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1. INTRODUCTION

In the previous papers on the extended range forecasting at ECMWF, we have
studied the extended range skill of the ECMWF numerical weather prediction
(NWP) model, firstly over one year at a variety of resolutions (Tibaldi et
al., 1988), and secondly over three years at the currently operational T106
resolution (Palmer et al., 1988). From Tibaldi et al. it was concluded that
the extratropical extended-range skill of the model increased with horizontal
resolution, though the performance at T63 was not significantly worse than
that at T106 resolution. 1In Palmer et al. it was shown that variations in
skill due to inter— and intra-annual variability of the atmosphere far
exceeded variations associated with changes either in model formulation or

model resolution.

The comparable results between the T63 and T106 models is perhaps of some

relief for future studies, bearing in mind the present computational burden of
integrating at the higher resolution. The substantial month to month and year
to year variability in skill is also not discouraging. It suggests that with
the present forecasting system, there may be occasions when the extended range
forecast can give useful guidance. However, clearly this potential cannot be

realised unless an a priori estimate of forecast reliability can be given.

The prediction of forecast skill is a topic of much interest at present, both
for extended, medium and short range forecasting. Possible techniques for
estimating forecast reliability include the use of stochastic dynamical models
(Epstein, 1969), Monte Carlo forecasting (Leith, 1974), and statistical

prediction techniques (Palmer and Tibaldi, 1988).

Problems of formulation, closure and sheer computational cost still require
solution before the stochastic dynamic technique can be considered viable.
Statistical techniques do not appear to offer a satisfactory solution for the
extended range problem, not least because of the very limited archive sample

with which to derive, for example, regression coefficients.
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The notion of Monte Carlo forecasting originated as an alternative o the
stochastic dynamic model and was defined by a finite sample or ensemble of
integrations of a deterministic model, each one obtained by randomly
perturbing the spectral coefficients (or grid point values) of an operational
analysis. As such, this technique is not appropriate in a Fforecast system
with nonlinear normal mode initialisation, even when the wind and mass fields

of the perturbations are in geostrophic balance (Hollingsworth, 1980).

However, a very simple and convenient way (in an operational forecast
environment) of effectively obtaining an ensemble of balanced initial states
for a Monte Carloc forecast ensemble, is through the time-laggyed approach
advocated by Hoffman and Kalnay (1983). 1In the current operational
analysis/forecast system at ECMWF where analyses are produced at 6 hourly
intervals, an n-member ensemble at time t=0 would comprise the operational
analysis at t=0, the 6 hour forecast initialised from the analysis at t=-6 hr

and so on to the 6(n-1) hr forecast from the analysis at +==6{(n-1)} hr.

As mentioned above, this technigue is particularly easy to implement in an
operational environment, and does not suffer from the problems of initial
ensemble perturbations projecting onto unbalanced modes. However, neither is
it a perfect system. For example, a basic premise is that large ensemble
dispersion should give an indication of a poor forecast, and smail wnsemble
dispersion should give an indication of a reliable forecast. In principle,
the time-~lagged technique could fail in both these respects when applied in
the ECMWF operational environment. For example, since the initial
perturbations of the ensemble should reflect uncertainty in the initial
analysis, the perturbations should be weighted towards data sparse regions.
However, in a region of no data, the analysis is taken from the first guess

field, which is the 6-hour forecast. Hence, the effective time-lagged Monte

ot

Carlo perturbation would be zerc in a region of ne initial data. Tn these

orecast

h

circumstances, the notion that ensemble dispersion is a predictor of

reliability can be seen to be doubtful, at least in the First few days of the

a
h

integrations. Secondly, when the size N of the ensemble is ficiently
large, the Nth perturbation (at time t=0) becomes an unrealistic measure of

analysis uncertainty both because of internal and external error growth.
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Whilst these drawbacks mayvbe'serious for short and medium range ensemble
forecasting, the simplicity of the method may outweigh its disadvantages when
studying the extended range forecast problem. For example, when assessing the
skill of a monthly forecast, one cannot assume that the ékill of today's
forecast will be significantly less than the skill of yesterday's forecast, or
even the day before yesterday's. FPurthermore, the geographical distribution
of the initial perturbations, and their association with data sparse areas,
may not be so important for the extended range problem. For example, beyond
the first few days, initial analysis errors will propagate downstream and
excite the dominant modes of instability of the flow field. Ultimately, the
structure of forecast errors will depend more on the geographical distribution
of these modes of instability than on the geographical distribution of the

initial analysis errors.

In the present paper, we therefore study the problem of predicting extended
range forecast skill using the time~lagged approach. Following earlier
studies (Leith, 1974; Hoffman and Kalnay, 1983) we recognise that about 10
integrations are necessary to form a large enough sample. This would cause
practical computing problems if it was necessary to integrate the model at the
currently operational T106 resolution. Howéver, as mentioned above, the
results in Tibaldi et al. (1988) can be used to justify integrating at the T63
resolution. This paper, then, is a study of extended range time-lagged

forecast integrations of the operational ECMWF model truncated at T6&:.

In section 2 of this paper, we describe the database and the time-lagged
ensemble forecasts that have been performed. In section 3 we present some
properties of ensemble forecasts which can be obtained within a simple
theoretical framework. Summary results on forecast skill and ensemble spread

are given in section 4.

Having established a methodology for extended range ensemble forecasting, it
is necessary to establish a procedure for postprocessing the results. The
ensemble mean forecast is a simple and convenient way of collating the results
from individual members. The RMS error of such a consensus forecast is
trivially smaller than the mean RMS error of the members of the ensemble. (As
will be discussed below, the magnitude of the anomaly correlation coefficient

of the ensemble mean forecast is also, under certain circumstances, trivially




greater than the magnitude of the mean anomaly correlation coefficient of the
individual forecasts). Maps of the standard deviation of the engemble can
give an estimate of the reliability of the consensus forecast but give no
indication of possible alternative forecast flows to the ensemble mean. A
simple way of indicating possible alternatives is through maps showing the
probability that a forecast variable lies within certain predefined bounds.
In this way, the probability of an extreme event (e.g. wind speeds exceeding
three standard deviations from climatology) can be indicated. Such a
probabilistic analysis will be given in section 5 for one selected ensemble.
In section 6 we describe results from three selected ensembles in terms of
somewhat unconventional diagnostics - phase space trajectories. We use these
in an attempt to understand the physical differences between the evolution of

the ensembles. Concluding remarks will be made in section 7.

