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1. INTRODUCTION

A comprehensive and practical mathematical approach of the 4 dimensional
assimilation problem is presented in this volume: see Télagrand (1988). This
approach uses variational techniques which minimize the distance between the
model and the observations: it is called "4D-VAR" (4 dimensional variational)
assimilation. The distance between the model and the observations is called
"cost function" in this paper (it is sometimes called "misfit" function or /
"penalty" function). The technique relies on the notion of an adjoint
operator which provides a very convenient tool for computing the gradient of
the cost function with respect to the variables of the forecast model X (X is
the "control variable" of the variational problem). Some specific aspects of
the 4D-VAR problem and some simple numerical experiments are given in this
volume: Courtier (1988). Both the theory and numerical results of a 4D
assimilation using a vorticity equation model are fully documented in
Talagrand and Courtier (1987), and in Courtier and Talagrand (1987). Several

experiments made with a simple model are also described in Lorenc (1988).

In practice the variational assimilation consists in computing a cost function
J(X) and its gradient with respect to X, X being the vector containing all the
model variables at the initial time of the assimilation period. J(X) and Grad
J are then passed to a standard minimization algorithm. The total procedure
is repeated several times until an appropriate convergence is reached.
Assuming the existence of a forecast model, its adjoint and an appropriate
minimization scheme, the full 4D VAR problem is reduced to a 3 dimensional
problem: computation of the cost function and its gradient from the

observations made at the same time as the one when the model X is available.

J(X) includes not only the distance of the model X to the observations Jo’ but
also the distance to the first-guess Jg (the most recent 6 hour forecast)

which is a similar source of information. J might include also some extra



terms Jc representing physical constraints on X (Examples: geostrophic

assumption in the form of a weak constraint; distance to the slow manifold).
J=J +J +J
o g c

To reproduce the scientific assumptions of the multivariate Optimum
Interpolation (0I) analyses, JO and Jg must be quadratig forms with O being
the covariance matrix of the observation errors, and P the covariance matrix
of the prediction errors (first guess errors), with a geostrophic assumption

on the increments»X—Xg:
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Xg is the first-guess (fully homogeneous to X), d the data vector, H the
"postprocessing operator" which computes the equivalent of the data vector d

from the model variables X: see also Talagrand (1988).

The purpose of the present paper is to discuss the problems related to the>
computations of Jo’ Jg, and their gradients, in the conteit of the design and
the construction of a full 3D VAR analysis (which can be transformed to a full
4D VAR system as soon as we interface it with a forecast model and its
adjoint). More details are given on the observation term Jo, and also
comparisons are made with the use of observations in a traditional OI
analysis. The example of satellite data is highlighted and it is shown that
radiances can be naturally used in a variational analysis through the
radiative transfer equation and its adjoint. The control of gravity waves is

addressed in another paper of the present volume: see Courtier (1988).

2. EVALUATION OF THE FIRST GUESS COST FUNCTION AND ITS GRADIENT:
GENERAL PRINCIPLES

The term Jg given in equation (2) is a quadratic form built on the vector X—X
(departures from the first guess), and on the matrix P. The vector X—Xg is

easy to evaluate. The main practical problem comes from the inversion of the
matrix P which has a size equal to the number of model variables. Let us note

that it is not absolutely necessary to compute Jg in grid-point space. If the
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forecast model is spectral, then X is in a series of spectral coefficients,
and Jg can in principle be evaluated in spectral space as well as in any other

convenient space (normal mode space, gaussian grid, etec.).

The general strategy for computing Jg consists in setting up a covariance

model (let us call it "structure function" model) which:
® Is simple enough to make the computation of P-1 feésible;

° Is "reasonable" enough so that it fits our experimental knowledge of the
forecast error covariances (knowledge which can be extracted from

observations).

A very simple structure function model can be based on the following
assumptions: for each 3D field contained in X—Xg (such as divergence,
vorticity, temperature..), the correlation is homogeneous on the sphere. The
vertical correlation is then the same everywhere on the globe, and the
horizontal correlation is isotropic with the same scale everywhere on the
globe. No restrictive assumption is made on the standard deviation of the
forecast error which can be represented by fields. These fields are usually
derived in an empirical way in the current operational OI éssimilation

schemes.

Based on these assumptions the computation of Jg can be done through the

following steps:

U] In grid space, X—-Xg is normalized by the forecast error standard
deviation;
® The correlation matrix corresponding to P is split into submatrices

corresponding to different horizontal fields;

° The different correlation submatrices are then diagonal in spectral space

and the corresponding parts of Jg are easy to compute.

