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1. INTRODUCTION

Geostationary satellite imagery has been used as a source of wind
observations since soon after the launch of the first spin scan camera
aboard the Application Technology Satellite (ATS 1) in December 1966. It
was recognized immediately that features tracked in a time sequence of
images could provide estimates of atmospheric motion, and from this
simple beginning five operational satellites currently provide worldwide
coverage, overlapping at the equator to slightly underlapping at 50° of
latitude in both hemispheres. From the Meteosat (Europe), winds are
produced operationally three times per day for 00, 06 and 12 UTC. From
the two GOES (USA) and the Himawari (Japan), winds are pfoduced four
times daily at 00, 06, 12, and 18 UTC. Finally, from the INSAT (India)
winds are distributed once daily for 06 UTC. For operational data
cutoffs at approximately three and one-half hours after nominal
observation time, the U.S. National Weather Service receives on average
nearly 1500 reports. Thus, the geostationary satellites provide a
substantial data set to the operational weather services, and these users

are very interested in the quality and coverage.

Historically, wind vectors have been produced from images of visible (for
low level vectors) and infrared 1l micrometer radiation (for upper some
middle, and low level vectors). More recently, in order to improve the

coverage at middle levels and also over cloud-free areas, wind tracking
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has been applied to water vapor imagery (the 6.7 and 7.2 micrometer
channels on the VISSR Atmospheric Sounder (VAS), Hayden and Stewart,

1987) although these vectors are not used in operational NWP.

The basic elements of wind vector production have not changed since their
inception. These are: a) selecting a feature to track or a candidate
target, b) tracking the target in a time’sequence of images to obtain a
relative motion, c) assigning a pressure height (altitude) to the vector,
and d) assessing the quality of the vector. Initially, these elements
were done manually (even to the point of registering movie loops), but
the goal has always been to automate procedures and reduce the time-
consuming and expensive human interaction. In this paper, we shall deal
with each element, emphasizing the current stage of research at the
Cooperative Institute for Meteorological Satellite Studies (CIMSS) which
has been doing the major part of the current NESDIS devglopment in windl

tracking, with particular emphasis on automation.

A point we shall not deal with explicitly is the question of how well
target displacement represents the motion of air. The argument is
ongoing (Hubert and Whitney, 1971) even with respect to cloud motion; and
certainly "water vapor" motion is at least as dubious. We believe that
other uncertainties, particularly the pressure height assignment,
contribute more significantly; and the important question is whether or
not the vectors can still provide useful data, recognizing the existence

of these uncertainties.

2. TARGET SELECTION

The first step in obtaining a motion vector is to discriminate a feature
which is recognizéble in each of the time sequenced images. This can be
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quite simple, as in the case of high frequency (five minute) images of
cumulus in thevvisible? or quite difficult, as in the case of low
frequency (hour) images in the 7.2 micrometer band. (It is, in fact,
impossible for some operators to use the latter, a fact which perhaps
argues for automation. The computer is not handicapped by doubt

emanating from insight, wisdom, good judgement, etc.).

In the automatic tracking currently used at CIMSS, the first (of the time
sequence) image is systematically searched in contiguous segments
measuring LSIZE x ESIZE (generally LSIZE=ESIZE) pixels with the object of
locating the best (if any) target within each segment. The size of the
segment is variable, and thus we can control the total number of targets.
Typical dimensions we use are 30 x 30 for 4 km visible and 11 micrometer
and 24 x 24 for 8 km water vapor imagery. A primary goal is to exclude
poorly defined targets which will probably fail to produce winds, and
each target segment is examined to ensure fhat several criteria are met.
These are given in Table 1 for both the infrared window and the water
vapor channels.

