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_ Abgstract
Experiments of variational assimilation, similar to those already performed by the authors
- on a vorticity equation model (Q.J.R. Meteorol.Soc., 113, 1329-1347, 1987), are performed
on a shallow-water equation model. The variational algorithm requires the computation of

the gradient of the distance function to be minimized with respect to the model state at the
beginning of the assimilation period. As in the previous experiments, this gradient is
computed by using the adjoint equations of the model.

Northern Hemisphere observations of wind and geopotential, distributed at the 500 mb level
over a 24 hour time period, are assimilated with a pseudo-spectral model truncated at
degree 21. The results confirm the results previously obtained, namely that the variational
process reconstructs to a satisfactory degree of accuracy the meteorological structures of
the flow. In addition: '

. Gravity wave noise can be efficiently eliminated by adding an appropriate penalty.
term to the distance function, and by introducing in the wvariational process a
nonlinear normal mode initialization algorithm. The latter has the effect of improving
the numerical conditioning of the variational process.

. The quality of forecasts produced from the results of variational assimilation is similar
to the quality of shallow-water equation forecasts produced from the results of
operational assimilations, which use many more data and more realistic models.

Assimilations of observations at the 300 mb level produce similar results, with differences
which can be ascribed to the fact that a shallow-water equation model is a poorer simulator
of the 300 mb circulation. Assimilations performed with a model truncated of degree 42 also
produce similar results. They also show that the numerical efficiency of the variational
process, as measured by the number of descent steps necessary to reach convergence, is
almost insensitive to the dimension of the model phase space. .

Finally, study of the variations of the distance-function suggests that, as in the case of the
vorticity equation, the tangent linear approximation to the model equations is valid in the
conditions of data assimilation.
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+Current affiliation; Laboratoire de Météorologie Dynamique, Paris, France
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1. INTRODUCTION _

Variational assimilation of metcordlogical or oceanographical observations has been studied
in the last few years by a number of authors (see, e.g., Lewis and Derber, 1985; Hoffman,
1986; Le Dimet and Talagrand, 1986; Derber, 1987; Talagrand and Courtier, 1987;
Courtier and Talagrand, 1987; Lorenc, 1988a and b, Thacker and Long, 1988). Variational
assimilation is one of the many applications of optimal control, i.e. of the development of
variational methods brought about by the simultaneous development of numerical analysis
and computer power. A basic book of the theory of optimal control is Lions (1971). The
principle of variational assimilation is extremely simple. A set of observations being given
over some time interval (t tl) together with a numerical model of the atmosphenc or
oceanic flow, one first defines a scalar function which, for any solution of the model over
(o’ tl), measures the "distance" between that solution and the observations. One then
secks the particular model solution which minimizes that distance function. In view of the

complexity and the extremely large size of the corresponding minimization problem, the only
practical way to numerically determine the minimizing solution is apparently to take the
model initial conditions at time t  as the control variables of the problem. In the
established terminology of optimal control, this means that the distance function is
considered, through the model equations, as a function of these initial conditions only. A

descent algorithm, which computes successive approximations of the minimizing values of

the initial variables, is then implemented. Each step of the descent requires the explicit
knowledge of the local vector of the partial derivatives, or gradient, of the distance
function with respect to the control variables. As explained in detail in Talagrand and
Courtier (1987), the most economical way of determining that gradient in the case of
variational assimilation is to integrate the adjoint equations of the numerical model.

The various numerical experiments which have been performed so far show that variational
assimilation does numerically converge to a solution which minimizes the distance function.
They also show, as far as can be judged from the relative simplicity of the models used so
far, that the results thus obtained are physically quite reasonable. The present article, a
large part of which has already been presented in Courtier (1987), describes experiments
~which are very similar, in their conception, their implementation, and also in their
conclusions, to experiments previously described by the authors in Courtier and Talagrand
(1987) (hereafter referred to as CT). The main difference is that the experiments
described here have been performed with the shallow-water equations, while the
experiments described in - CT had been performed with the vorticity equation. The
particular problem of enforcing an appropriate quasi-geostrophic balance between .the mass
and velocity fields is therefore addressed here. The conclusion is that it is relatively easy
to implement variational assimilation in such a way as to avoid an unrealistically large
amount of gravity waves in the results. A similar conclusion has been-reached by Lorenc
(1988a). Another conclusion presented here is that the quality of the variational
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assimilation, as judged from the quality of a subsequent 24 hour shallow-water equation
forecast, is similar to the quality of operational assimilations.

After a brief reminder of how the adjoint equations of a numerical model can be used in the
context of variational assimilation (Section 2), we describe the model and the observations
used in the numerical experiments (Sections 3 and 4). The results of these experiments
are then presented and discussed, especially in terms of the amount of gravity waves they
~ contain (Section 5). It is shown in particular that the Machenhauer condition for nonlinear
geostrbphic balance can be successfully introduced in the assimilation process. A number
of additional results are presented in Sections 6 to 8, éspecially as regards the quality of
the forecast produced from the results of variational assimilations (Section 6). Numerical
aspects are discussed in Section 9. General conclusions are given, and some of the
remaining problems are discussed, in Section 10.

2. THE USE OF ADJOINT EQUATIONS AS AN EFFICIENT TOOL FOR COMPUTING
GRADIENTS

We summarize in this section the main results of Section 2 of Talagrand and Courtier

(1987). A numerical model is available which explicitly integrates, for given initial
conditions x(to) at time tyaset of differential equations written in a synthetic form as

%;‘ = F(x) , 2.0

In this equation, x(t) is the state vector of the model at time t, which belongs to a phase
space E on which an inner product, denoted by < , > has been defined. We consider a
scalar function defined for any solution x(t) (t0 <t tl) of the model by

tl '
=] H[x(), t] dt 22)
t0

- where (x,t) — H[x,t] is a regular scalar-valued function defined on E (tdtl). is
a uniquely defined function of the initial conditions u= x(to) and we want to determine
the gradient of with respect to u. This gradient, which we shall denote Vu’ is
characterized by the property that for any variation Su of u, the corresponding first order
variation § of is given by the Taylor formula

8 =< Vu , ou> . ‘ . (2.3)
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Linearizing eq. (2.1) in the vicinity of a particular solution x(t) leads to the cdrresponding
tangent linear equation:

Q&éx =F'(t) 6x ' | » 2.4)

whose variable is &x, and where, for any time t, F’(t) is the Jacobian operator determined
by differentiating F(x) with respect to x at point x(t) in the phase space E. The
tangent linear equation describes the temporal evolution of a perturbation 8x(t) imposed on
the solution x(t), to first order with respect to the initial value du = 5x(to) of dx.

We will denote F**(t) the adjoint of F’(t) with respect to the inner product <, >.