This example of a structure function model is simple and easy to implement.

More complicated models will have to be developed to fit some experimental
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features of the forecast error covariances better, such as different

correlation scales in the tropics and in mid-latitudes.

When a scheme has been worked out to compute the cost function J_ = (X—Xg)t
p-1 (X—Xg), the computation of the gradient Jg with respect to X is
straightforward:

Grad, J_ =2 Pt (XX
x g (%)

3. EVALUATION OF THE OBSERVATION COST FUNCTION AND ITS GRADIENT

3.1 General principles

Jo is the quadratic form (1) built on the matrix O, the covariance matrix of
the observation errors for all the data. "Observation error" has the same
meaning as in the OI context, i.e. it includes also the "representativeness
error". It is reasonable to assume that the observation errors associated to
two different types of observation are uncorrelated, and this assumption has
been made in all the operational analysis systems so far. For the pure
observation error this assumption is fully justified. It is not fully
justified but still reasonable for the representativenesss error. Then O will
be a block-diagonal matrix if the observations are stratified by observation '
type and the cost-function Jé can be split in independent.terms corresponding

to the different observation types;

J J + J + J . + J
o synop rs airep satem

For one individual observation type the cost function can generally be split
into independent contributions. It is reasonable to assume, for example, that
the observation errors of different radiosondes are not correlated. Then the

contribution to Jrs of each radiosonde can be computed independently:

For each individual radiosonde, the contribution to the cost function and its

gradient can be computed separately for the following parameters, as the
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observation errors associated with these parameters can be assumed to be

uncorrelated:

] wind data;

® geopotential (or temperature, or both);
L] relative humidity.

rsl - Jwind ¥ Y2t T Irn
Each term such as Jwind is a simple quadratic form built on the vertical

covariance matrix of the observation error.

All the separations made on the computation of Jo are of course valid for the

gradient of JO with respect to the model variables, Grad Jo:

Grad J = Grad J + Grad J + Grad J . ceres
o Synop s airep

Grad J = Grad J + Grad J + Grad J + i
rs rsl rs2 rs3

Grad J = Grad J . + Grad J + Grad
rsl wi zt rh

nd

In the case of surface observations (SYNOPs) the decorrelation assumption is
probably reasonable for surface pressure observation errors, but for 2 m
temperatures it is likely that the representativeness error is larger than the
instrument observation error. This representativeness error includes not only
the local features, but also the error of the post-processing operator H (used
to compute the predicted 2 m temperature from the model variables X). We can
expect the representativeness error between two SYNOP temperatures to be
highly correlated in some weather situations such as winter inversions over
cold land surfaces (which cannot be described accurately by the forecast
model) .

The satellite data observation errors are often intercorrelated and the
corresponding cost function computation then has to handls non-diagonal

matrices (see Section 4).
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3.2 How to link the model to the observed data

To evaluate the cost function Jo’ we need first to compute the departures
"observation-model" (d—HX)‘ The quantity dmod = HX is the "post-processed"
data vector coming from the model, which can be compared to the observed data
vector d. If the observations were providing directly all or a part of the
model variables X, H would be a simple identity or projection operator.
However, except on very rare occasions, no model variable is observed
directly, and dmod has to be computed using a more compiicated post-processing

operator H,.

If the forecast model is spectral, X will contain a set of spectral
coefficients and H will contain the inverse spectral transforms. Although it
is possible and more exact to compute the model variables at each observation
point directly from the spectral coefficients, it is faster in practice to
compute the values on the gaussian grid. H contains then a horizontal
integration from a grid to an observation point: the simplest one is the
bilinear interpolation from the four nearest grid points. The horizontal part

of the operator H is then common to all observation types.

In the vertical, depending on the observation type, H contains various

mathematical operators such as:

. Ordinary vertical interpolations (e.g. interpolation of the model wind

profile to the pressure level of an observed wind) ;

° Integrations involving both temperature T and specific humidity q
profiles (e.g.: computation of a geopotential height from model

variables, to be compared with a radiosonde datum;
° Radiative transfer computations for radiance data. (see Section 4).

Let us note that the vertical part of the different operators H is not
necessarily linear. The possibility of using in a consistent way data which
are linked to the model variables through non linear operators is actually a
major advantage of the variational analysis (see also Lorenc (1988)). Any

data d can be used provided they can be related to the model variables X by a
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mathematical operator H which is well defined, accurate enough and
"differentiable". The gradient computations involving H must bé physically

meaningful, it is why a kind of differentiability propérty is needed.