Table 1. Criteria to begin target search in segment (values in
brightness, full range 0-255),

11 micrometer 6.7 micrometer
minimum pixel value 90 90
maximum pixel value 240 195
max-min 25 8
min gradient (3 pix) 10 10

The reason for the lower maximum value with the water vapor is to exclude
cloud, assuming that cloud vectors will be (better) obtained from visible
and 11 micrometer tracking. The gradient mentioned in Table 1 is defined

as:
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|aTb/ax| .+ laTb/dy| (1)

where dx and dy are distance increments of 3 pixels in orthogonal
directions. The pixel which represents the maximum gradient is selected
as the potential target (following the work of Emery et. al., 1986).
Finally, a second search is made, centered on the target, to ensure that
the first two criteria of Table 1 are not violated in the segment which
will be used in the actual tracking (Fig. 1). If a segment fails to
produce a target, the stepping, in the x direction (Fig. 1), is reduced
to half the nominal (ESIZE) value. After a target is selected, its
segment 1s masked so that succeeding targets cannot be chosen closer than

half the width of the segment .

The automated tracking scheme described above is obviously tunable, and
the tuning should be done in concert with vector derivation and
evaluation. At this point of our development, however, we have not
systematically optimized the target selection in this way, but simply
chosen parameters which yield a qualitatively acceptable density. An
isolated example of parameter sensitivity is shown in Fig. 2. The figure
shows (top) the targets selected with the default parameters for the case
of 23 July 1987, 6.7 micron imagery. Note that obviously cloudy areas
have been excluded, as have most areas of uniform shading. Dark (dry)
areas where the water vapor motions are potentially most useful are well
represented. There is a propensity, though not an overriding one, to
pigk.the edges of features, as one would anticipate. The bottom of Fig.
2 shows the target selection (now shown over 11 micrometer imagery to
better illustrate the clouds) when the cloud discriminating maximum has
been reduced from 195 to 180. The targets are now very definitely
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Schematic of target selection and tracking procedure.
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Fig. 2. 6.7 micrometer selected targets over 6.7 (top) and 11 (bottom)
micrometer imagery. Bottom shows selection with maximum acceptable
value raduced.
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discriminated to cloud-free areas. Target yield has been reduced from

212 to 80.

3. TARGET TRACKING

Target tracking requires at least two images, and it is advisable to have
more for purposes of quality control. Most automatic processing schemes
use.three images (an exception is the NESDIS picture-pair processing).
Auto-tracking is performed by some type of correlation technique which
allows pattern recognition of the target segment (defined above) within a
larger search sector in a later (or earlier) image (Fig. 1). Emphasis is
on simplicity, since complicated algorithms quickly become prohibitively

expensive,

The method used currently at CIMSS is the Euclidean normal method which
simply sums the squared difference between the pixels of the target and
search frames as the target is moved through the search frame. A
quadratic fit method is used to determine the "between pixel" location of
the minimum sum (Smith and Phillips, 1972). Normally, the location of
the search frame center is determined from a first guess displacement
obtained from a forecast or analyzed wind field. The first guess fields
are interpolated in space and time to the geographical location and
presumed height (discussed below) of the target. This procedure is shown
schematically in Fig. 1. 1In principle, the use of a first guess reduces
the size ofvthe search box necessary.to obtain a pattern match. This is
extremely important since the search for the offset of the best match
requires summing the squares of LSIZVX ESIZ differences for ééch of
(LLAG+1) x (ELAG+l) possible displacements, which is time coﬁsuming and‘
expensive. Noté, however, that the selection of LLAG and ELAG cohstrains

the results about the guess displacement, because minima which fall on
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the margins of the search domain are not accepted. The maximum possible

deviation fromvthe guess is given by:
(LLAG/2-1) x (RES) / (LI) (2)

where RES is the image resolution in meters/pixel and LI is the loop
intgrval in seconds. For hourly interval, 8 km imagery with the default
LLAG of 14, the maximum change to the guess is 13.3 msec™ L, Thus, the
choice of LLAG invokes implicit quality control. Lags which we typically
use to give approximately equivalent maximum deviations are shown in
Table 2.