These definitions being given, the distance function and its gradient Vu can be
numerically determined for given u by performing the following operations

a) Starting from the initial conditions x(to) = u, integrate the basic equation (2.1)
~from t, to t;, compute from the solution x(t) thus obtained, and store the values of
* the solution over the entire time interval (to, tl).

b) Starting from the "final" condition 5'X(t1) =0, integrate the adjoint equation

; dd—f”‘ = F() ' + V_H(@) | 2.5)

backward in time from i, ot The result 8'x(to) obtained at time ty is the gradient
Vu . In 2.5), VXH(t) is the gradient with respect to x of the integrand H(x,t) of
(2.2), taken at point x(t). Both terms F'*(t) &'x and VxH(t) of (2.5) are computed at
time t of the adjoint integration from the value x(t) computed in the direct
integration a).

Remark At any time t, the quantity &'x(t) produced by the adjoint integration (2.5) is the
gradient, with respect to x(t), of the integral

t

TV H K@), r1de
t

limited to the interval (t,tl).
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3. THE NUMERICAL MODEL AND ITS ADJOINT

The shallow-water equations at the surface of a 'rotating sphere X with radius a, expressed
in terms of the vorticity { and the divergence m of the velocity field and of the geopotential
¢ of the fluid, assumed to be inviscid, read

Je

& = A - VIGHVAM]

d
N = JGfA M) + V.IGH)VAL] - Ap - AK ' 3.1)
99_ §g.A10) - V.(gVA)
where K is the kinetic energy per unit mass
K = ¥[VA1L.VA1I{ + VAN.VA- I + 2J(A1 A )],

f is the vorticity of the basic rotation, V now denotes the first order differential operator
along X, and A and J are respectively the Laplacian and Jacobian operators along X. The
state of the flow at a given time is entirely defined by the knowledge of , 1 and ¢ along X

at that time. '

For a given solution ({(t), m(@), o) of e&lls. (3.1), the tangent linear equations,
analogous t0 (2.4), read

90 = JELAID + JL+A1BE) - V.[BLVA ] - V.LGH)VAIS]

98N _ 584, A1) + J(G+EAISN) + V.GLVAD) + V.IGHIVAIBE)]
- A[6@ + VAL VA18L + VAN VA1) (3.2)
- AI(AISLA M) + JALLA18M)]

980 _ j(BpA 1Y) + H(@.AIBL) - V.(BgVA) - V.(gVA1ED)
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As for the definition of the inner product on the space of all possible states of the ﬂow,

without which the adjoint of (3.2) cannot be defined, we have chosen the inner product
associated with the quadratic form

1

E=4, {E(2q>2+q> K) dZ

3.3)

n:l-ﬂ

{3 [%92 + %® (VA1L.VA1L + VAM.VA ] AT

where <I>0 is a constant geopotential. E is an invariant of the tangent linear equations in
the vicinity of the state of rest (¢ = <I>0, { =n =0). It is in these circumstances the second
order approximation of the total energy “2 ¢2+ ¢ K)dZ, which is an invariant of eqgs.

(3.1). The norm associated to the quadratic form (3.3) will be denoted [ . It has
physical dimension (length)?2 (time)2. The adjoint of eqs. (3.2) with respect to the inner
product defined by (3.3) can be determined by systematic use of Green formulae
(integrationk by parts). As an example, the derivation of the adjoint of the term underlined -
in egs. (3.2) is given in Appendix A. After the adjoints of all the individual terms have
been taken, we finally obtain for the adjoint of egs. (3.2) the following equations

-90C_ JA1E L L) + AIAILATET) + AVAMVAISY)
+ AJAM,A1T) - AVAILVASM) + V.(5MVAL)

+ V.[((+HVA18"] + IENA L) - }I,OJ(s'<p,<p)

- Q%n = JIA18'M, 4+ + V.(8'MVAIN) + J(A-1L,5'n) (3.4)

-VIGHHVAIE + b V.0V8'p)
-0

(999 _ @ 5 + JALS) + VAV
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These equations are the analogue of egs. (2.5). The inhomogeneous term VXH(t), which
will depend on the choice of the scalar function , is still ignored for the time being.

Remark The particular inner product (3.3) was originally chosen because the authors
thought it desirable to use a "physically significant” inner product. They have since then
realized that in the present context, where inner products are not used primarily for
estimating "norms" , but for evaluating first order variations, that requirement was
meaningless. Indeed, the terms containing tI)oin egqs. (3.4) are dimensionally incorrect, if
@, is considered as a geopotential and if we remember that the adjoint variables &, &'n, 8¢
are partial derivatives of the distance function with respect to {, m, ¢. As will be

discussed below in Section 9, the numerical consequences of that choice was negligible.

In the numerical experiments described below, egs. (3.1) have been integrated with a
pseudo-spectral model built on the spherical harmonics Yg, with triangular truncation at
some degree N. Since observations over the Northern Hemisphere only were used, the
model was in effect made hemispherical by retaining only symmetric components (n-m even)
for the geopotential and the divergence fields, and antisymmetric components (n-m odd) for
the vorticity field. According to the classical procedure used in pseudo-spectral models ,
(Eliasen et al, 1970), the quadratic advection terms in egs. (3.1) were computed in
physical space, on a collocation grid with enough resolution to avoid aliasing emors. It is
known (Talagrand and Courtier, 1987, Appendix B) that the property of "adjointness" is
conserved by unaliased discretization, in the sense that the adjoint of an unaliased
discretized operator is the unaliased discretized form of the adjoint of the original (non
discretized) operator. Under these conditions, it suffices, in order to obtain the adjoint of
the discretized tangent linear equations (3.2), to replace in (3.4) the various differential
operators by their unaliased discretized analogues. |

The temporal integration of the model uses a leap-frog scheme modified by a semi-implicit
treatment of gravity waves (Robert et al., 1972) and a time filter (Asselin, 1972).

Two different truncations, at degrees N=21 and 42 respectively, have been used. For
N=21, the timestep was taken equal to 1 hr, and the dimension of the model state vector
was equal to 735. For N=42, the timestep was taken equai to 30 minutes, and the state
vector dimension was equal to 2793.