2. THE DATABASE AND EXPERIMENT DESIGN

An ensemble of time-lagged forecasts (TLF) in the present study is comprised
of 9 members, each member being an extended-range prediction with the T63
version of the ECMWF operational spectral model. The initial data for each
member of the ensemble were ECMWF operational analyses separated (lagged) by 6
hours. There is therefore a 48~hour period spanning the first and the last
member of the ensemble (Fig. 1). This was a natural choice, since ECMWF
analyses are available at 6-=hour intervals: 00%, 06Z, 12Z and 18%Z. The last
forecast of an ensemble starts from a 12Z analysis at 'DO' and it is
integrated for 30 days. All verifying times are relative to DO and therefore
this last forecast is referred to as the control run. The first forecast of
an ensemble starts from 127 analysis at D=2, i.e. 48 hours before the initial

date of the last forecasts, and is integrated for 32 days.

The complete list of the TLF dates is given in Table 1. From September 1985
until march 1986 the time-lagged forecasting was performed every month. After
this period they were run in 3-month intervals. Asterisks in Table 1 denote

those ensembles which are discussed in some detail in sections 5 and 6.

The observed sea surface temperatures (SSTs), which are part of the initial
data, were kept constant during the course of integration. Since, in the
operational data assimilation scheme, SSTs are updated daily at 12%, it is in

principle possible to have different SSTs within the same TLF ensemble.
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No. Date Comment/Model change

1. 16 May 1985 May 1985 physics

2. 16 September 1985

3. 16 October 1985

4. 16 November 1985

5. 15 December 1985

6. 19 January 1986 *

7. 16 February 1986 *

8. 16 March 1986

9. 15 June 1986 Introduction of the 19~level model

10. 14 September 1986 Introduction of the GWD parametrization
i1. 14 December 1986 *

12. 15 March 1987

13. 14 June 1987

i4. 13 September 1987

15. 13 December 1987

16. 13 March 1988 Introduction of new vertical diffusion scheme

Table 1

Initial dates of a set of 16 TLF ensembles run with T63 ECMWF operational

spectral model.

Changes in the model are indicated on the right=hand-side.

Those initial dates denoted by an asterisk are cases discussed in detail in

sections

5

and 6.
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However, these differences (if any), by virtue of their slowly varying nature,

are negligible.

The ensemble mean is computed as a simple arithmetic average from all members.
There is no weighting of individual forecasts, (Hoffman and Kalnay, 1983),
because of our interest in extended range predictions where all weights would

be essentially identical (c.f. Molteni et al., 1986).

Until March 1986, the same version of the ECMWF operational model was used for
all TLF ensembles: 16 levels, envelope orography and physical parametrization
as defined in May 1985 (Tiedtke et al., 1988). The June 1986 ensemble was run
with the model in which vertical resolution was increased to 19 levels by
including three additional levels between 10 and 150 mb (Simmons et al.,
1988). From September 1986 the TLF ensembles were run with a ﬁodel which
included parametrization of the gravity wave drag (Palmer et al., 1986; Miller
et al., 1988). From the beginning of 1988 the vertical diffusion scheme above
the planetary boundary layer was removed. This inhomogeneity in model data is
an unavoidable consequence of our desire to keep the extended-range programme
relevant to the needs of the operational forecasting system, particularly with

regard to the diagnosis of systematic error.

The ECMWF operational analyses were used for the objective verification of the
. TLF ensembles and individual forecasts. A monthly climate, derived from six
years (1979 to 1984) of ECMWF analyses, was employed to evaluate the forecast

anomaly correlation coefficient of skill.

In the following sections we denote forecasts from December, January and
February as 'winter' forecasts; forecasts from June, July and August as
'summer' forecasts; and forecasts from all other times of year as 'transition®

forecasts.
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3. THEORETICAL BACKGROUND

Before looking at the actual results obtained from our T63 time-~lagged
integrations, it is useful to discuss briefly what improvement can be
expected, on average, from the ensemble mean of a time-lagged forecast over a
single deterministic forecast. An unweighted time-lagged forecast is simply a
rarticular realization of an ensemble forecast, and the results deduced by
Leith (1974) and Seidman (1981) can be considered as representative of its

theoretical behavicur, at least in the perfect model assumption.

The practical experience of Molteni et al. (1986) and Murphy (1988) showed
that in general, an ensemble-mean forecast is indeed more skilful than a
deterministic forecast but this improvement is far from being as large as
expected from the perfect model theory. Molteni et al. also noted a slight
‘return' of the forecast skill, that is a weak increase in skill scores,
towards the end of the integrations period, the cause of which was not clear
at the time. (Such a return has sometimes been observed alsc in purely
deterministic forecasts, see for example Cubasch and Wiin-Nielsen (1986) and

Section 3.3 in Molteni et al. (1986) for a possible explanation).

In this section we shall show that a parametrization of NWP errors in a simple
analytical model for error growth can lead not only to more realistic
theoretical values for the skill of an ensemble forecast, but also to an

explanation of its apparent return of skill.

3.1 Basic mathematical relations

For the purpose of statistical assessment of an ensemble forecast, we first
define a basic set of expressions. Let Fi be a forecast field produced by one
member of the ensemble (i=1, ..., N). For any given field X (which could be
for example the verifying analysis, climate, etc.), the mean square distance

of ¥ from the members of the ensemble can be written as

N
iFiDX]2=|F-X|2+% ¥ iFi—Fz (1)
1 i=1

2
i~

i

. N
where F = é— z Fi represents the average of the N forecast fields, that is
i=1

the centroid of the ensemble and vertical bars denote the modulus. Let A be
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the analysed field which verifies each Fi' E=F - A the error field of the
ensemble mean, and let us assume from now on that all the fields are expressed
in terms of anomalies, i.e. deviation from the observed climate Xc (i.e. put
X' = X-Xc for all X, and drop all primes hereafter). We can define the

following variables describing the statistical properties of the ensemble:

£2 = 2 % |F. |2 (2a)
| CRPEPERE
2 21 5 2
e? = = ) IFi - 1 (2b)
i=1
21§ =12
A X Y IFi - F| . (2¢)
i=1
o - 1 N N ,
" wnw L L IE e El (2a)
i=1 j=1

£2 is the ensemble average of the spatial variance of individual members (or
deterministic forecasts), e? represents the mean squared error of individual
members (again averaged over the ensemble), A2 is the mean squared spread (or
dispersion) from the ensemble mean, and §2 is the mean squared distance
between all pairs of individual forecasts. Using (1) and setting X to various
fields we obtain relationships between variables defined by (2a) - (2d4). For

