approach incorporating the

cloud-clearing algorithm.

10. FUTURE OBSERVING SYSTEMS IN THE VARIATIONAL ANALYSIS

The following observations are not available yet. They are not considered for STEP1 of -the

development of the variational analysis. Some general ideas are given about the way they

should enter the variational analysis when they become available.

10.1 Scatterometer data

The scatterometer instruments such as the one which will be available on the ERS1 satellite are
observing a backscatter signal (60) from the surface of the ocean. These data are sometimes

used to produce some surface winds through empirical retrieval techniques.

Some preliminary studies indicate that the "00" can be used in a variational analysis in the
same way as the TOVS clear radiances. The operator H to examine is not the radiative
transfer equation, but the operator going from the model variables to the stress, then from
the stress to the "00".

10.2 Future radiometers on future satellites (AMSU,AIRS)

For each new instrument a new radiative transfer model has to be used as operator H. For an
instrument with a huge number of channels such as the planned AIRS, a specific study of the

cost function and of the operator H will be required.
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10.3 Profilers

The profilers observe (from the ground) the temperature or the wind as a function of the
height: T(z) and V(z). In order to use these data in a fully 'consistent way, the vertical
coordinate should be z rather than the pressure p (as used currently) When performing the
cost function computation and its gradient. Then special postprocessing operators are needed

which compute the model values of T and V at a given level z.

Because of their high observing frequency, the profiler information should become especially
interesting in the context of the 4D VAR rather than the 3D VAR.

10.4 Lagrangian tracers

We may have to envisage some observations which look like the trajectory of a tracer over a
long time period. To extract some useful information for the variational assimilation from this
tracer, we may have to compare the observed trajectory with the model variables at different
consecutive time steps. This would require having the model X not only at one time step but

over a time period. This facility is not provided by the initial design.
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ANNNEX: SPECIFIC COMPUTATIONS RELATED TO SATEMs

In the computation of J, and its gradient a specific problem is raised for the SATEMs because
their number can be huge, and their observation errors are normally correlated in the

horizontal, leading to huge matrices O. The present annex deals with this specific problem.

Although it is not envisaged to insert the SATEMSs as such in STEPI, the code will have to be

developed at some stage, because:

- In STEP2 we want to compare the use of radiances and the use of SATEMs;

- The treatment of big matrices O has to be considered also for radiances and probably
other observing systems; the technique described thereafter for splitting the vertical

-and horizontal computations is general;

- The bias removal technique, described thereafter on the SATEM example, can be also

-generalized.

A.  Postprocessing operator for SATEM thicknesses

The operator HV needed to compute the thicknesses from the model is the post-procesSing
operator for the geopotential height applied to the bottom and top level of the layer. '

B. © HowtosplittheJ computatidn

satem

Because of the horizontal correlation between SATEM observation errors, O contains many
non-diagonal terms, and we cannot separate the contribution of each individual SATEM as we

generally do for all the other obs types.

However there are physical reasons to split Jsatem in a sum of different contributions
J(11,12,13,14),with;

I1 = 1,N1 (number of satellites)

I2 = 1,N2 (number of retrieval types - presently N2=3)
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I3 = 1,N3 (number of latitude bands or air masses - N3=6 with the NESDIS statistical
retrieval working on 6 different latitude bands. N3 could be‘ 1 with a consistent

retrieval technique).
14 = 1,N4 (number of surface typés - preséntly N4 could be 3: water, ice and land.)

To split the computation means that the correlation is zero whenever the two SATEMs do not
belong to the same category (same satellite, same retrieval type,..). This assumption is
qQuestionable in some cases: for example in the stratosphere, we should expect a positive
horizontal correlation between two SATEMs one being over sea and the other over land, as in a
good retrieval technique the stratosphere must not be contaminated by the surface properties.
However this assumption is not a big problem, taking into account the fact that the assumption

of a correlation depending only on the distance looks much more questionable.

The separation of the computations follows the general logic of having a maximum number of
diagnostic figures (see 1.1). For example we might find that the cost function of the MSU
soundings on a given area is too high comparéd to the corresponding cost function of the clear
soundings, due presumably to a bias in the retrieval, and we might want to do something to

cure the problem.

