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1. INTRODUCTION

Despite impressive improvements in numerical weather prediction (NWP) over the
last few years, forecast models show considerable variability in predictive
skill on many different timescales. This has prompted Tennekes et al. (1987)
to assert that "no forecast is complete without a forecast of forecast skill."
Some results on operational skill forecasting have recently appeared in the
literature (e.g. Gronaas, 1985; Branstator, 1986; Kalnay and Dalcher, 1987;
Palmer and Tibaldi, 1986 and 1987). An example of forecast skill variability
(taken from Simmons, 1987) is illustrated in Fig 1, showing the day 3, 7 and
10 hemispheric skill scores for the operational model for November 1983. It
can be seen, for example, that the later the model validity time, the larger
the variability in skill, on the large scale, from forecast to forecast. This
suggests that, even though it is more difficult to forecast beyond the short
range, it may not be more difficult to predict the skill of forecasts beyond
the short range. Moreover, even though the mean skill of dynamical models in
the extended range is typically very small, case to case variability is
sufficiently large that a few are of genuine practical use (e.g. Hollingsworth
et al., 1988) and might possibly be relatively easily identified a priori
(Palmer, 1988).

It is apparent, therefore, that a scheme to predict forecast skill will have
substantial benefit in the medium range, and is an essential requirement for
dynamical extended range forecasting. The possible impact of such a scheme
has been quantified in a simple way by Palmer and Tibaldi (1987). For
example, based on ECMWF data for the last seven winters, if it was possible to
devise a scheme which only discriminated between forecasts of above average
and below average skill, the effective usefulness of the forecast system
during the above-average periods could be enhanced overall by about 2 days at
the end of the forecast period. This compares favourably to the impact of any

recent change in model resolution or model physics.

Returning to Fig 1, one gets a clear impression that, superimposed on the day

to day variability in forecast skill, there is a lower frequency fluctuation
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Height anomaly correlation

Initial date of forecast
November 1983

Fig. 1 Anomaly correlations of height for 1000-200 mb and the extratropical
Northern Hemisphere for 3-, 7-, and 10-~day forecasts performed from
initial dates within the month of November 1983.
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with timescale of about a week or so. Even if the prognosis of the day to day
fluctuations proved difficult, there would still be value in forecasting this

lower frequency variability.

In this paper we shall concentrate exclusively on the 10-day forecast
timescale. This study is possible because a large enough statistical sample
of forecasts is now available. Since the winter of 1979/80, ECMWF has
archived into one dataset the 500mb height for each day of its 10-day
forecast, including the initial and verifying analyses. This dataset forms
the basis of our investigation into predictability and forecast skill of the
ECMWF forecast system , preliminary results from which were discussed by
Palmer and Tibaldi (1986,1987). The data is discussed more fully in

section 2.

The predictors we have studied to forecast the skill of the 10-day forecasts
can be thought of as falling into four categories. Motivated by studies of
the dispersion within ensembles of forecasts, we have first investigated the
consistency of forecasts verifying at the same time but initialised at
different times. Secondly, we have studied in an objective manner,
large-scale flow patterns associated with skilful and unskilful forecasts; the
main tool used here was a statistical regression analysis with empirical
orthogonal function coefficients of observed and forecast flqw as predictors.
Thirdly we have investigated the skill of earlier short rangé forecasts as
predictors for the skill of the current forecast. Finally, motivated by a
diagnostic study of the correlation between persistence errors and forecast
errors, we have investigated the RMS difference hetween 500mb height of the
forecast and of the initial conditions. Each of these investigations yields a

set of potential predictors of forecast skill.

In section 3, the properties and skill of these predictor sets are derived
from six winters of data. A seventh winter (1986/87) is used as an
independent test of the predictors. Forecasts of forecast skill for 1986/87

are discussed in section 4.
Broadly speaking, one can distinguish two sources of forecast error. Firstly,

loss of forecast skill can be associated with analysis errors, or errors in

model formulation. These are related to deficiencies in the way we choose to
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observe and simulate the atmosphere; they are essentially 'man made'.