In all experiments, the meén geopotential was taken equal to <I>o=105 m?s-2. This value
was chosen in order to obtain a realistic speed of propagation for gravity waves. The same
value was used in the inner product (3.3) and in the corresponding adjoint equations
(34).
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4, THE OBSERVATIONS

Two independent series of experimenis have been performed, using observations
distributed over the Northern Hemisphere and over the 24 hour time period starting at
00:00Z, 18 March 1985 (initial and final times included). The two series of experiments
used observations at the 500 mb and 300 mb levels respectively. In each series, all the
observations of wind and geopotential available for the corresponding level in the data base
of -Direction de la Météorologie, Paris, were used. This data base is made up of all the
observations transmitted on the Global Telecommunication System (GTS), with rejection of
only a few observations which lie outside reasonable climatic ranges (a number of erroneous
observations were therefore certainly included in the present experiments and some
observations in the data base had effectively been rejected by the operational assimilation
scheme of Direction de la Météorologie). At the 500 mb level, 1752 individual observations
of the geopotential, and 2048 observations of each of the two components of the wind field,
were retained in the data base. Most of the observations had been obtained from
radiosonde (TEMP and PILOT) reports, with a few wind observations coming from SATOB
and AIREP reports (87 and 3 respectively). In a few experiments, 72 additional estimates
of the geopotential, obtained by adding 1000-500 mb SATEM thicknesses to values of the
1000 mb geopotential produced by the operational assimilation scheme of Direction de la
Météorologie, have been used together with the observations extracted from the GTS data
base. These additional estimates were all obtained for points located over the Atlantic

Ocean.

At the 300 mb level, 1729 observations of geopotential and 2899 observations of each of the
two components of the wind were used. One third approximately of the wind observations
were obtained from SATOB and AIREP reports (435 and 566 respectively), the other
observations having been obtained from radiosonde reports.

The geographical distribution of these various observations is shown in Figs. 1 and 2. The
observations are concentrated over the middle latitude continental areas, with the exception
of the 300 mb wind observations which, because of the SATOB an AIREP data, are
relatively more uniformty distributed. The temporal distribution of observations is shown
in Fig. 3. It is seen that the observations are concentrated at the synoptic and
subsynoptic hours, with the exception of the 300 mb wind observations which, again, are
relatively more uniformly distributed.

It must be noted that, at both the 500 mb and the 300 mb levels, the total number of

individual scalar observations (5848 and 7527 respectively) was much larger ‘than the
dimension of the state vector of the model, either in its N=21 or in its N=42 version. The
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1824 observations

2048 observations

Fig.1 Geographical distribution of the 500 mb geopotential émd wind observations used in

the assimilation experiments (panels a and b respectively). Most of the geopotential

observations over the Atlantic Ocean have been obtained from SATEM thicknesses.
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problem of fitting the model to the observations was therefore overdetermined, and no
model solution could be expected to be exactly compatible with the observations.

Figs. 4 and 5 show respectively the 500 mb and the 300 mb geopotential fields at 00:00Z, 19
March 1985 (ie. at the end of the assimilation period), as produced by the assimilation
system of the operational EMERAUDE forecasting programme of Direction de la Météorologie.
This assimilation system, which is described in detail in Pailleux et al. (1982), uses a
multivariate  three-dimensional optimal interpolation scheme and a three-dimensional
 primitive equation model, with 15 levels in the vertical and spectral triangular truncation at
degree 79 in the horizontal. For easier compariSon with the results to be presented below,
the fields in Figs. 4 and 5 have been truncated at degree 21. These fields are certainly
erroneous in several reSpécts, and in paricular in planctary scales, as is at present the
case for most assimilation systems (Cats et al., 1986). However, Figs. 4 and 5, having
been produced with a primitive equation model from a much larger (in particular
three-dimensional) set of observations, are useful references for the evaluation of the
results to be presented below.

5. THE NUMERICAL EXPERIMENTS
5.1 The minimization process

All experiments consisted in minimizations performed in the space of the model state at the
initial time i of the assimilation period (00:00Z, 18 March 1985). Except mention to the
conirary, all minimizations were started from the EMERAUDE analysis at that initial time.
The minimizations used an algorithm of the quasi-Newton type, described by Buckley and
Lenir (1983) (we will explain in Section 9 what a quasi-Newton algorithm is). In all
experiments the minimization was interrupted after 30 computations of the gradient at time
t had been performed.

5.2 Assimilation without balance constraint

In a first class of experiment, the distance function was defined as a simple
weighted sum of  squared  differences between the observations and the
corresponding model values

N .
2V [(w-ug)? +(v-v )] | (5.1a)

N -
= 2P lo0 e + G2

e%'“
K[

o l N(p .
with ¢= —Nq) IZ (-9, , . (5.1b)
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Fig.4 500 mb height field for 00:00Z, 1 March 1985, as produced by the operational
assimilation and forecast EMERAUDE system of Direction de la Météorologie, Paris
(unit:metre).
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Fig.5 AsFig. 4, but for the 300 mb level.
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where NV is the total number of wind vector observations available over the assimilation
period (to,tl), and N_ is the total number of geopotential observations. The quantities

¢ _
u, vV, and @, are .the observed values for northward wind component, eastward wind

cgmponent and geopotential respectively, while the quantities u, v, ¢ are the corresponding
model values. The latter were obtained from the model values of the wind components and
geopotential on the collocation grid in physical space through bilinear interpolation with
respect to latitude and longitude. It would have been possible, and would have arguably
been more consistent with the spectral character of the model, to directly compute u, v, ¢
at the observation locations from the spectral components of the 'model fields. But, as
already mentioned in CT, this would have forbidden the use of Fast Fourier Transforms.
Moreover, because of the high resolution of the collocation grid, the corresponding

differences on the estimated u, v, ¢ would presumably have been small.

In (5.1a), G(p and G, are estimates of the statistical root-mean-square observational errors
on geopotential and wind components respectively. The values G(p = 110 m2s-2 and G(p = 155
m?2s-2 have been taken at the 500 mb and 300 mb levels respectively, and the value o, =
2.7 ms-! has been taken at both levels.

The term (5.1b) has been included in (5.1a) in order to obtain for an expression which
was independent of the spatial average of the model geopotential field. As in CT, where a
similar term was introduced, the basic reason for the presence of this term is of course
that geopotential is only defined up to an additive constant. In the présent case, the mean
geopotential (I)o = 105 m2s-2 had been chosen, as noted above, in order to obtain a realistic
phase velocity for the gravity waves and was therefore not allowed to vary in the
minimization process. But this value is inconsistent with observed values of geopotential,
at least if these values are estimated, as usual, with respect to sea surface level. It was
therefore necessary to define for an expression which was independent of the mean
geopotential. Another possibility would have been to introduce in a fictitious mean
geopotential, independent from the dynamics, to be determined, together with the other
components of the geopotential field, by the minimization process. But it is easy to verify
that the final minimizing value of that mean geopotential would precisely have been equal
to -¢, so that the final result would have been exactly the same as when directly
minimizing (5.1a). It is the value -¢ which has been used as mean geopotential for
plotting the height charts, produced by variational assimilation, which will be presented
below.