Table 2. Lag sizes (in pixels) used for indicated image frequency.
Image resolution is 8 km,

lag frequency (min)
8 30

14 60

24 120

For 4 kilometer infrared the lag of 8 is used for 15 minute imagery and

so forth.

In the above description, there are no restrictions on the selection of
the minimum. The location with the smallest minimum is chosen, whatever
the magnitude. Recently, on the suggestion of John Eyre (personal
communication), we have begun to experiment with,combining the covariance
(actually the Euclidean Norm and not a true covariance) field with an
expected error in the first guess. Eyre's suggestion is based on an
application of Bayes theorem which states that the conditional

probability of a displacement d, given radiance information R is
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proportional to the conditional probability of the radiance, given the

displacement, multiplied by the probability of the displacement.
P(d:R) a« P(R:d) x P(d) ' (3)

The rhs of (2) is comprised of the radiance covariance, scaled according
to expected radiance noise to be equivalent to the probability of d which
involves the first guess error. The latter is specified as a Gaussian

distribution around the first guess displacement of the target, scaled by

the expected error of the first guess.

Examples of the (LLAG+l x ELAG+l) grids of the scaled covariances for the
first guess and targets are shown in Figs. 3-6. Each figure shows the

patterns for the first and second displacements, vectors 1 and 2. In

o
e

every case, the guess covariance is centered for vector 1, but since
vector 1 is used as the "guess" displacement for vector 2, the error
distribution can be offset for the second comparison. (TheAamount of
offset depends on the deviation of the first vector from the guess.) The
gradient of the guess covariance depends on the expected error which is
assigned. We have been experimenting with valués from 10 to 20 percent
of the magnitude and these figures represent such variations. The right
side of the figures are the scaled radiance covariances for various
choices of target. ‘The minimum is a combination of the assigned radiance
error and the persistence of the target, whereas the gradient is an
indication éf the distinctness of the target. Both minimum and gradient
affect the degree of influence of the guess in the combination of the
grids, but the gradient has the predominant effect. Figure 3 represents
a well defined cloud in an 11 micrometer image. The figure shows a

unique minimum and a strong gradient. Because of the latter, the first
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Fig. 3. Left: guess covariance estimate. Right: radiance covariance
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Fig. 4. Same as Fig. 3, but less well-defined target.
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guess variance has little effect on the vector determination as indicated
by the displacément of the guess covariance for target 2. Figure &4
represents a more diffﬁse cloud, again viewed at 11 micrometers. Figures
5 and 6 were derived from 6.7 micrometer imagery in areas with and
without cloud contamination. Note that the gradients are considerably
weaker than the figures for 11 micrometer targets, especially in the
cloud-free case. The water vapor targets are not as distinct. Also, the
covariance of the radiances is banded in the no-cloud case just as the
targets are banded, and there is considerable uncertainty in the location
of the minimum along the band. The radiance error for the 6.7 micrometer
measurements has been chosen, in this case, to emphasize the first guess

(or, equivalently, to emphasize the difficulty in tracking water vapor).

Figures 3-6 are quite typical of what we have seen in our limited study.
We have been somewhat surprised by the absence of multiple minima,
particularly with the 11 micrometer data. However, our target selection

criteria were designed to produce this result.

4. ALTITUDE ASSIGNMENT

Assigning a pressure height to a target has been an ongoing problem. For
visible data, used for low cloud tracking, a constant pressure is assumed
(900 mb for the U.S. winds). For infrared upper atmospheric winds, all
producers use the measured brightness temperatures of the target. The
brightness temperature is converted into an atmospheric temperature which
is matched to a temperature profile (from climétology or a forecast) in
order to obtain the target pressure. Many ambiguities exist. For
example, what is a représentative temperature for a target which may
consist of several layers of cloud? What should be assumed for

emmissivity? For jet stream cirrus a value of unity is clearly
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inappropriate. At ESA the multi-level problem is solved in part by
"windowing" the target segment so that only the coldest pixels contribute
to the final "cross-correlation" position (Schmetz and Nuret, 1987). The
emissivity problem is addressed by a semi-transparency correction (Bowen
and Saunders, 1984) which involves both the 11 and 6 micrometer channels
and also radiative transfer calculations based on guess temperature and
moisture profiles from the ECMWF.