Secondly, there are errors associated with amplification of unavoidable
uncertainties in the analysis or model formulation due to the intrinsic
instabilities and nonlinearity of the atmosphere. Thig process could be

thought of as 'God given'.

Some sources of variability of forecast error can be ascribed to one or other
of these categories. For example, day-to-day changes in data coverage will
result in day-to-day variability in forecast skill; changes in model
formulation will result in much lower frequency variability. However, much of
the observed variability of forecast skill is influenced by interactions
between these two categories of forecast error. For instance, the propagation
and amplification of analysis errors depend strongly on the structure and
intrinsic stability of the large scale flow. Similarly, the way in which
systematic deficiencies in model formulation influence forecast skill will
depend on the detailed structure of the flow. For example, one might argue
that deficiencies in the model's treatment of tropical convection will most
strongly influence the extratropics when the large-~scale flow is conducive to

the meridional propagation of Rossby-wave activity.

These remarks serve to illustrate the fact that whilst it may be possible to
find statistical relationships between the large-scale flow and forecast
skill, the mechanisms underlying such relationships may be neither
straightforward nor unigque. 1In section 5 we discuss mechanisms associated
with amplification of errors due to both barotropic and baroclinic
instability, and also the influence of systematic errors in the model climate,
in an attempt to understand the results of the statistical analyses given in

earlier sections.

2.  DaTA

The basic data used in this study are taken from seven years of ECMWF
forecasts. For each extended winter season from 1980/81 to 1986/87, the
northern hemisphere 500mb geopotential height field of 100 day 1 to 10 daily
forecasts and verifying analyses, from 1 December, were extracted from the
global archives. The data for the first six years were then concatenated to
form the 'training data' for the correlation and regression studies described

below. The 100 forecasts and verifying analyses from the seventh available
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winter, 198¢/87, were used as an independent sample with which to test the

reliability of the statistical results.

Amplitude and phase measures of forecast skill and forecast spread were
calcoulated for the hemisphere north of 20°N, and for 12 regions (see Fig 2).
Fach region is bounded by 60°N and 20°N and extends from longitudes 0-30°E,

30=60°Fe..s.30°W=0. Fig 2 alsc shows the climatological band-pass filtered

,...‘

standard deviation of 500mb geopotential height {from Lau et al., 1881), a
good indicator of storm track activity. For future reference it should be
noted that regions 12 and i are pogitioned at the end of the Atlantic storm
track, and that regions 8 and 9 are pogitioned at the end of the Facific storm
track, Since low=frequency phenomena such as klocking are known to have

praeferred pozitions at the end of the storm tracks, regions 12, 1, 8, and 9

are distinguished from the others by a relatively high ratio of low-frequency

te band-pass frequency variability.

The amplitude measure of skill is given straightforwardly by the root mean
square difference (RMS) between forecast and verifying analysis. In order to
calculate the phase neasure of skill, first the 700~day mean of forscasis and

verifyving analyses were made. Each day n forecast was then
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anomaly from the day n model climate (i.e. the anomaly was coirreched

mean model error). The correlation, ACC, between forecast anoma
observed anomaly was then calculated. The unbounded phass measur: L0,

defined as the z-transform

1 1+ACC -
zac = 7 In (3=5)

1=ACC

was also calculated. As is well known, the z-=transform of the correlation
coefficient between two such statistical distributions has an approwimately
Gaugsian distributicon {s.g. Fisher, 1921). It should be menticned that an
ancmaly corrslation score was also calculated defining the forecast anomaly in

terms of deviation from the observed climate. However, in this paper we shall

concentrate on results from the modsl ‘bias-corrected’® measure.

In addition, the RMS, ACC and ZAC measures of the difference between 500mb

height of all overlapping forecasts were also calculated, as was the RMS




Fig. 2 Northern Hemisphere wintertime standard deviation of 500 mb
geopotential height (m). Band-pass filtered retaining periods
between 2.5 and 6 days (from Lau et al., 1981). Limited areas where
skill scores have been computed are superimposed (1 to 12, 30°
longitude width).
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difference of each forecast and analysis field from the appropriate 700-day

climate (the magnitude of the forecast and observed anomaly).