Fig. 6 shows the height field produced at the final time of the assimilation period, when
assimilating 500 mb observations through minimization of (5.la). The root-mean-square fits
(per individual observation) of the minimizing model solution to the observations are eq) =
204 m for height observations, e, = 6.1 ms! for u-component wind observations, and ey
= 5.5 ms! for v-component observations. The comresponding values at the beginning of
the descent process (i.e. for the shallow-water model solution obtained from the EMERAUDE
analysis at 00:00Z, 18 March 1985) are respectively e(p =41.2 m, ey = 6.8 ms! and e, = 6.1
msl, The temporal variations of the instantancous root-mean-square fits over the
assimilation period are shown in Fig. 7 for both solutions. It is seen that the minimization
has not only decreased, on all three components u, v, @, the fit of the model to the
observations, but has produced final instantaneous fits which are much more uniform in
time. This clearly shoWs the capability of assimilation to adjust a model to a set of

observations distributed in time.

Comparison between Figs. 6 and 4 shows that the main features of the mid-latitude
circulation (depression over Western Europe and ridge to the west of that depression,
depression over Southem Greenland, trough over Eastem North America, depressions off
the Western Coast of North America and in the Aleutian area) are the same in both charts,
but with somewhat different positions and intensities, in particular for the Aleutian
depression. But the main difference between the two charts is the presence, in Fig. 6, of
numerous noisy structures in the low latitudes. These structures, which are mostly '
concentrated in the smallest scales resolved by the model, are very similar to the small
scale noise already observed in CT in data-void areas. In the present case, these
structures turn out t0 consist mostly of gravity waves. The descent algorithm uses all the
degrees of freedom of the model in order to minimize the distance function, and puts in the
fields as much gravity waves as necessary to reach the minimum. A clear indication to this
effect is given by the variations of the squared norm | %{G- ) (esﬁmated according 1o
(3.3)) of the time derivative of the gravity component G of the flow. This quantity is
known to give a fair measure of the ageostrophic character of the flow. Evaluated at time
t, it increases in the present case from 047 m¢ s6 to 1.63 m* s6 between the beginning

0
and the end of the minimization.

5.3 Assimilation with a balance constraint

Two methods have been used, first independently, and then in combination, in order to
reduce the amount of gravity waves in the assimilated fields, and to impose an appropriate
balance between the mass and velocity fields. Both methods follow the logic of the
nonlinear normal mode initialization procedure of Machenhauer (1977) and tend to reduce to
0 the time derivative of the gravity wave component of the flow ‘

45



|

JGECPOTENTIEL

Fig.6 500 mb height field produced at the end of the assimilation period (00:00Z, 19 March
1985) by minimization of the distance function (5.1).
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Fig.7 Temporal variations, over the assimilation period (tp, t), of the

root-mean-square differences between the observations and (i) the model solution
produced from the EMERAUDE analysis at time to (dashed curves) (i) the model
solution minimizing the distance function (5.1) (full curves). Panel a: height.
Panel b: northward (v) component of the wind. Panel c: eastward (u) component of
the wind.
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The first of the two methods can be described, in the now classical terminology introduced
by Sasaki (1970), as enforcing condition (5.2) as a "weak constraint”, while the second is
intended at enforcing (5.2) as a "strong constraint”.

The subset of the phase space made up of the points which satisfy condition (5.2) is
known, as first shown by Machenhauer (1977), to be practically invariant by integration
of the equations governing the atmospheric flow. This subset will be called here the "slow
manifold". The expression slow manifold was first introduced by Leith (1980); we stress
that our slow manifold is not identical with Leith’s, but is what he called the first
approximation M to his slow manifold. Fig. 8§ is a is a well-known schematic (and
two-dimensional) representation of the phase space E and of the slow manifold, which
will be denoted by S. Each point of E is defined in this representation by its
projections R and G onto the subspaces spanned by the Rossby modes and gravity modes
respectively.

In the first of the two methods used for limiting the amount of gravity waves, a penalty
term of the form -

dG 2
I @ I

P=0g 53)

where e is a positive numerical coefficient, has been added to the distance function
Implementation of the minimization then requires the explicit computation of the gradient of
P with respect to the model fields: this gradient contributes to the term VXH(t) in eq.
(2.5). No practically usable analytical expression can be obtained for this gradient, but it
can be numerically determined, following the general logic of adjoint equations, by using
the adjoint of the numerical process which, starting from the model fields at a given time,
leads to | %—tg I2 at the same time. That process basically consists of one timestep of the
model and, accordingly, its adjoint basically consists of one timestep of the adjoint model.

With the penalty term (5.3) included in the distance function, the minimization process
converged to a solution which looked acceptable in terms of the amount of gravity waves it
contained, but the convergence tumed out to be extremely slow. The reason for that is
that because of the presence of the penalty term, the distance function is very sensitive
to the presence of possible gravity waves. The iso- surfaces. are accordingly extremely
elongated in the phase space in the R-direction (curve I of Fig. 9). It is easy to realize
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Fig.8 Schematic representation of the phase space E, extracted from Leith (1980).
Each point in E is defined by its projections R and G onto the subspaces
spanned by the Rossby modes and gravity modes respectively. S is the slow
manifold, i.e. the subset of points satisfying condition (5.2). Starting from a
given point A, the Machenhauer nonlinear normal mode initialization algorithm would
lead, in the limit of infinitely many iterations, to point B, located on the slow
manifold. Because the algorithm must in practice be interrupted after a finite
number of iterations, it only leads to point A’.

Fig.9 Same schematic representation of the phase-space E as in Fig. 8. Points D and
D’ correspond respectively to the “uninitialized" and ‘“initialized" model states
leading to the solution which minimizes the distance function penalized by term
(5.3). D’ is the image f D through the Machenhauer algorithm. Similarly, " and I”
are level curves for the penalized distance function in the spaces of "uninitialized"
and “initialized" model states respectively. I” is the image of I through the
Machenhauer algorithm.
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that this situation leads to ill-numerical conditioning of the minimization and to siow
convergence. Although the unfavourable consequences of such a situation are alleviated to
some extent by the use of a quasi-Newton algorithm, which basically modifies the metric
defined by (3.3) in order to make the iso- surfaces more spherical, they were in the
present case severe enough to lead to an unacceptably slow convergence.

Remark Numerical tests have shown that the results which have just been described are
 insensitive to the particular instant of the assimilation period (t ., tl) at which the time
derivative g? is evaluated in (5.3).

In the second method, no penalty term was added to the distance function, but a
Machenhauer nonlinear normal mode initialization, intended at exactly enforcing condition
(5.2), was introduced at each step of the minimization before the integration of the model,
and it is the fields before the initialization which were taken as control variables with
respect to which the minimization was performed. We recall here that the Machenhauer
algorithm is an iterative algorithm for projection of the phase space E onto the slow
manifold. This projection is performed at constant Rossby wave component R, so that,
starting from an uninitialized state A (Fig. 8), the Machenhauer algorithm will lead, in the
limit of infinitely many iterations, to the initialized state B. Now, the algorithm must in
practice be interrupted after a finite number of iterations. This leads to a point A’, which
does not exactly lic on the slow manifold. Machenhauer’s algorithm does not therefore |
define an exact projection of the phase space onto the slow manifold, but only a contraction,
along the G-direction, towards the slow manifold. And, as such, the algorithm is
invertible in the sense that to any point A’ in E there corresponds a point A (which may
correspond to unrealistic physical fields) whose image by the algorithm is A’.