3.3 Use of the adjoint of the operator H for the gradient computations

H being the operator computing dmod from X, its adjoint H* is by definition

the operator computing GradXJ from Gradd J, for any function J.
mod :

For the variational analysis, we need to compute the gradient of the distance

to the observations JO with respect to the model variables X.

= *
GradX JO H (Gradd Jo)
mod

If the operator H is decomposed in a series of simple operators Hl’ HZ’ oo H

(H = Hn e H2.H1), the chain rule allows the computation of H*:

* = H¥ H* *
H Hl'HZ NN .Hn

For one given observation, the post-processing operator H can be decomposed in

a horizontal operator Hh and. a vertical one Hv:

Then the gradient of the contribution J of one observation (or a subset of

observations) to the cost function can be computed through the following

steps:

° computation of the gradient with respect to the vector d-HX corresponding

to one observation:

As  J(X) = (a-EX)T 0-1 (d-HX),

= -1 —
then Grady ..J 2 0-1 (d-HX)
® computation of the gradient with respect to dmod = HX:

Gradd J=- Gradd_HXJ
mod
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computation of the gradient with respect to Hh X:
H

hX is the profile of model variables at the observation point

= Y+ '
GradHhXJ HV (GradHXJ)

computation of the gradient with respect to X:

we just multiply the gradient with respect to HhX by the ad hoc
coefficients of the horizontal bilinear interpolation Hh in order to get
the contribution to the gradient with respect to X at the four nearest
grid points. This simple coefficient multiplication is indeed fhe
adjoint of Hh' These contributions are then added to the general

variable GradXJ.

3.4 A simple example of the non linear operator H: use of 2 metre

observations

The 2 metre temperature and relative humidity are observed with a good

instrumental accuracy at all the surface SYNOP meteorological stations.

However, only a very limited use of these data is made in the current ECMWF

analysis scheme (not used at all in the mass and wind analysis), because they

are difficult to link with the model prognostic variables in the OI context.

The operators H associated to both the 2 m temperature observation (sz) and

the 2 m relative humidity (RHzm) have been studied by Vasiljevic

(pers. comm.), as well as the gradient with respect to the model variables of

the corresponding cost functions:

a)

2m 2m
J = (T__io_d)zfor sz .
o o (T) ’
o}
2m 2m
_ (RH RHmod)2 for RHZm
oO(RH) :

For the temperature, the ECMWF operational post-processing operator H

involves the model variables at the surface and at the first model level
(about 30 m in the ECMWF model). It is not linear, it relies on the flux

computations and on the Charnock formula and it is complicated to express
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b)

analytically. The gradient computations (GradX Jo) are almost impossible
to handle analytically. The only practical way seems to code the adjoint

operator by applying the chain rule (see 3.3).

For the relative humidity, the ECMWF operational post processing operator

H is simpler:

RH2m _ 93
mod dg (ps, Tl)

The relative humidity at 2 metres is just assumed to be equal to the one.
obtained at the first model level, dividing the specific humidity Q1 by

the saturated specific humidity q.. Qg can be expressed as a function of
two other model variables P and T,. qg contains an exponential function

1
and is not linear, so H is also non linear.

As H is simple enough in this case, the gradient computations can be made
analytically. RHi?d is a function of only three model variables: P

(surface pressure), T, and g, (temperature and specific humidity at the
1 laJ 9J aJ

first model level). So only O, mo and —2 are not equal to zero aﬁong
aps 811 aql .

the components of GradX'Jo.

The computation of these gradient components about different basic states

(ps, Tl’ ql) confirms the non-linearity: the values of the components are

‘ aJ
highly sensitive to the basic state. It confirms also that 569 is large
aJO BJO 1
compared to 3T which is itself large compared to 55—. This simply
1 s

reflects that when we compute RHizd’ most of the information is coming

from 9y and very little is coming from Py

However, we can see in this particular example that there is no
distinction between "mass and wind" analysis and "relative humidity"
analysis in the variational scheme. We have the model variables X on one
side, and the observations on the other side. Each observation

contributes to the cost function JO and to the gradient GradXJo. Its
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. contribution to GradXJo has a non-zero component with respect to all the
model variables which are used in the post-processing operator. Then a
2 m relative humidity observation contributes to "ﬁpdate" dys but also
the mass variables T1 and P (although this last update is very small).
And of course, though the term Jg’ RH2m will contribute also to update

indirectly other model variables (e.g. T and g at other model levels).