\
At CIMSS, we do not use windowing for the pattern recognition, but
instead use all pixels within the target segment. The brightness
temperature representative of a cloud pressure is determined using a
simple histogram technique. The brightness populations for the 256
categories are determined and lightly smoothed. The coldest (brightest)
category showing at least 1/F times the total population is selected.
The value of F is set to 20 for water vapor imagery and 60 for everything

1 If, however, the histogram fails to yield such a category, the

else.
minimum requirement is reduced by one and the search repeated, for as

many as ten iterations.

Histogram examples for a 6.7 micrometer (top) and for an 11 micrometer
height assignment (bottom) are shown in Fig. 7. For both of the scenes
represented, wind vectors were achieved. The smooth distribution for the
water vapor (away from cloud) is quite typical. Ambiguity in water vapor

height assignment lies in the emissivity question and not in the

1 0On the McIDAS system, images of all infrared bands are calibrated such
that the full range 0-255 covers the brightness temperature range 160-
230K. The range was designed for 11 micrometer data which exhibits such
variance. Other bands, however, among these the water vapor channels,
show much less variance and only a portiom of the 0-255 range is
encountered. For this reason, various thresholds in target selection and
cloud height determination are different for 11 micrometer versus 6.7
micrometer images. ‘
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histogram. The bottom figure is typical of a mixed cloudy window scene.
Note that the chosen temperature (234 K) could have been much warmer (255
K) with a with a more stringent choice of F, lowering the pressure from

262 to 399 mb.

There is mo explicit correction for emissivity in the CIMSS cloud height
determination. Instead, we rely on an empirically determined
relationship between brightness temperature and atmospheric temperature.
The model is a simple linear regression derived from collocated
rawinsonde and satellite vectors. The dependent sample is derived by
finding the level-of-best-fit between the satellite vector and the
rawinsonde, where the discriminant is a combination of temperature,
pressure, and vector deviation between the satellite and radiosonde

measurements:

2 2 2
(T, - T% | (B - PP (Vy - V) i

§T2 §p2 §v2

Here the subscripts s and r refer to the satellite and radiosonde
estimates, respectively. The denominator of each term in (4) weights the
relative importance of the vector, temperature, and pressure differences,
respectively. The ultimate regression relationship can be quite
sensitive to these weights. For example, the top two panels of Fig. 8
show results of an experiment in assigning heights to-11 micrometer
targets using 6.7 micrometer brightness temperatures. In a single days
sample, 43 ﬁatches with rawinsondes were obtained, and the scatter of
brightness temperature versus temperature is shown. The difference in
the two panels is the choice of temperature weighting. The top panel
represents denominators in (4) of 3 msec'l, 10 K, and 100 mb. The middle

panel represents 3 msec'l, 5 K and 100 mb, It is obvious that the
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tighter temperature tolerance has significantly reduced the scatter, as
would be anticipated. The penalty is an increase in the Vectér error,
but that remained at 1éss than 5 m sec™! for the sample, sﬁggesting that
the tighter tolerance is viable. This is just an example. We do not
suggest that the 6.7 micrometer be used in most cases for assigning
heights to 11 micrometer targets. The 11 micrometer measurement is
generally better, as shown in the bottom panel of Fig. 8 for the same
casé, but a slightly different (because of the height assignment) éample.
The scatter is considerably improved over the 6.7 micrometer résults, and
low (warm) clouds are properly included. We have, however, experimented
with 6.7 micrometer height assignments for 11 micrometer vectors in
recognition of the emissivity problems with thin cirrus. In this
particular sample, the emissivity problem does not appear to exist. We
anticipate that it is probably optimal to have both temperature
assignment options available for temperature/height assignment, choosing
according to some combination of temperature, velocity énd pressure

similar to (4), and are working in that direction.