Once the uninitialized fields are taken as control variables, it is necessary, in order to
determine the gradient of the distance function with respect to these new control variables,
to apply the adjoint of the initialization algorithm on the result 8'x(t0). of the adjoint
integration (2.5). [Each step of the initialization algorithm essentially consists of one
timestep of the basic model. Therefore, in a way very similar to what has been said above
about the gradient of the penalty term (5.3), the adjoint of the initialization algorithm is an
iterative algorithm, each step of which essentially consists of one timestep of the adjoint
model.

With this second method, the minimization first apparently converged to a solution which
was free of gravity waves, but after a number of descent steps (about 15 when the
initialization contained two iterations), the amount of gravity waves started increasing and
the minimization finally converged to the same model solution over (to,tl) as when no
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balance constraint was imposed. The reason for that result is simple: If in Fig. 8, A’ is
the point corresponding to the initial condition minimizing the non-penalized distance
function (5.1), minimisation with respect to “initialized" fields will lead to poiht A whose
image by the initialization algorithm is A’, so that the final model solution will be the same
as before. This means that the minimization algorithm is in fact capable of inverting the
initialization. Increasing the number of iterations in the initialization algorithm has only
the' effect of delaying the eventual convergence to C, but does not significantly change the
final results. '

It therefore appears that, owing to the iterative and approximate character - of the
initialization algorithm, condition (5.2) cannot in practicc be enforced as an exact
constraint. It is by combining together the two methods described above that properly
balanced conditions have been obtained in an acceptable number of descent steps.
Inclusion of the penalty term in the distance function ensures that the minimizing solution
will not contain an unacceptable amount of gravity waves, while performing the minimization
on uninitialized fields leads to better numerical conditioning. This is illustrated in Fig. 9.
With the penalty term included in the distance function, the iso- surfaces, as already
said, are strongly elongated in the R-direction. The corresponding surfaces in the space of
uninitialized fields are obtained through the inverse of the initialization algorithm. The
latter being a contraction in the G-direction towards the slow manifold, its inverse is a
dilatation in the G-direction. The iso- surfaces tum out to be more spherical in the space 4
of uninitialized fields than in the space of initialized fields. This ensures more rapid
convergence. :

Fig. 10 shows the height field thus obtained at time ty. The coefficient L7l has been
taken equal to .19 x 10 m+ s6 The unrealistic small scale features of Fig.6 are no more
visible in Fig. 10, while the meteorologically significant structures of the middle latitudes
are still present. Indeed, some of these middle latitude structures, such as for instance
the Aleutian depression, are now closer to the EMERAUDE analysis (Fig. 4) than they were
in Fig. 6. This suggests that, because of the additional link imposed by the penalty term
between the mass and velocity fields, more of the information contained in each of these two
fields has effectively been used in the reconstruction of the other.

A measure of the efﬁciency of the constraint imposed by (5.3) is given by the
corresponding variations of H G 2 which (estimated after the nonlinear normal mode
initialization has been perfmmed) decreases from 047 102 m* s6 to 047 105 m¢ s6 in
the course of the minimization. At the end of the m1mm1zauon, the ratio of the penalty
term to the "pure" distance term (5.1)isequal t0 6. 103,
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As for the fit of the minimizing solution to the observations, it is now 26.5 m per individual
height observation, and 6.2 ms! and 5.6 ms! per individual u and v wind observation
compbnent respectively. These' values are larger than the values obtained when no penalty
term was included in the distance-function (204 m, 6.1 ms-! and 5.5 ms-! respectively).
This is normal, since the global fit to the observations is necessarily degraded by the
presence of the penalty term. But it is interesting to note that the change is mostly in the
fit to the height observations. This is in agreement with the linear theory of geostrophic
adjustment, which predicts that in most scales resolved by the model, and especially at low
latitudes, it is the mass field which must adjust to the velocity field.

Combining a penalty term (5.3) and a Machenhauer integration algorithm is therefore a
successful way for obtaining a properly "balanced" model solution in a relatively small
number of descent steps. It is noteworthy that it is only the penalty term (5.3) which
imposes the balance constraint. The Machenhauer algorithm is in effect only a way to
perform a change of variable which speeds up the convergence of the minimization. There
is of course no special reason to think that the particular (and rather arbitrary) procedure
used here is the best way for imposing a proper balance on the assimilated fields. But the
very fact that present initialization techniques can in effect be simply and successfully
introduced in a variational assimilation is of extremely great interest. Indeed, it suggests
that the general problem considered by Daley (1978), of finding the point on the slow
manifold lying closest to a given analysis, must be solvable in the broader context of an
assimilation including the temporal dimension.

Lorenc (1988a) has also found, in experiments performed with a one-dimensional
shallow-water model, that adding an appropriate penalty term to the distance function could
effectively constrain the solution of a variational assimilation to be "slow". He does not
mention however any problem of ill-conditioning arising from the presence of the penalty
term.

6. ADDITIONAL RESULTS
6.1 The effect of temporal weighting on the observations

The results presented so far were obtained with a distance function in which the weights
given to the observations were independent of time. The difference between the final
minimizing solution and the corresponding EMERAUDE analyses shows some tendency to
take smaller values at intermediate times of the assimilation period (dashed curves of Fig.
11). This effect, which is made visible on the rotational wind difference is easily
understandable. The model, not being perfect, cannot adjust uniformly to the whole set of
observations, and minimizes the distance function by - adjusting preferentially to
observations at intermediate times. However, in the case of assimilation, where one wants
to make a forecast from the final time of the assimilation period, better adjustment to later
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of the observations. Full curves: assimilation with variable weighting of the
observations. b) As a) but for rotational wind root-mean-square difference.
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observations is obviously preferable, and one must give larger weights to more recent
observations in the definition of the distance function. The problem of determining the
appropriate temporal variation ‘of the weights, knowing the statistical performance of the
model, does not appear simple. Useful ideas can probably be drawn in- that respect from
the theory of Kalman filtering (Ghil et al., 1981), which provides a systematic approach for
dealing with model errors. In the present case, an experiment has been performed in which
weights given to individual observations varied linearly with time in the ratio 3 to 80
between the beginning and the end of the assimilation period (the total sum of the weights
was kept at the same value as in the previous experiments in order not to modify the
relative importance of the gravity wave penalty term).