X=0 it follows

£2 = |F|2 + a2, (3)
whereas if we set X=A we obtain

e? = |E|2 + a2 (4)

Eg. (4) quantifies the average improvement of the ensemble~mean forecast over
the individual members in terms of mean-square error, and Eq. (3) clarifies
that this improvement is obtained by removing part of the variance from the
forecast fields. The practical usefulness of the ensemble-mean forecast
depends on whether this removed variance is due only to unpredictable scales

of motion; in an ideal situation, AZ should be exactly equal to the variance
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of the unpredictable components. Finally, a relationship between the squared
ensemble spread A2 and the mean squared distance of all pairs 62 is obtained
by substituting Fj in (1) and summing over all Fj forecasts:

2 - 2N 2

62 = £ a2 (5)
Now, in the perfect model hypothesis one assumes that the growth of the mean
digtance among the members of the ensemble is egual to the average growth of
the 'deterministic® error, and that the spread of the ensemble at the initial
time is representative of the analysis error; then for every forecast time

52362, and from (4) and (5) one deduces

12 = (1- =1y o2
|E| (1= 2 e?. (6)
If N is sufficiently large, one obtains the theoretical 'perfect model' limit
for the skill of an ensemble forecast deduced by Leith (1974), that is, the
mean-square~error of an ensemble forecast is half of the average

mean-sguare~error of the individual members of the ensemble.

Finally, for comparison, note that the error variance of a 'climate' forecast

is IA[Z, that is, the magnitude squared of the observed anomaly.
Let us now consider the anomaly correlation coefficient (ACC) as a measure of

skill for any deterministic or ensemble forecast. For a single forecast in

the ensemble the ACC can be expressed as

2 2 - =nl 2
[F,12 + (817 = |r 2]

_ 7 (7a)
2 TF, 1 1A]
and for the ensemble mean as
D(E) - _%_L;ﬁ_
EIREN
L2 +]al? - |5]? o)

2 |F

12l
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In order to derive a relationship between p(E) and the mean ACC of individual

members of the ensemble, the latter being simply defined by

N
Y 0. . (8)

we must make some assumptions about the ensemble. Thus, if we assume that
each deterministic forecast Fi has a greater spatial variance than the
ensemble mean (lFi|>I§|), then from Eq. (7) Ip(f)l > IBI. Whilst in practice
this assumption holds in many situations, it is easy to construct an
artificial case where it does not. Consider two anomaly fields F.,= C_cosA,

1 1

F2= Czcos (A + m/4) where X is longitude, and we ignore latitude and height

variations. If the verifying field A = C3cosA, we clearly have B = 3 (1 +

1/VY2). A simple calculation gives

e+ 1/V2
(e2+ V2 e+ 1)

p(F) = 1

where € = C1/C2. In the limit € + 0, p(§) is clearly less than E, and more
generally it is easily shown that p(ﬁ) < B when € < Eo = .82 Clearly
'ensemble averaging', when € < € fails to 'improve' the mean skill because
the spatial variance of F1 is smaller than the ensemble mean.

Alternatively, if one assumes that all the forecast anomalies in the ensemble
have nearly the same amplitude, i.e. |Fi|= f for each i, then, by applying (4)
and (3) in Eq. (8), it can be deduced that

. - f - £2
p(F) = p =0 (F72 Ai‘)%

(2)

£l

Since the ratio f/IEI is always greater than 1 and increases with forecast
time due to the growth of the spread, the ensemble mean forecast should have a
proportional increase in the ACC over a deterministic forecast (providing that

5 is positivel).
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Given a theoretical model for the growth of e? and &2 (and consequently of AZ2)
and assuming a climatological constant value for f and for a = IA],

theoretical curves for p and p(F) can be computed from

- £2 + a2 = g2
2fa

e (10a)

o(F) = P e . (10Db)

A2
1/1-‘—2‘

th

3.2 A theoretical model for skill and spread

Dalcher and Kalnay (1987), based on earlier work of Leith (1978), have shown
that the growth of error and spread of deterministic numerical forecasts can

be parametrized by the following eqguations:
N * *
82 = (ae? + oV, (1 - e2/Ve) (11a)

52

as? (1 - az/v’;) . (11b)

*
where the dot represents the derivative with respect to forecast time, Ve and
*
V. are the asymptotic (saturation) values of the variance of the deterministic

8
error and spread respectively, o an 'internal' (i.e. intrinsic to the real
atmosphere) growth rate of the error and ¢ an additional 'external' growth
rate representing the effect of the model approximations. Using ECMWF
* *

forecasts of 500 mb heights for winter 1980/81 and setting V6 Ve, they

obtained o=0.39 day~! and o = 0.045 day™ l.

It is clear from Dalcher and Kalnay and from Lorenz's (1982) work that the
term dv: is essential for a good parametrization of error growth at short
forecast times. Furthermore, it is common experience in numerical weather
prediction that the spread between forecasts grows slower than the actual
error. Consequently, the theoretical, perfect model, limit for the error of
an ensemble forecast, i.e. IEIZ = 0.5 e2, can only be achieved at very long

forecast times. Fig. 2 shows the theoretical time evolution of e2, lﬁlz, D
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MEAN SQUARE ERROR (ASYM. VALUE = 2.)

0 5 10 15 20 25 30
FC. DAY

0.50 0.75 1.00

0.25

0.00

Fig. 2 Theoretical error growth rates when asymptotic values of variances are
set to 2. See text for explanation.
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and p(g) computed using Egs. (11a,b) and setting the values of parameters as

follows
a=%f=1.
* * 5
Vo= Vg= 2
o = 0,25 day~}
o= 0.035 day~!l.

The first four parameters are normalized by setting the observed variance to
1; the growth rates are set to lower values than those found in Dalcher and
Kalnay in order to have a better fit to the error growth of the T63 model used
in this study (i.e. to take into account improvements in the ECMWF model).
Comparing the full lines (e? and p) with the dashed lines (|Elz and p(F)) one
can see that the improvement due to ensemble forecasting is considerably less
than the perfect-model limit (heavy solid line) in the first 10 days of the
forecast. This theoretical limit is only approached after ~ 20 days, due to
the slower saturation of the spread, which causes a slower decrease of the
ensemble mean error (according to Eq (4)) in the last part of the forecast.
However, looking at the anomaly correlation coefficient (lower panel), the
curve for p(ﬁ) remains monotonically decreasing with the modest improvement

over p.