Another remark is that the variational framework is flexible enough in
order to allow a consistent use of 2 metre observations. It is
consistent with the post processing operators of the model and it avoids
for example the need for a vertical correlation (of forecast errors)

between the 2 metre level and the other model levels.

4, USE OF SATELLITE DATA IN THE VARIATIONAL ANALYSIS

4,1 Interface between satellite data and variational analysis

In the ECMWF operational analysis and in most of the operational systems, the
information obtained from the polar orbiting satellites is used as SATEM
retrieved soundings in the OI analysis. The SATEM observations contain both
thickness data and Precipitable Water Content (PWC) data. For more details
about the interface between the SATEMs and the current ECMWF analysis systém=
see Pailleux (1986) and Kelly and Pailleux (1988); see aléo Pailleux et al.

(1988), a companion paper in the present volume.

However, the SATEMs are not the genuine observed quantities, but an
"interface" produced by a specific "retrieval" technique. An important part
of the SATEM information is coming from the retrieval technique (an inversion
algorithm and possibly initial profile to start the inversion with). The
retrieval technique is also probably responsible for a large part of the

correlation between observation errors of different SATEM profiles.

In the variational context, the natural way is to avoid interfaces such as
SATEMs and to use data which are as close as possible to the observed
quantity. For satellite data the real observed quantities are raw radiances.
However raw radiances are strongly affected by clouds, so their corresponding
operator H would involve the model clouds to a large extent, and the cloud

quality of the current models is not good enough to rely on them. One safe
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solution consists in trying to use clear radiances in the variational
analysis, after an appropriate cloud clearing algorithm which does not involve

the model variables X at.all.

Eyre (1987) chose a different approach in which the cloud-clearing algorithm
is integrated with the retrieval procedure in a single variational problem.
This approach is in principle better, especially if it is generalized to the
3D and 4D context, as better clouds mean better cleared.radiances and better
analyses. If the clouds are "over—contained" in such a minimization scheme
(kept close to a preliminary evaluation), Eyre's approach is almost equivalent

to the approach using clear radiances.

The radiances are another good example of data which are linked to the model
variables through an operator Hv which is not linear and rather complicated:
HV is the radiative transfer equation. And radiances can still be used in the
variational analysis, as HV satisfies the requirements specified at the end of

Section 3.2.

4.2 Computation of J and its gradient for clear radiances

Hv is a direct radlatlve transfer model T tuned to compute the radiances of
the different channels available on the satelllte instruments (mainly TOVS for
the moment). We apply the adjoint T; of the radiative transfer equation, to
derive the gradient with respect to the model quantities from the gradient
with respect to the radiances: see Moll (1988) and also Betout (1988) in these
proceedings. The gradient computations have also been carried out by Eyre
(1987) who used a simplification of the analytical computation. As JO is
d) 0-1 (R_Rmod)’
the computation of J requires the derivation of some terms of the jacobian

oR.
matrix ((aTl))’ i being a channel number and j a level number (level used in

expressed in the radiance space, by the quadratic form (R-R

the direct radiative transfer model). Table 1 shows a few terms of this
jacobian matrix, computed from the two approaches, Moll's approach consisting
in coding Tg (PM) and Eyre's approach performing an analytical evaluation
(JE). The results are displayed for the derivatives of HIRS channels 2 to 4
with respect to the 50 hPa temperature, and for three different reference

profiles: the standard atmosphere profile, a mid-latitude oceanic profile
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9HIRS2 dHIRS3 OHIRS4
aT50 . dT50 aT50
JE 0.1109 0.0901 0.0444
Standard atmosphere : -
PM 0.1151 0.0943 0.0426
Oceanic mid-latitudes JE 0.1111 0.0908 0.0448
profile ————
PM 0.1168 0.0946 0.0440
Cold Scandinavian JE 0.0916 0.0711 0.0321
profile with - -
stratospheric vortex PM 0.1133 0.0853 0.0325

Table 1: One example of gradient computations involving the
radiative transfer equation.