The full curves of Fig.b 11 show the temporal variation of the final adjustment of the model
to the EMERAUDE analyses. The adjustment is now closest to the latest observations. An
objective proof that variable weighting of the observations has improved the quality of the
assimilation is given by the root-mean-square differences between 24h-forecasts produced
from the variational assimilations and the corresponding EMERAUDE analyses, also visible
in Fig. 12. It is seen that variable weighting of the observations not only improves the fit
of the assimilation to the analyses at the end of the assimilation period, but also leads to a
slower growth rate of the forecast error.

6.2 The impact of additional SATEM observations
As already mentioned in Section 4, 72 estimates of the 500 mb geopotential have been used

in some experiments in addition to the observations contained in the data base of Direction
de la Meéiéorologie. These additional "pseudo-observations”, obtained by adding SATEM
1000-500 mb thickness measurements to 1000 mb heights produced by the EMERAUDE
assimilation, were located over the Northermn Atlantic (see Fig. 1a) and were valid at either
21:00Z or 22:00Z, 18 March 1985. Their impact on the assimilation can be seen in Fig. 12,
which is in the same format as Fig. 11', and is relative to two assimilations (with variable
weighting of the observations) performed with and without the pseudo-observations.

The impact of the additional geopotential estimates, although small, is clearly visible: on
both the height and the rotational wind fields, their presence decreases the difference with
the EMERAUDE analysis, by an amount which is maintained in the forecast. The fact that
the difference is decreased in both fields is a new proof of the "multivariate" character,
through the model dynamics and the balance condition, of the assimilation. (It can also be
noted that the impact of the additional observations, through global adjustment of the model
over the whole assimilation period, is already visible, at the rather low accuracy of the
figure, at 12:00Z, i.e. 10 hours before the time of the measurement).
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6.3 Forecast quality

The dashed-dotted curves of Fig. 12 show the growth of the root-mean-square error in a
24 hour shallow-water equation forecast produced from the EMERAUDE analysis at the final
time of the assimilation period. (Although EMERAUDE analyses are here taken as the

"true" reference the initial root-mean-square error is not zero, especially in Fig. 12a,
because the forecast is started from an initialized analysis while it is the uninitialized
analyses which are used as references). It is seen that, in both figures, the growth of the
error is smaller for forecasts produced from the resulis of variational assimilations than for
the forecasts produced from the EMERAUDE analysis. If one remembers that the
EMERAUDE analysis was the outcome of an assimilation process which had used a a
three-dimensional primitive equation model, together with a three-dimensional set of
observations, much larger than the set used in the variational assimilations, the results of

Fig. 12 constitute a strongly positive indication as to the quality of variational assimilation.

7.  ASSIMILATION OF OBSERVATIONS AT THE 300 MB-LEVEL

Assimilations of observations at the 300 mb level have been performed in a way very similar
to assimilations at the 500 mb level. In particular, the temporal weighting of the
observations and the procedure for imposing an appropriate balance in the assimilated
fields (penalty term and Machenhauer algorithm) were the same. The only difference was,
as said in Section 5, that the root-mean-square observational error on geopotential was now

taken equal to 155 m2s2, instead of 110 m2s2 This resulted in a lower relative weighting
of the geopotential observations. The results, which are described in more detail in
Courtier (1987), are very similar to those obtained at 500 mb. The main difference is that
the fit to the observations and to the EMERAUDE analyses is now much less accurate: the
root-mean-square to the EMERAUDE analyses is roughly multiplied by 2, as can be seen by
comparing Figs. 12 and 13. Another difference is that, even though the same temporal
weighting was used, the variations of the fit to the EMERAUDE aﬁalyses is now rather
different: for height, the fit now has a weekly marked minimum at 24.00Z, while for
rotational wind, the fit is now closest at 12:00Z (Fig. 13a and b). All this is perfectly
consistent with the idea that the shallow-water equations are a poorer model of the
circulation at 300 mb than at 500 mb. In particular, it would be necessary, if one wanted
for some reason to obtain the closest fit at 24:00Z, to give still a stronger relative weighting
to the latest observations. As for the increase of the rota;tional wind difference between
12:00Z and 24:00Z, it is to be linked to the fact that wind observations at 300 mb are
relatively more numerous at low latitudes (Fig. 2b), where a shallow-water model is
certainly a very poor descriptor of the flow.

8. ASSIMILATION AT HIGH RESOLUTION
The assimilations performed with the model truncated at degree N=42 have prodliced results
which are on the whole very similar to the result obtained with truncation at degree 21. No
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difference was observed in the assimilated fields which could be considered as
meteorologically significant. The authors interpret this as meaning that the meteorological
qualities of a shallow-water equation model are already present with truncation at degree
21, and that no gain can in effect be achieved by increasing the resolution. Another
noteworthy fact is that the rate of convergence of the minimization, as measured by the
number of descent steps necessary to reach convergence, was not modified by the change
of resolution, A four-fold increase in the numbers of degrees of freedom of the model has
therefore no significant impact on the efficiency of the minimization.

9. NUMERICAL ASPECTS 4

We will now discuss some of the numerical aspects of the experiments described -in the
previous sections. An important question is raised by the possibility that the distance
function might have several distinct- minima. As in CT, no indication was observed that

this could be the case. More precisely, variations of the distance function along straight
lines in phase space have been studied. As in CT (see Fig. 9 therein), these variations
turn out to be parabolic. This is a strong indication not only that the distance function
has only one minimum, but also that it varies quadratically with respect to the model initial
state at time t,, at least within the domain explored by the minimization process. This in
turn is in agreement with results obtained with another shallow-water equation model by
Lacarra and Talagrand (1988) (see also Urban, 1985), who have found that, over a 24 hour
or 48 hour period and for initial perturbations whose amplitude is comparable to the’
uncertainty with which the state of the atmosphere is known in practice, the temporal
evolution of a perturbation is in effect governed by the corresponding tangent linear
equation. If this result is confirmed for more complicated models, such as multilevel
primitive equation models, it will mean that, in the context of data assimilation, atmospheric
dynamics can to a high degree of accuracy be considered as linear. The appropriate linear
dynamics will of course depend on the current state of the flow, but the knowledge that the
dynamics is linear will nevertheless be extremely useful for implementing assimilation
schemes and interpreting the results they produce. It will also be extremely useful for
assigning confidence limits to short-range numerical forecasts.

In all experiments described above, the descent algorithm was interrupted after 30
computations of the gradient of the distance function. That value was in fact larger than
necessary, and a satisfactory convergence, as judged by all reasonable standards and in
particular by the fact that the changes caused in the fields by additional descent steps
were meteorologically negﬁgible, was usually reached after 10 to 15 descent steps. We
stress that these values were the same for both low resolution and high ‘resolution
assimilations, although the latter was performed in a phase space whose dimension was four
times as large. In CT, 10 to 15 iterations were also necessary to obtain satisfactory
convergence, in a phase .space with dimension 231. This suggests that the number of
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descent steps in a minimization is almost insensitive to the dimension of the phase spacé, a
fact which certainly contradicts what could be a priori expected ‘and which can be of
extremely great importance for the implementation of variational assimilation with large
dimension models. Determining why the number of descent steps is insensitive to the model
dimension would be of extremely great interest.