The situation becomes even less favourable for the ensemble forecasting if one
% *
5 = Ve is suitable for a model with
*
random but no systematic errors. If a systematic error exists, then VS will

% .
be lower than Ve by an amount which is proportional to the variance explained

takes into account that the assumption V

* &
by systematic error itself. Assuming again V_ = 2., but V6 = 1.6
(corresponding toc a normalized variance of the systematic error equal to 0.2;
see Appendix in Tibaidi et al., 1987), we obtain for iﬁiz and p(%) the dotted

curves shown in Fig. 2.

As previously said, all the curves in Fig. 2 have been computed assuming that
the asymptotic value of the forecast error is twice the climatclogical
variance. In fact, the recent experience in extended range forecasting
indicates that, on the monthly time scale, some predictability may exist even
at day ~ 30, due to the thermal interaction with the lower boundary. This

predictability is evident in cases of strong SST anomaly, but even in
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'near-average' situations it cannot be totally neglected and is probably
responsible for the relatively high skill of extended range prediction of
temperature in the lower troposphere, especially in the southern hemisphere

(see Molteni et al., 1986; Tibaldi et al., 1987).

If one assumes that, due to this interaction, 20% of the variance remains
predictable at longer range, and reduces the values of V: and V; accordingly,
one obtains the curves shown in Fig. 3. One can see that the most relevant
effect of this assumption on the ensemble forecast skill scores is to enhance
the improvement in terms of ACC. A return of skill can now be seen also in
the ACC, which is much more evident in the case of no systematic error (dashed
curve), confirming the results of Molteni et al. (1986). This is due to the
fact that while p is practically constant from day 15 onwards (and greater

than zero), IEI continues to decrease and from Eq (9), p(F) increases in the

second half of the forecast range.

In conclusion, the slower growth of the spread of an ensemble compared with
the error growth, restricts the improvement in skill of the ensemble mean
forecasts over that of individual members of the ensemble, and gives rise to a
"return of skill' apparent in both RMS error and ACC if the thermal
interaction with the surface explains a non-negligible proporticn of the

observed and forecast variance.

In general Ve and VG are function of annual cycle, and, within a season, of
weather regime. Their dependence on annual cycle is so strong, that even for
models with significant systematic bias, asymptotic error and asymptotic
spread are well correlated over an annual cycle. Within a season, on the
other hand, the dependence of Ve and V(S on weather regime could be quite
different. For example, V6 reflects the intrinsic instabilities within that
weather regime, whereas Vé may, additionally reflect the impact of systematic
deficiencies in the NWP model physics and numerics on forecast quality, given
the flow pertaining to that weather regime. Hence, within a season, Ve and V

8
could be quite uncorrelated for models with serious systematic error.

In conclusion, the ensemble average is essentially a dynamically tuned spatial
filter, which has the effect of removing unpredictable scales. A predictable

component of the circulation can be made evident by the time=-lagged
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MEAN SQUARE ERROR (ASYM. VALUE = 1.6)

~.a

20 25 30
FC. DAY

ANOMALY CORRELATION COEFFICIENT

0.75 1.00
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0.25

0.00

0 5 10 15 29 25 30
FC. DAY

Fig. 3 Same as Fig. 2 but when asymptotic wvalues of variances are set to 1.6.
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forecasting technigue if it already exists in the deterministic forecasts, but
obviously it cannot be created! However, one must always remember that the
improvement in the scores of the mean forecast is not the only (and probably
not even the main) purpose of ensemble forecasting; its usefulness should be
judged from its ability to provide a realistic probability distribution for

the expected atmospheric states.

4. A SUMMARY OF RESULTS

In this section we shall present a summary of results from the time-lagged

ensembles listed in Table 1.

4.1 Skill of ensemble forecasts

We first address the question of whether the skill of the ensemble-mean
forecast has increased over the skill of individual forecasts. In Fig 4a, b,
we show scatter diagrams of the 30-day mean northern hemisphere 500mb height
RMS error and anomaly correlation coefficient for the ensemble-mean forecast
against the mean skill of the individual forecasts. As discussed in section
3, the ensemble-mean RMS error is inevitably smaller than the mean RMS error
of individual forecasts. This is clearly illustrated in Fig 4a, which shows a
nearly linear relationship between individual-mean and ensemble-mean skill.

In this, and following scatter diagrams, summer forecasts are shown with open
circles, winter forecasts are shown with open boxes, and the transition
forecasts are shown with crosses. The distribution of points in the scatter
diagram clearly reflects the impact of the annual cycle of the ensemble mean
RMS errors, with summer forecasts having smallest RMS errors, Qinter forecasts

having largest errors.

From Fig 4a, one can note that the reduction in error associated with ensemble
averaging is, on average, somewhat larger for the transition season forecasts
than for the summer forecasts. This is to be expected under perfect model
assumptions; by combining equations 5 and 6, for large N, we have
|e-E|=(/§;1)|A|, i.e. the improvement due to ensemble averaging is
proportional to the dispersion A from the ensemble mean. We would expect this
dispersion to be strongly influenced by the annual cycle, and consequently to
contribute to a larger improvement to ensemble forecasting in the transition

season than in the summer season. The largest impact of ensemble averaging is
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associated with the ensemble from November 1985 (part of the transition
period), when RMS error fell from a mean value of 71 m to an ensemble average

value of 57 m (implying A=42 m).

However, it can alsc be seen from Fig 4a, that the impact of the seasonal
cycle on reduction of forecast error does not extend into the winter season.
The smallest impact of ensemble averaging does not, as one might have
expected, occur for a summer ensemble, it occurs for the winter ensemble from
January 1986. For this ensemble, the RMS error was reduced from an
individual mean value of 96 m to an ensemble mean value of 95 m (implying
A=14 m). This suggests that the perfect model assumptions seriously break
down for the winter ensemble forecasts. As can be envisaged already,
individual members of the ensemble from January 1986 failed to forecast the
development of a major large scale anomaly, and moreover were each remarkably

consistent with one another.

'As discussed in section 3, the improvement to the anomaly correlation
coefficient is not inevitable. However, provided the spatial variance of the
individual forecast fields is larger than the spatial wvariance of the
ensemble mean field, ensemble averaging will increase the absolute value of
the anomaly correlation coefficient. This effect can be seen in 7ig. 4b. As
in Fig 4a, there is an approximately linear relationship between i Adividual
mean and ensemble mean skill, though in this case the relationship =on be
thought of as a rotation of the diagonal about the origin. The winter
ensemble lying below the origin is again the January 1986 case, where the mean
individual score is negative, and, consistent with our expectation, ensemble
averaging has made the anomaly correlation coefficient even more negative. It
is interesting to note that the annual cycle distinguishes less clearly, than

for RMS error, the skill of the ensembles from different seasons.