The computations are made by two approaches:
e JE: John Eyre's approach

e PM: Patrick Moll's approach
(see text)
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(taken from a radiosonde observation of weather ship P), and an "abnormal
profile" (taken from a radiosonde observation made in Scandinavia)

characterized by a cold air mass and a strong stratospheric vortex,

The comparisons between the two approaches show generally a good agreement.
The results show also the impact of the profile dependency on the gradient

(non linearity of the radiative transfer equation). Especially for the cold
Scandinavian air mass the gradients ;;% are smaller than for the two other
profiles., These gradients can be inteipreted as a kind of objective estimate
of the amount of information provided by the radiances to the temperature
analysis. This amount of information is situation dependent, and it is a
potential advantage for the variational analysis compared to the current OI,
that it is able to take this situation—-dependency into account. In other
words, because the radiative transfer equation is non-linear, the use of this
variational technique should be a significant improvement compared to the OI
technique: the main reason is that the gradient computations will be made
about the genuine model profile; only profile-dependent statistics (with an
infinity of profile types!) could achieve a similar description of the link
between radiances and model variables. Most of the operational OI analysis
systems are using SATEMs with "fixed" statistics for SATEM errors, then the

weight given to the SATEM is not dependent on the situation.

4.3 Specific problems in the computation of Jo for satellite data

The radiance contribution to the cost function JO is the quadratic form
(R—Rmod)t 0-1t (R—Rmod). As O contains not only the radiance measurement error
but also the error due to the cloud-clearing and the error due to the operator
Tr when computing Rmod’ then the radiance errors are correlated in the
horizontal, and O is not diagonal (and might be large). A similar problem
with the size of the matrix would occur if we would try to use SATEMs in the
variational analysis. This problem is very similar to the one described in
the computation of Jg (section 2). It can be treated in a way which is
similar, at least for the first step: for one given set of satellite data O is
first split in horizontal and vertical correlation, and the cost function is

split in different terms Jeigi’ each of them corresponding to one eigen vector
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of the vertical correlation matrix of satellite errors. "VYertical®

correlation means "inter-channel" correlation in the radiance context.

= . + . . + o
Jo Jelgl Je1g2 * Je1g3
"Each term Jeigi has to be computed by inverting the horizontal correlation
matrix. If this matrix is too large, one possibility is to split the
satellite data subset according to observation time until the size is
manageable in memory: the data of one orbit would be split into segments in a

way similar to the one used in most of the satellite retrieval procedures.

5. CONCLUSION

Compared to the OI scheme, the 3D variational analysis is an approach which
provides many potential improvements: better use of observations especially
when they are linked to the model variables through a complicated operator,
possibility of using more data. In addition the need of a data selection
algorithm disappears as the analysis is treated in one global variational
problem: this is likely to be beneficial for the 3D consistency of the
analysed fields. The possibility of introducing more physical constraints
through extra terms in the cost function is a very flexible framework for

further developments.

When these potential improvements are confirmed by the experimentation with a
full 3D variational analysis, they will justify operational implementation.

In an operational context, the variational analysis would be run in addition
to the traditional OI analysis (rather than in replacement). The OI analysis

will be used for two main purposes:

° To provide an initial point for the minimization scheme, which is close

to the final solution;
° To perform a quality control of the data.
To start the minimization from a point X close to the final solution might be
a very important practical aspect, as it is likely that both the memory size

devoted to the minimization algorithm, and the number of iterations will be

critical factors for the operational feasibility.
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For both scientific and practical reasons it might also be more convenient to
run this preliminary OI analysis without satellite data. This would at least
provide the framework for a better quality control of satellite data.

Assuming most of the quélity control is performed in the OI analysis, an extra
level of quality control has still to be envisaged in the variational step for

the following reasons:

o This extra quality control is necessary if we use in the variational
analysis some data which do not enter the OI analysis (likely example:

‘radiance data);

® The variational context provides a framework to perform extra quality
control checks which are more difficult to set up in the traditional OI
(e.g. quality control checks using a sequence of model values at the data

points for different steps of the minimization algorithm).

Following the idea discussed in Gandin (1988), all the quality control
information of the preliminary OI has to be kept in order to leave all
possibilities open in the variational quality control step. For example, an
observation rejected by the OI must still have the possibility to be used in

the variational analysis.

Finally, a very important advantage of the 3D variational analysis is that it
can be generalized easily to a 4D variational assimilation, just by an
appropriate interface with a forecast model and its adjoint. The computer
resources will drive the choice of the length of the assimilation period and
of the maximum number of iterations which can be afforded for operational
implementation. A 4D assimilation would be a very important step for
numerical weather forecasting as it would be the first time that all the
information available for the meteorological analysis is merged in one
consistent step: observations, first guess, dynamics of the atmosphere through
the primitive equations. All the preliminary studies performed so far

indicate that this goal can be achieved,
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