In order to study possible relationships between forecast skill and
objectively defined configurations of the large scale flow, it is necessary to
project the 500mb height data onto a suitable set of basis functions. One
could use, for example, a spherical harmonic basis. However, in an attempt to
minimise the number of bagis functions required to describe any significant
relationships between large-scale flow variability and skill variability, it
was decided to project the data onto a set of N empirical orthogonal functions
(EOFs) defined from pentad mean fields from 32 years of wintertime analyses
(1952-84 , from NMC and ECMWF archives). These EOFs were calculated
separately on the zonal mean and on deviations from zonal symmetry. The first
of these EOFs corresponds to variation in the hemispheric mean height. Then
five 'zonal' EOFs were retained, explaining 99.96% of the total variance of
the pentad zonal mean fields, and 17 eddy EOFs, explaining 87% of the variance
corresponding to fluctuations in the zonally varying component of the flow
(N=1 + 5 + 17 = 23). For future reference, if a severe truncation is taken,
retaining 3 zonal EOFs and 5 eddy EOFs (N=9), then the percentage of variance
explained in the zonal mean flow and the zonally varying flow is 89% and 44%
respectively. The first eddy EOF corresponds to the stationary wave pattern;
higher eddy EOFs have some similarities with the teleconnection patterns of
atmospheric low frequency variability (e.g. Wallace and Gutzler, 1981). For
reasons of space, these EOFs are not illustrated here, but are discussed in

Molteni (1987) and Palmer and Tibaldi (1986).

The results described below are derived either directly from this set of 700
forecasts, or from a temporally filtered version of it. By applying a 5-day
running mean to the data, we attempt to extract from the forecasts and
analyses, the low-fregquency component of skill, which, as mentioned in the

introduction, may be more easy to forecast.

3. PREDICTORS OF FORECAST SKILL

In this section, we shall consider four different sets which, given the
present data, could be used to predict forecast skill. All of these
predictor sets can be defined from forecast or initial analysis data,

available at the time the  forecast, whose skill we wish to predict, has been
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integrated. We will test the skill and discuss properties of each predictor

set on the training data for 1980/86.

3.1 Spread
Following the work of Epstein (1969), Leith (1974), and others, there has been

much interest in recent years in the analysis of ensembles of integrations of
NWP models, generated either through a Monte Carlo approach (see, for example,
Murphy and Palmer, 1986) or a lagged average forecast approach (Hoffman and
Kalnay, 1983; Molteni et al., 1987). One motivation for such studies is that
the dispersion or spread of the ensemble can give an a priori estimate of

forecast skill.

In the present study, our database allows us to analyse what might be termed a
"poor man's lagged average ensemble" comprising two forecasts verifying at the
same time, but initialised from consecutive analyses. However, we are only
interested in predicting the skill of an individual deterministic forecast
("today's" forecast) and shall do this using the spread between this given
forecast and the forecast initialised one day earlier (today's day n forecast

and yesterday's day n+1 forecast).

Just as forecast skill can be measured in terms of phase or amplitude
measures, so can forecast spread. The anomaly correlation coefficient between
adjacent forecasts (or the z transform of it) provides the phase measure of
spread; the RMS difference between adjacent forecasts provides the amplitude
measure. Fig 3 shows a graph of the correlation between hemispheric average
skill and spread using both ACC and RMS measures, based on daily data for
1980/86. It can be seen that there is a higher correlation between spread and
skill using phase measure rather than amplitude measure. This confirms
previous results by Branstator (1986) and is consistent with the results of
Kalnay and Dalcher (1987) who found that, using anomaly correlation, the
dispersion of ensembles of 5-day forecasts started from a number of different
analyses was an excellent predictor of skill. Using RMS error, Kalnay and

Dalcher were, in their own words, "less successful”.
Kalnay and Dalcher speculated that the relative success of the spread

predictor using anomaly correlation coefficient was due to its boundedness.