Of the winter and transition ensembles, exactly half have 30 day mean anomaly
correlation coefficient in excess of 0.5. (A value of 0.5 has some objective
significance; since, if the forecast and observed fislds have equal spatial
variance, an anomaly correlation coefficient of 0.5 corresponds to a
climatological RMS error.) Since the anomaly correlation coefficient is less
strongly influenced by annual cycle effects than RMS error, the comparison of

relative predictability in summer, transition and winter season forecasts is
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more meaningful in Fig 4b, than in Fig 4a. 1In this sense, it would appear
that summer ensembles have rather low skill in the prediction of phase

compared with other times of year.

It could be argued that a more stringent test on the effect of ensemble
averaging would be to compare the gkill of the ensemble mean forecast with the
skill of the latest member of the ensemble, the control forecast. Scatter
plots of this, for RMS error and anomaly correlation coefficient, are shown in
Fig 4c and d respectively. The improvement in skill through ensemble
averaging is now not inevitable, and for RMS error, one of the winter control
forecasts (December 1985) and one of the summer control forecasts (June 1986)
are more skilful than the ensemble mean. For anomaly correlation, there are
cases from all times of year when the control forecast is superior to the
ensemble mean. However, there are more cases where ensemble averaging

improves skill, and there are no cases of substantial worsening.

In view of these results it is of interest to ascertain whether the cases of
higher control-versus-ensemble skill in Fig 4c,d are merely associated with
random sampling, or whether the control forecast is systematically more
skilful than the mean skill of individual forecasts. Scatter plots to
determine this are shown in Fig 4e,f.  For RMS error, there is no particular
evidence to favour the control forecast; the points are distributed reasonably
uniformly about the diagonal line. However, for anomaly correlation
coefficients, there is evidence that the control forecast is favoured,
particularly for winter and summer cases. Clearly, with such é small sample,
one must exercise caution, but this result lends further support to the notion
outlined in the introduction, that with the time-lagged technique, the
individual members of the ensemble are not equally likely, even for the
extended range, at least as far as maximisation of anomaly correlation
coefficient is concerned. (For the anomaly correlation coefficient, this
improvement is very clear in the first 10-day mean, less clear in later 10~day
means. For RMS error the improvent of the control in the first 10-day mean

can be just discerned. For later 10-day means it cannot be detected.)
Note from Fig 4a, four of the five winter ensemble-mean forecasts have lower

RMS errors than the average skill of a wintertime climate forecast (shown as

the dashed horizontal line marked DJF climatology). However, it could be
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argued that a stricter comparison can be obtained when the 30-day mean scores
are compared with the 30-day RMS error of a climate forecast appropriate to
the relevant forecast period. From section 3, the RMS error of a climate
forecast is equal to the amplitude of the observed anomaly. A scatter plot of
ensemble mean RMS error against amplitude of observed anomaly is shown in

Fig 5a. There are only two winter ensembles (December 1986 and December
1987), and two transitional ensembles (November 1985 and September 1986) which
can be said to be better than a climatological forecast. However, these
results should perhaps be tempered by two considerations. Firstly, when the
magnitude of the observed anomaly is small, it is clearly unlikely that any
model could improve over a climatological forecast. The skill of a numerical
model should be gauged in circumstances when the flow is anomalous. In this
respect, it can be said that the model outperforms climatology for the four
most anomalous situations. Secondly, for other model fields, a more
substantial proportion of forecasts do better than climatology. For example,
for 850mb temperature (see Fig 5b) all but one of the winter forecasts is

superior to climatology (the case from January 1986 being inferior).

Another objective comparison is shown in Fig. 5¢, 4, where the 30-day mean
skill of ensemble mean forecast is compared against the 30—-day persistence
forecast. Here we use persistence of anomaly fields rather than persistence
of full fields, in order.to4remove the seasonal trend and thus to optimize
the persistence forecast. One can note that the persistence RMS errors lie
approximately within the bounds defined by the perfect model assumption, that
is Y2 times the climate norm (Hollingsworth et al., 1987). Clearly, in all
but one case (January 1986) the model outperforms the persistence forecast.
This is also true in the anomaly correlations, though the seasonal cycle is

now less evident.

The general regional improvement of ensemble mean forecasts over the control
forecasts can be seen in Fig 6a-c. It is interesting to ncte that the effect
of the seasonal cycle is much more apparent for the Atlantic sector than the
Asian sector. This is consistent with the observed ratio of low-frequency
variability in the winter and summer, large over the Atlantic, smaller over
Asia (see, for example, Lau et al., 1981). In the southern hemisphere

(Fig 6d), there is even less distinction between the summer, winter and
transition ensembles, again consistent with the relative weakness of the

annual cycle on the general circulation of the southern hemisphere.
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4.2 Relationship between spread and skill

The notion that the spread and skill of the ensemble forecasts are positively
correlated is central to the usefulness of the ensemble technigue. Under
perfect model assumptions, as discussed in section 3, A=E for large N. The
extent to which this is achieved in practice can be seen in the scatter
diagram in Fig 7. In fact, far from being equal, it can be seen that, on
average, the mean square forecast error is about 3 times the mean square
ensemble spread. For the exceptional case of January 1986, the mean square
error is about 9 times the ensemble spread. This general inequality is
suggestive of systematic deficiencies in the'model, particularly in

wintertime. This will be discussed below.

Overall, it can be seen that there is a clear positive corrsiation between
spread and skill. However, a substantial part of this correlation reflects
the impact of the seasonal cycle on spread and skill. Taking the summer and
transition seasons together, spread and skill are approximately equal,

subject to an offset of about 20 m. The offset can be thought of as an effect
of the model systematic error, that is to say, there is an 'external® source

of error of about 20 m which is largely independent of weather regime.