The preceding points out that the height assignment is .done after the
target selection and before the tracking. This is necessary to obtain
the first guess displacement. It is logical that the heights should be
recomputed, after tracking, in the second and third images, to provide
additional quality control. This is not currently done. Furthermore,
the concept of first guess error described with regard to (3) should be
broadened to incorporate the concept of height-assignment uncertainty.

In the Bayesian framework:

P(d:z) a P(z:d) x P(z) (3)
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The probability of the height, given the displacement can be related to
the vertical shear in the guess vector'profile, whereas the probability
of the height can be related to ambiguity in the target histogram, or
statistics on the characteristic of independeht height assignment such as

discussed above.

5. QUALITY CONTROL

The problem of quality control is the least developed part of NESDIS
satellite wind vector production. It is not automated, but relies on a
meteorologist’s decision as he views the data on an interactive display
device. This is an accept/reject procedure. As part of the automated
wind production, we are seeking methods to automate the quality control
as well. Rather than deleting data which have successfully passed the
correlation and height assignment checks, our goal is to provide one or
more quality flags which the user may address in making his own quality
decisions. The flags should be based primarily on features of the
tracking procedure, and secondarily on comparisons with other data, in
particular the first guess (since the user will presumably have access to
this for his own quality control). To date, we have concentrated on
several obvious parameters: a) the correlation magnitude, b) the target
brightness variance, c¢) the vector reproducibility (first to second image
versus second to third image), and d) deviation from the guess vector.
Using collocated samples of rawinsondes and satellite vectors, we have
screened the differences against each parameter in a limited number of
cases. Contrary to intuition, none of the primary parameters (a-c) has
proved useful. An example is shown in Fig. 9 for vectofA"error" versus
correlation magnitude. There is no relationship. How can this be? How
can a tracer with a wretched correlation produce a good vector?
Conversely, how can a tracer with an excellent correlation produce a
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vector with enormous error? We surmise that the former occurs in cases
where a rapidly changing but nonetheless well defined cluster is tracked.
In the latter case, one.expects a gross error in height assignment.
Clearly, many uncertainties must be removed before the primary tracking
variables can be used as quality indicators. The last, secondary
criterion (d) does show some skill for quality control as shown in Fig.
10. Rather discouragingly, however, the figure indicates that the more
one deviates from the guess, the more likely the vector is in error.

This is not always the case; there are points where large changes to the
guess produced good vectors. The challenge is to keep these while

eliminating the bad vectors.

6. SUMMARY

The foregoing has addressed the current research at CIMSS with respect to
automated wind tracking from satellite imagery. The techniques and their
attributes have been discussed; nothing has been said agout data quality
or impact on numerical forecasts. For many years, cloud motion winds
(CMW) have been an accepted source of data and have been shown to
positively affect the forecast, especially in the tropics (Kallberg et
al., 1982). But attitudes may be changing. The quality of CMW, in terms
of RMS comparisons with rawinsondes, has remained relatively constant.
Forecast models and data assimilation techniques, however, have been
steadily improving. It is now recognized that there are systematic
biases in CMW (Kallberg and Delsol, 1985) which make some (e.g., vectors
near the jet) of questionable utility, and soﬁe users have downgraded the
reliability of CMW accordingly. In response to this, we are seeking to
improve the quality of the satellite product, largely by adopting the
data assimilation methods of the user. There is some danger in this,

The Bayesian approach of using the first guess removes some of the
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independence of the estimate. We may exclude extreme, but true,
measurement indicative of important forecast errors. Will all users
accept this loss in order to remove more prevalent bad data? Eventually,
radiance histograms and correlation fields should be built directly into
each data assimilation model. Failing this, it seems reasonable to build

some of the data assimilation procedures into deriving data.
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