One way to cure the bias problem is illustrated by the following example: suppose tﬁat for one
given satellite, we think we have a large bias on the MSU SATEMs for one given area of the
globe. Then provided we have enough other observations on this area (clear SATEMs or
radiosondes), we let the mean value of X being driven by these observations, and we filter the

bias of the MSU soundings by using for the cost function Jmsu:
t -1 . t -1
(E-M)" O " (E-M) instead of E'O™ " E

M is the mean value of the normalised departures for the MSU computed on the sample

corresponding to the given satellite and the given area. \

C. Computation of one SATEM cost function J(I11,12,13,14):
With the previous splitting and the present volume of data, each term of the cost function

should not involve more than Nmax = say 700 SATEMs. If however this number is exceeded
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we will put an extra arbitrary separation according to the observation time; basically the data
of one orbit would be split in segments in a way similar to the one used in a satellite retrieval

procedure.

Then we are faced with the computation of a cost function equal to E! 01 E, where the
matrix O corresponds to up to 700 SATEMs with up to 7 layers in the vertical. It is not easy
to invert O which would be as large as 4900 X 49»00!‘ Fortunately a specific technique can be
worked out by .taking into account the usual decoupling assumption of the-correlat_ion in one

vertical correlation and one horizontal correlatioﬁ. :

Let us call V the vertical correlation for the obs error of the L layers (L = 7 normally), and M
the horizontal correlation matrix for the N SATEMSs: ( N up to 700). We can see that due to the
specific shape of the matrix O, the quadratic form

J=E'0lEcanbe computed in the following way:

() For each SATEM k = 1,N compute the L -component vector Pk = V Ek Ek being the
vector of the L thickness departures (nonnahsed) for SATEM number k.

(ii) For each layer 1 = 1,L compute the N-component vector Ql = Ml El, El being the vector
of the N SATEM departures (normalised) for layer number 1.

Remember that in a typical case the dimension of E, and P, is L=7, and the dimension of El
and QI is N=700. '

(iii) Letus call P the vector obtained by putting together the different vectors P,
P =[P1]
[P2]
[PN]

Let us call Q the vector obtained by putting together the different vectors Ql:
+=[Q1]
[Q2]

[QL]
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and then reordering the elements in the way similar to P: L layers of first SATEM, L
layers of second SATEM,,....

(iv) Then the cost function we want to compute is J = P! Q, that is the dot product of the

two vectors P and Q.
This technique is completely equivalent to a projection of Ep on the normal modes of the
matrix V, before a computation of the cost function for each individual mode using the matrix
M (it might actually be useful to separate the contributions to the cost-function of each

individual vertical mode and to store them as interesting diagnostic quantities).

Remarks:

The previous computations can be set up easily if we make the following assumptions:
- For one SATEM category the number of levels we use in the analysis is the same;

- Whenever one layer is rejected, we reject the total sounding, in order to avoid having

incomplete soundings. This assumption is not done at the moment but is reasonable.

D. Computation of the gradient of one SATEM cost-function

The computation of the gradient of one cost function J = E'! O1 E can be done throﬁgh the

following steps:

- Grad(E) 1=201E: the same kind of computation as on J is required as O is not
diagonal (use of the eigenvectors of V). We need a table as large as the total number of
SATEM data to store this gradient. However all the remaining steps of the gradient
computation can be done individually for each SATEM profile without any big table to

store in central memory.

- Computation of the gradient with respect to the vector Hvavo which in this case
contains the values of the SATEM thicknesses post-processed from the model.

- Computation of the gradient with respect to the vector Xmvo,
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- Computation of the gradient with respect to X by multiplication with the coefficients of

the bilinear interpolation in the horizontal.
The last three steps are the standard ones described in 1.4.

E.  Postprocessing operators for SATEM PWC

For SATEM PWC the postprocessing operator Hv is the integral of the specific humidity q on

the observed layer, using p as independent variable in the vertical,

In the present humidity analysis the PWC observation errors are assumed uncorrelated both in
the vertical and in the horizontal. To reproduce this assumption in the variational context
means that the SATEM observations can be treated one by one (like the non-SATEM
observations) for the computation of the cost function and its gradient. The reason is that

the matrix O is diagonal.

However the purpose of the variational analysis is more general than a pure reproduction of
the present system, and it is better to keep opeh the possibility of a correlation between the
PWC obs errors. This means that the organisation of the cost function for PWC has to be
organised in a way very similar to what we do for thicknesses, with all the SATEM information

in memory.

Another option which could be tried easily in the variational context consists in assuming a
non-zero correlation between the PWC and the thickness obs error. Then the contributions of
PWC and thicknesses to the cost function cannot be separated; the computation is.similar to the
one described before except that the size of the matrix V is L = 10 instead of 7: 7 thicknesses
+ 3PWC.
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