Within the winter season, on the other hand, there appears to be an
anticorrelation between (RMS) spread and skill. This demonstrates quite
clearly, that in a nonperfect model environmént spread is not necessarily a
good predictor of skill. This anticorrelation is probably also related to
systematic error. In wintertime, it is well known that model éystematic
deficiencies simultanecusly affect the drift both of the mean state, and of
low=frequency variability about this mean state (Palmer, 1987). If the
climate drift of the model has the effect of producing an erronecus and deep
"attractor basin® in some portieon of the phase space of model states, then
trajectories of & forecast ensemble falling into this basin will be consistent
and invariably wrong; whilst trajectories of an ensemble avoiding this basin
will be less consistent though at least occasionally correct. Clearly the
latter type of systematic error is much less ‘benign' than the 20 m ‘offset’
{which could be thought of as a mere translation of the attractor basins in
some direction of phase space, without affecting their relative structure)

required for equality of spread and skill during other times of year.
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Considering cases within a single season only, the only evidence of a
nontrivial positive correlation between spread and skill appears to cone
during the transition period. Of course it is still possible that there is a
residual effect of the seasonal cycle within the transition sample. Indeed
the ensembles with largest and smallest ervocr start from dates within cne
month of the winter and summer solstice respectively. For the others, the
error is not well correlated with starting date. Moreover, for the transition
season, there appears to be a correlation between spread and skill using the
anomaly correlation coefficient {not shown), not evident for the other

Seasons.

4.3 Time evolution of the ensemble skill scores

We now briefly discuss the evolution of skill of the ensemble forecasts during
the course of the integration. For clarity, all ensembles are separated into
'extended winter' (October to March) and ' extended summer' (April to

September) seasouns.

In Fig 8, the daily scores show large variability. The poorness of the
January 1986 forecast is confirmed in both the RMS error and anomaly
correlation coefficient. The ensemble-mean score crosses the 0.6 line by day
5, and it continues to fall rapidly, reaching zero anomaly correlation by day
10. The ensemble forecast for the next month, February 1986, is clearly the
most skilful in terms of anomaly correlation coefficient, which does not fall

below 0.6 until day 14 and stays relatively high at the end of the forecast.

In summer, daily anomaly correlation scores cross the 0.6 line, on average,

earlier than in winter and drop towards zero correlation faster,staying quite
low until the end of the forecast. The RMS error is lower, but saturation is
reached eariier than in winter. Dispersion between ensembles is smaller and

is relatively uniform throughout the forecast time.

The potential improvement that time averaging makes to the ensemble forecast
is shown in Fig 9. The forecasts have been grouped into two sets: an extended
winter {October to March) and an extended summer (April to September). Since
RMS is trivially reduced through time averaging, we show in Fig 9 only the

impact on anomaly correlation coefficient. If the predictability of the
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ensemble mean forecast was the same for all time scales, the time-mean
operation should merely result in a smoothing of the daily skill scores. In
fact, as Fig 9 shows, there are some improvements for both 5 and 10 day mean
forecasts compared with daily values, albeit rather modest ones. The largest
improvement occurs around day 10-15, and is negligibly small at the end of the

forecast period.

The fact that the largest improvement in the time-averaged fields is found
between day 10-15 could be very significant. At the present, the upper limit
for medium-range forecasting is normally considered to be about 10 days.
Having in mind steady improvements in numerical models and observing/analysis
systems, the improvement in skill shown in Fig. 9 give rise to the hope that
the upper limit for medium-range forecasts might extend beyond day 10 in

future years, at least for time averaged fields.

5. PROBABILISTIC APPROACH TO ENSEMBLE FORECASTING

A simple approach to extracting additional useful information from individual
forecasts of an ensemble is by defining probabilities that a forecast wvariable
falls within different predefined categories. Though the probabilistic
approach is well established in statistical long range forecasting in some
meteorological centres (for example in the UKMO and NMC), an application of
this method to numerical ensemble forecasting has only been made recently
(Déqué, 1988). As mentioned in the introduction, spread from the ensemble
mean forecast can offer only an estimate on how well that mean forecast
represents the elements of the ensemble, giving no indication 6n possible
alternatives. With the probabilistic approach a predicted extreme event will
be captured even when only one single member of the ensemble gives such a
prediction, no matter how small probability might be. This would be of

practical value to the forecaster.

To demonstrate the potential of the probabilistic method, in Fig. 10 we look
at predicted 5~day averages of 850 mb temperature anomalies over the European
region from December 1986 ensemble individual forecasts. 850 mb temperature
is used, firstly because of its practical importance, and secondly, as
discussed in section 4, many of the ensemble-mean forecasts were particularly
skilful {relative to a climate forecast) in this variable compared with, say,
500 mb height. We define three classes for anomalies: above normal, normal

and below normal. The limits of the classes are set beforehand to +2 and -2 X
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{(right) classes for the first four pentads of the December 1986
ensemble.



respectively. Of course, these limits should in principle be defined more
objectively, thus to avoid that various climatic zones are treated
identically. One possible way of defining class limits might be from the
climate variances for each considered grid-point. The probability that a
certain temperature anomaly falls into a prescribed class is then computed by
simply counting the number of occurrences within a given ensemble. If at a
given grid-point each individual forecast lies within the same class, the

probability is 1.

Fig. 10a shows the observed 850 mb temperature anomaly and probabilities for
the 'above normal' and 'below normal’ classes for the period corresponding to
the first 5 forecast days of the December 1986 ensemble. The observed anomaly
over the most of Europe was between -2 and +2 K, i.e. normal according to our
definition. A large negative (cold) anomaly is found in the north-eastern
part of the continent, whilst a somewhat less intense cold anomaly is seen
over northern Africa and to the west of the British Isles. The difference in
amplitude between cold anomalies in the northern Europe and northern Africa
clearly illustrates the need to define limits of classes from climatology,
because ‘cold' in Africa is 'normal' in the north and vice versa. The
probability for these cold anomalies is .9 or more suggesting that most or all
members of the ensemble predicted cold spells. Another indicator of
consistency in predictions of individual forecasts is a relative closeness of

probability contours.

In the next 5 days (Fig. 10b) the cold anomaly is found in the two areas over
Europe stretching in the SW-NE direction. It is well captured in the 'below
normal’ class with probabilities above .5. The probability for a cold anomaly
higher than .9 is now found only in the northern Soviet Union. Also worthy of
note is a high probability for a cold anomaly in the Sahara, which is shown as
a shaded area in the map of analysed anomalies. The North Atlantic warm
anomaly is reasonably well predicted in the Arctic region and to the south of
Greenland. The .1 contour between Europe and Greenland indicates that this
warm anomaly 1is captured by some individual members but not all. The
probability contours. have now become less densely packed, thus pointing to

more dispersion of the forecasts within the ensemble.