In ‘most experiments, the descent was started, as already mentioned above, from the
'EMERAUDE analysis at time to' In a few experiments, it was stgxted from a state of
uniform geopotential and zero velocity. It then lagged behind the descent started from the
EMERAUDE analysis by typically 2 or 3 descent steps. Compared to the 10 to 15 steps
necessary to reach convergence, that lag is rather small, and suggests that not much gain
could be achieved in practice by starting the descent from a state which is known to be
close to the required minimum (for instance, the previous day’s analysis). Further work
will be necessary on this point and on the question of how much accuracy is in practice
necessary on the localization of the minimum.

It has already been said that the descent algorithm used in the experiments described in
this article was of the quasi-Newton type. We will now briefly explain what a quasi-Newton
algorithm is. We first recall that a descent algorithm determines the value of the control
variable which minimizes the distance function as the limit of a recursive sequence (up)
of the form:

Bye1 =5 PpDp ©.1)

At each descent step p, Dp is the descent direction, determined from the local gradient V
(up) and (in most descent algorithms) from the previously computed gradients V (up_l), A%
(“p-2)' ..... , as well as from the previously determined points up_l, up_z, ..... The
scalar pp is determined in such a way as to (approximately) minimize along the descent

direction. One descent step therefore consists of two parts:

i) The computation of the gradient V (up) and the determination of the descent direction
D

b

ii) The determination of the scalar pp. This second part, called line search, may
involve some trial and- error experimentation, under the form of explicit determination
of the value of the distance function at one or several points along the descent
direction. ‘
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A general reference on descent algorithm is Gill et al. (1982). Navon and Legler (1987)
have -given a detailed discussion of the use of descent algorithms in meteorological
problems. '

Finding a stationary point of the distance function is equivalent to solving the equation
V=0 (v.2)

A ready generalization of the classical _Newton algorithm for solution of scalar equations
leads to the following sequence of approximations to the solution of (9.2)

Upt1=Yp" [V2 (up)]-1 \Y (up) 9.3)

where V2 denotes the matrix of second derivatives, or hessian, of with respect to u.
The particular descent algorithm (9.3) is extremely efficient in terms of the rate of
convergence per descent step, but is nevertheless extremely costly in that each descent
step requires the solution of a linear system whose dimension is the dimension of the .
phase-space.  Quasi-Newton aigon'thms are algorithms of the general form (9.1) with
descent direction

— '1
Dp Hp V(up)

where Hp-l is an approximation of the local inverse hessian at point up. Hp-1 is updated
at each step by use of the local gradient. The various quasi-Newton algorithms differ by
the updating procedure, and also by the line search procedure (see the above quoted
references). Generally speaking, the accuracy of the approximate inverse hessian, as well
as the corresponding storage requirements, increase as the descent proceeds. In the
Buckley and Lenir (1983) algorithm used for the experiment described in this article, a
given amount of core memory is a priori assigned to the storage of the approximate inverse
hessian. If that amount happens to be filled .in the course of the minimization, the
programme then shifts to a less demanding, but also léss efficient, conjugate-gradient
algorithm. In order to take full advantage of the quasi-Newton phase, the
conjugate-gradient algorithm is preconditioned by the last computed approximation of the
inverse hessian (preconditioning can be described as a change of metric intended at making

the iso- surfaces more spherical).

Tests have been performed in order to determine to which extent the efficiency of the
minimization depended on the size of the core memory allocated to the storage of the
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approximate hessian. It tums out that doubling the size of the allocated memory does not
signiﬁcanﬂy reduce the number of descent steps necessary to reach convergence, but that
each step is on the average more economical. It is so because the quasi-Newton algorithm
requires less trial and error computations in the line search than the conjugate-gradient
algorithm. On the whole, a 25% relative gain in computing time was achieved when doubling
the core memory allocated to the inverse hessian. This result shows that, in agreement
with general theory, a quasi-Newton algorithm is more efficient than a conjugate-gradient
algorithm. It is also worth mentioning that theory says that the differences between
various descent algorithms become negligible for spherical, or nearly spherical, iso-
surfaces. Therefore, in spite of the presence of the Machenhauer algorithm the iso-
surfaces remained rather strongly elongated for the matrix defined by (3.3).

Conceming (3.3), one can wonder if the use of a large numerical value (105 for the
coefficient (I)o might not have had an unfavourable effect on the minimization, and might not
have in particular contributed to the numerical difficulties observed in the presence of the
penalty term (5.3). Actually it is easy to see that, in order to make the penalized distance
function more spherical, it would be necessary to give a relatively larger weight to the
divergence in the definition of the scalar product (Fig. 9). The observed difficulties
therefore certainly did not result from assigning too large a value to CI)O, at least as far as
divergence is concemed. Moreover, the effect of a quasi-Newton algorithm can be
described as a constant redefinition of the scalar product in order to make the distance
function more spherical. The first thing a quasi-Newton algorithm will -do in that respect is
to renormalize the various components of the state vector in order to compensate for a
possible inappropriate relative weighting of these components in the definition of the
scalar product. Had the value of (Do been too large, this would have accordingly been
corrected in the first steps of the minimization. The difficulties described in Section 5 must
therefore result from deeper causes, and from the fact that making the function spherical
requires much more than a different weighting of the geopotential, vorticity and
divergence, but an appropriate mutual recombination of these fields. As already said, this
is achieved to some extent by the Machenhauer initialization algorithm. |

10. CONCLUSIONS
We have not discussed in this paper all the aspects of our numerical experiments, but only

those aspects which seem most instructive. For instance, as in CT, it was found
necessary, in order to avoid the occurrence in the assimilated fields of small-scale noise
(not necessarily gravity wave noise), to include an appropriate penalty term in the
definition of the distance function. But our conclusion on this respect did not add
anything new to what has already been said in CT, and - this particular problem has
accordingly not been discussed here.
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Generally speaking, the conclusions of the present article confirm the conclusions of CT.
Variational assimilation does numerically converge, and the model solution to which it
converges looks, from a meteorological point of view, quite acceptable. In particular, the
main features of the mid-latitude flow are reconstructed to a satisfactory degree of
accuracy. Because the model used in the present experiments is still rather simple, these
conclusions cannot at this stage be much more precise. But additional conclusions can also
be drawn from the results presented above.

i) The quality of the forecasts pfoduced from the result of a variational assimilation
seems as good as can be expected from a shallow-water model.

ii) The problem of imposing a proper balance between the mass and velocity fields can be
easily and satisfactorily solved by introducing in the variational process an
appropriate constraint (based on Machenhauer’s condition (5.2) in the present case).
This is a new example of the power of variational assimilation and of its adaptability to
new situations.

iii) Increasing by an order of magnitude the dimension of the model state vector does not
decrease the efficiency of the minimization, as measured by the number of descent
steps necessary to reach convergence.