In days 11=15 the cold anomaly is extending in the north-south direction over

the central and eastern Europe and over north Africa. The maximum of this

75




anomaly over the south-east Europe is predicted by the .5 probability or more
and so ig the maximum over the Sahara. Now even larger dispersion between
forecasts is seen as the .1 contour encompasses almost the whole continent in
the map of the ‘'above normal' probabilities. A higher probability of cold
anomaly may have decisive preponderance in any decision making; however,
because of systematic errors high probability does not necessarily imply a
correct forecast. This is illustrated for a small area of cold anomaly off
the coast of Iceland which is wrongly predicted as a warm anomaly with
probability of more than .5. Such an ambiquity cannot be avoided by the

probabilistic approach.

The observed cold anomaly maximum over Europe in Fig. 10c was in the next
pentad (days 16-20) replaced by warm anomaly and a complex pattern developed
at the time corresponding to a well advanced forecast (Fig. 10d4).
Nevertheless, a high probability for the cold anomaly over the north of Africa
is quite realistic. On the contrary, a relatively high probability for warm
anomaly over the northern Europe suggests that many individual forecast

predicted a wrong development in that particular region.

The probabilistic approach to ensemble forecasting shown in the above example
is still rather crude; however, its practical usefulness is undoubtful. The
maps of probabilities should be combined with other products of the
time~lagged ensemble technique, such as the mean forecast and standard
deviation from the mean. The skill of such a probabilistic approach could be
verified by the ranked probability scoring method (see for exaﬁple Palmer and

Molteni, 1987; Déqué, 1988).

6. CLUSTER ANALYSIS OF ENSEMBLES

A cluster analysis of the large scale flow patterns has mainly been employed
for diagnosing the observed general circulation (e.g. Mclteni et al., 1988).
Murphy and Palmer (1986) performed a simple cluster analysis on an ensemble of
7 extended range forecasts, based on a subjective assessment of the large
scale flow pattern. Grouping of individual members of an ensemble into
clusters may help to identify those forecasts which all predict a certain type

of development.

Various meteorological parameters and various statistical properties of these

parameters may serve as the basis for cluster analysis. Clusters obtained
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from, say, 500 mb heights may differ from those obtained from, say, MSL
pressure. However, we shall assume that time averaging of geopotential height
fields is sufficient to make dominant the barotropic component of the flow

and we select 5~day means of the 500 mb heights as the basis for our
clustering. The next problem relates to the choice of time (or period) of the
forecast we want to apply cluster analysis for. In the perfect model
assumption grouping of forecasts indicate instakility of initial data. In the
case when the model is not free from systematic biases, the grouping may be
different, in terms of both the size of clusters and distances, at one
forecast time compared to grouping at some other forecast time, even if we

look at the same meteorological parameter.

A convenient way to describe clustering within an ensemble is by plotting
trajectories of some (statistical) property of individual forecasts in the
phase space. Fig. 11 shows trajectories for the first two EOFs of the
northern hemisphere 500 mb height for December 1986. The first two EOFs are
dominant since they explain 40.5% of the total variance. The starting points
of the arrows correspond to the mean EOF values in days 1-5, and the arrow
heads correspond to subsequent 5-day averages. Thus the arrows describe time
evolution from the first pentad onwards. The figures next to the arrow heads
designate individual forecasts as numbered in Fig. 1, and zero and open arrow

stand for the verifying analysis.

In the second pentad (days 6-10) all forecasts behave similarly and no
clustering could be seen. The analysis displays a somewhat different prhase
shift compared to the forecasts. In the third pentad (days 11~15) there is a
hint of a weak clustering: forecasts 1, 6 and 7 turn into other direction at

a larger angle than the rest of the ensemble. However, more impressive is the
phase reversing of the verifying analysis, unlike in any forecast. 1In the
next pentad (days 16-20) three apparent clusters are found: A(1,6,7), B(4,5,9)
and C(2,3,8). This is an interesting stage in the development because in each
cluster the two subsequent forecasts are accompanied by one member from the
other end of the initial time sequence. The centroids of the clusters belong
to a different quadrants of the phase space. When superimposed to the mean
state, derived from all individual members, the EOF coefficients of clusters
from three different quadrants will yield three different fields. 1In days

21-25 we note a tendency of the cluster B to approach cluster C and form a new
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cluster D, though one may argue that three clusters can still be recognized
but with a different composition compared to the previous pentad. At the end
of the forecast period (Fig. 11e) we can identify two relatively less distinct
clusters: one cluster includes forecasts (1,6,7), i.e. those members who
differ from the others from the early time of the forecast and the other one
composed from the rest of the ensemble. Though the forecast no. 7 is in the
end the closest to the verifying analysis, its development was quite

different.

It is clear from the above example that in the plane of the phase space
defined by EOF 1 and EOF 2 members of the cluster A(1,6,7) are showing
distinctly different trajectory when compared with other individual forecasts.
Though generally this may not be true for the coefficients of some higher
BEOFs, cluster A(1,6,7) can still be well distinguished even when EOF 3 is
ccmbined with the first two EOFs (not shown), however the improvement over the
cluster D is then less obvious. Closer inspection of Fig. 11 c-e reveals that
forecasts from cluster A have the shortest distances from the verifying
analysis in the direction of EOF 1 but not very much in the direction of EOF
2. When EOF 3 is included this advantage of cluster A seems to vanish
completely, It should be pointed out that, since the EOFs have been computed
from the forecast fields only, there is no guarantee that most of the spatial
variance of the observed anomaly is also explained by the first twc or three
EOFs. Usually, higher-order EOFs represent higher-frequency modes of
variability; therefore, the forecast error may have strong projections on the
EOFs. However, the distance between analysis and forecast in the EOF 1-EQF 2
plane is likely to be a good approximation of the forecast RMS error when time

averages over 15 or 30 days are considered.

If we loock at the skill scores of clusters A and D (Fig. 12) we note that the
5-day mean anomaly correlation is slightly lower for the cluster A when
compared with the cluster D or with the complete ensemble. This is because
contributions from all scales are included when calculating the skill scores;
cluster A includes a smaller number of forecasts, so there is less chance that
contribution from the smaller scales will cancel each other. However, 30-day
mean anomaly correlation is higher for the cluster A than for cluster D and
for the complete ensemble, the reason being that time averaging retains only
the large scale flow pattern whose variance is well described by the first two

EOFs.
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Fig. 12 Anomaly correlation of the northern hemisphere 500 mb height 5=day
and 30-day (left) averages for the full December 1986 ensemble and
clusters A and D described in the text and Fig.11.
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Of more practical importance than skill scores is the predicted pattern of the
large scale flow in the twe clusters, shown in Fig. 13. Though neither of the
two clusters nor the full ensemble predicted correct development, it is clear
that cluster A displays the most structure, whilst cluster D has a rather
smooth field very much alike to the field described by the full ensemble.