On the whole, the power, the generality and the versatility of variational assimilation are
such as to make it a tool whose study and development is of the greatest interest. To that
must be added the fact that, once the adjoint of a numerical weather prediction model is
available, it can be applied to many other uses than assimilation stricto sensu. Most
problems of sensitivity of a small number of output parameters of a model with respect to a
large number of input parameters can be studied with the adjoint of the model (see e.g.
Hall et al., 1982, or Courtier, 1987). Still other examples of uses of adjoints of numerical
models can be found in e.g. Urban (1985), Vautard and Legras (1988) or Lacarra and
Talagrand (1988). The development of the adjoint of a numerical weather prediction model
is an investment which must in the long term become extremely profitable.

Another great advantage of variational assimilation is fhat its theoretical bases are
perfectly rigorous and sound. This is extremely useful for the design and implementation
of an assimilation scheme by providing safe and well-defined guidelines at every stage, and
ensuring global consistency of the entire assimilation process. It also helps in anticipating
what can or cannot be expected from variational assimilation, and in interpreting and
understanding the results it produces. In addition, the ~links between variational
assimilation and other assimilation techniques, such as optimal interpolation and Kalman
filtering, are perfectly well understood at the theoretical level (for a reference, see, e.g.
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Jazwinski, 1970, although that book does not deal expliéitly with meteorological problems).
This also is extremely important, in that it will allow to study the various advantages or
disadvantages of different methods at the deepest theoretical level, and not only from the
results of comparative numerical experiments,

For all these advantages, there certainly remain problems with variational assimilation,
especially if one intends to use variational assimilation in operational numerical weather
prediction. We will briefly mention and discuss what we think are the most important of
these problems. ‘ “

i) What is the "best" definition of the distance function? In particular, how can the fact
that a model will always be imperfect be taken into account in the assimilation?

ii) Is it possible to obtain, in addition to the minimizing solution, estimates of the
corresponding uncertainty on the actual state of the atmosphere?

iii) Is it possible to introduce some form of "quality control”, i.e. of elimination of
erroneous observations, in the assimilation process? V

iv) Can the numerical cost of variational assimilation be reduced, and how?

As concemns the first two of these problems, the general result ‘that there exists a
variational formulation to any problem of statistical linear estimation is of extremely great
importance (see, e.g. Jazwinski, 1970; Wahba, 1982; Lorenc, 1986, 1988a, for various
aspects of that general result). In the context of variational assimilation, where statistical
linear estimation takes the form of Kalman filtering (Ghil et al, 1981, 1982), that result
means, as already mentioned in CT, that the distance function can be defined in such a
way as to lead to the same fields at time t; as Kalman filtering. Theory of Kalman
filtering allows for the explicit introduction of model errors, as described by their first
and second order statistical moments. It must therefore be possible to introduce the same
information in the definition of the distance function. Research work is being done on this
particular problem, and should lead, as already discussed in Section 6, to a variable
temporal weighting of the observations. '

Statistical linear estimation, and Kalman filtering in particular, produces, in addition to
estimated fields, the variance-covariance matrix of the corresponding estimation errors.
This matrix, in the variational formulation of statistical estimation, is the inverse hessian of
the distance function at the minimum. Quasi-Newton algorithms do compute successive
approximations of the inverse hessian. This is one possibility for solving the second of the
above mentioned problems, which is also being studied by Thacker (pers. com.). It must be
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noted that this will lead to estimation errors at the initial time ts of the assimilation
penod while it is estimation errors at the final time t which are really useful. It will
therefore be necessary to carry the estimation errors from i, o t;. In the context of
numerical forecasting, this is not a problem by itself in the sense that estimation errors at
time Y will in any case be useful only if some means is already available for u'énsforming
these errors into estimates of forecast errors at later times. But it clearly shows that the
problem of estimating assimilation errors is intrinsically linked to the problem of estimating
forecast errors.

The problem of "quality control" has been studied by Lorenc (1988a), who has taken into
account. the possible presence of "gross" errors in the observations. In the variational
statistical formulation of the assimilation, this leads to a distance function which, contrary
to (5.1), is not quadratic with respect to the differences between model and observations.
Instead, once one of these differences increases beyond a certain value, the corresponding
term in the distance function remains constant. Lorenc has found that this modified
distance function can have several distinct minima, corresponding to whether individual
erroneous observations are "accepted” or "rejected”. If this result is confirmed by future
experiments, it will mean that a preliminary control of the quality of the observations will
probably remain necessary before the variational assimilation itself,

The problem of the numerical cost of variational assimilation is of the utmost importance,
especially of course in the context of operational numerical weather prediction. The
present number of iterations (10 to 15) necessary to reach convergence would be absolutely
prohibitive in today’s practice of weather prediction. As already discussed in CT, many
possibilities can be thought of for decreasing the computational cost of variational
assimilation. In addition the available computing power will continue to increase in the
coming year. It will certainly be possible to significantly reduce the cost of variational
assimilation, but how exactly, and to what extent that will be possible remain important
questions to be answered.
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APPENDIX A - Adjoint of term - V.(¢VA-18n) in eqn. (5.2)

The term -V.(@VA-16n) in eqn. (5.2) is the output of the operator L which, starting from a
perturbation 8x = (8¢, &, ¢)* (* meaning here transpose) leads to

L 3dx=1[0,0, - V.(oVA1dn)]*
For any dx and 8'x = (8'€, 8'n, 8’ @)*, the inner product of L 8x and &’x reads

<L 8, 8x>= 2a2 I [-V.(pVA-18n)] 8¢ dE

Expression which we want to transform into the inner product of &'x with some other factor.
Successive uses of green formula lead to

<L8x, 8'x> =55, {z QVA'180.V5' ¢ dZ
=, I [-A18nV.(¢VE' ()] dZ

<L 8, &'x>= 7%2 {2 [-A18 VA1V.(oVS )] AT

=53, | VA18N.VA1V.(pVE') dE

]
)
2a2 J VA-18m. VAI V((pVS'(p)dE

which is the inner product (3.3) of 8x by the (0, %13 V.(¢V&'),0) .
o

The "transpose” character of the adjoint appears very clearly in the same way that the
output of Ldx of the direct operator depends only on the m-component of 8x and that only
its (-component is non zero, the output L*8'x of the adjoint operator depends only on the

¢-component of &x and only its m-component is non zero. The term (lp V.(¢Vd'p)
(]

accordingly appears, in the adjoint equation for 8’1 (eqn. (3.4)).
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