This is most obviocus in the polar regions where the observed pattern looks
fairly complex. In the cluster A the Canadian and north Siberian lows are
better captured and a stronger ridge north of Scandinavia can be seen. The
anomaly pattern in cluster D is more characteristic for the model systematic
error (c.f. Tibaldi et al., 1988). This suggests that the forecasts defining
cluster A have fallen into a different circulation regime than the rest of the
forecasts from this ensemble in the second half of the integration period.

The above result, though still lacking sufficient accuracy, indicates the

potential in using this clustering technigque on the ensemble ferecasting.

Fig. 14 displays trajectories up to days 16-20 for January and February 1986
cases. The January forecast had very poor but very consistent skill.

However, the EOF coefficients show much less of that consistency in Fig. 14a,
because some forecast have moved faster along the phase space than the others.
There is no clear clustering and the forecasts remain scattered in the phase
space until the end of the forecast range. In February 1986 almost all
forecasts are tightly packed and very closed to the verifying analysis. There
is some dispersion later on but not as much as in the January case. Also in
this case there is no apparent clustering, unless we consider the whole

ensemble as a single cluster.

In ensemble forecasting, clustering may be employed in conjuction with the
standard deviation from the ensemble mean forecast as additional useful
information, which in a practical sense defines more precisely the probability
for a certain event. Clusters in Fig. 11 have been identified by a simple
visual means and an objective criterion, for example calculating the maximum
phase correlation between individual members, is desirable (Murphy and Palmer,
1986). Though no attempt has been made here, the clustering technigue may be
used as the first step in the more complex task of defining those features in
initial conditions which cause individual forecasts to diverge from each
other. No unique approach to this problem has been established yet, and an
example of possible dependency of the forecast development on the sign of the

Pacific/North American mode is given in the study by Palmer (1988).
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Fig. 14 As Fig.11 but up to mean days 16-20 and for January 1986 (left) and
February 1986 (right) ensembles.
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7 CONCLUSIONS AND DISCUSSION

In this paper,; we have discussed the performance of a number of time-lagged
extended~range ensembles of forecasts using the ECMWF operational model at T63
regolution,; integrated over a periocd of three years. The forecasts have been

made during all seasons of the year.

We first discussed the properties of the ensembles that would apply in a

perfect model environment. According to theory, ensemble averaging invariably

Iad

educes the RMS ervor of the forecast in comparison with the mean skill of
individual forecasts comprising the ensemble. With weak restrictions, the
magnitude of the anomaly correlation is also increased by eunsembls averaginge.
In addition, the spread of the ensemble about its mean is egual to the skill

of the ensemble mean forecast for a sufficiently large ensemble size.

For the set of ensemble forecasts we were able to verify that the ensemble
mean forecast had beth smaller RMS error, and larger magnitude of anomaly
correlation coefficient than the individual mean forecasts. When compared
with the latest forecast in the ensemble, the ensemble~mean was occasionally
poorer, particularly using the anomaly correlation coefficient. It was shown
that, for anomaly correlation coefficient, the latest forecast appeared to be,
in general, systematically better than the individual ﬁean skill of the

ensemble.

Over the full set, there was a positive correlation between RMS spread and
skill. However, much of this could be explained by the annual.cycle. That
is, both RMS spread and RMS skill tended to be small during the summer than

at other times of year. During the winter season, the spread and skill tended
to be anticorrelated. It is likely that this reflects the existence of
sericus systematic errors in the model. It is well-known that systematic
deficiencies in the model can influence both the time mean error and the
variability in the model. During the forecast from January 1986 a very
substantial Euro/Atlantic block occurred (Hoskins and Sardeshmukh, 1987). The
forecasts not only failed to predict the occurrence of the block, they all
drifted into a unrealistic zonal state with relatively small low frequency
variability. Hoskins and Sardeshmukh speculated that an important causal
precursor of the Euro/Atlantic block was an increase in anomalous convergence

in the upper troposphere over the Caribbean area. As shown in Tibaldi et al
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(1988), the model's performance in forecasting large scale tropical divergence
patterns is very poor. It is quite plausible that the exceptionally poor
forecast from January 1986 was associated with the model's inability to
capture the change in Caribbean convergence at the end of the month, together
with the drift towards a zonal midlatitude flow with little low frequency
variability. The best winter ensemble forecast (in terms of 30-day mean RMS
error) was from December 1987. Here the observed flow did not develop into an
exceptionally blocked state, and, in addition, improvements to the model (19
levels, orographic gravity wave drag) improved its low frequency variability
(Palmer, 1987). The behaviour of these two forecasts, representing extremes
in skill and spread in the winter sample, indicates how a negative
spread/skill correlation could arise. They show in particular, the difficulty

in using ensemble spread as an a priori indicator of ensemble skill.

The only possible evidence of a positive spread/skill correlation, not related
to annual cycle, came from the 'transition season' forecasts (that is to say,
those forecast that were neither summer nor winter). In the transition
season, predictability is greater than during the summer, yet the systematic
error of the model is not so large as in winter. 1Indeed during the transition
seasong the drift towards a zonal climate with reduced low frequency
variability is not as severe as it is in winter. The analysis of spread
versus skill during the transition season did indicate some effect of
systematic error, but this appeared to result in a constant bias to the

spread skill relation, independent of case. In this sense, it would appear
that systematic error is much more 'benign’' in the transition season than

during the winter period.

We discussed some unconventional diagnostics of model performance. Firstly,
we discussed the potential of the probabilistic approach to ensemble
forecasting. We showed maps of probability of occurrence of 850 mb
temperature lying within prescribed bounds. We argued that this would be the
best way to summarise information from the ensemble in a practical forecasting
environment. Maps showing the probability of occurrence of predefined classes
of some variable offers alternatives to the forecaster otherwise unattainable
from the conventional ensemble diagnostics. Secondly, we showed trajectories
of some selected forecasts in a phase space spanned by the two dominant EOFs

of the forecast ensemble. This gave some indication as to whether members of
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the ensemble were showing evidence of clustering., In practice clustering can
be used to identify specific synoptic alternatives which have the most likely

probability of occurrence.

Further details of the analysis of these time~lagged ensembles will appear

elsewhere (Brankovic et al, 1i98s).
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