However, in Fig 3 we also show the spread skill correlations using the
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Correlation between the hemispheric skill of a day n forecast, and
the hemispheric difference between a day n and a day (n+1) forecast,
both verifying at the same time. RMS, ACC and ZAC measures of spread
and gkill shown. For each kind of measure of skill the corresponding
measure of spread has been used.
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(unbounded) z-transform measure ZAC. It can be seen that far from reducing
the correlations, they have been enhanced. We must therefore seek other
explanations for the apparent enhanced skill of the phase measure of forecast

spread.

It is known that, as a measure of short and medium range skill, the anomaly
correlation coefficient is strongly dependent on the anomaly amplitude (Arpe
et al., 1985; Branstator, 1987). A corollary of this is that the enhanced
correlation between spread and skill using anomaly correlation may, in part at
least, arise because spread and skill are mutually correlated with the
magnitude of the forecast (or observed) anomaly. Fig 4 shows a schematic
diagram illustrating two hypothetical ensembles of forecasts whose dispersal
in phase space relative to their initial conditions, is essentially identical.
A typical one dimensional cut through this phase space is shown. Relative to
its RMS dispersion, the magnitudes of the anomalies of the members of the
first ensemble are large. Hence, in terms of anomaly correlation, the spread
between the forecasts themselves, and between forecasts and verifying
analysis, will be small (i.e. high skill, low spread). For the second
ensemble, whose members straddle the climatology line, the anomaly correlation
between some of the members within the ensemble could even be negative, as
could the anomaly correlation between some members of the ensemble and the
verifying analysis. Hence for this énsemble, skill will be low and spread
high. Comparing the two ensembles, we have a clear correlation between ACC

spread and skill.

Fig 5 shows the (600 day) correlation between hemispheric spread (defined in
terms of ZAC) and the RMS magnitude of the forecast anomaly (full line), and
the correlation between the hemispheric skill (alsovdefined in terms of ZAC)
and the RMS magnitude of the forecast anoﬁaly (dashed line). As anticipated
by the above argument, both curves show significant correlation, particularly
at the beginning of the forecast period. WNote that the RMS magnitude of the
forecast anomaly is available once the forecast has been produced, and is
therefore a viable predictor of forecast skill. Indeed, comparing Figs 3 and
5, it can be seen that the magnitude of the forecast anomaly is a more skilful
predictor (of phase measure skill) than the spread between adjacent forecasts.
Essentially similar results were obtained (see Palmer and Tibaldi, 1986) when
ACC was calculated defining the forecast anomaly in terms of deviation from

observed climate.
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Fig. 4

== CLIMATE

Forecast time

Schematic illustration of the dispersion of two ensembles of
forecasts (shown by the solid line) relative to their verifying
analyses (dashed line). From an RMS point of view the ensembles have
identical dispersion. It is argued in the text that using ACC; there
will be a correlation between the skill and spreads of such ensembles
on account of their dependence on the magnitude of the forecast
anomaly.
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Fig. 5 Correlation between a) the day n hemispheric RMS error, and the RMS
hemispheric difference between the day n forecast and climate (curve
marked skill), and b) between hemispheric forecast spread and RMS
magnitude of forecast anomaly (curve marked spread) .
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Of course it might be queried whether RMS spread and RMS skill are similarly
correlated to scome simple bulk measure of the amplitude of the flow. On the
seasonal timescale they certainly are correlated with the spatial standard
deviation of geopotential height. (So, for example, RMS spread and RMS skill
will tend to be relatively large in winter, and relatively small in summer).
To test whether this correlation is important on daily data within the winter
season, we have calculated the 600 day correlation between daily hemispheric
forecast standard deviation of 500 mb height and firstly RMS error, and
secondly RMS spread. For day 1 the correlation with RMS error is 0.16, and
with RMS spread 0.09. For later forecast days the correlations are smaller.
Similarly (see Palmer and Tibaldi, 1987) the magnitude of the forecast anomaly
is very poorly correlated with RMS spread and (particularly at the beginning
of the forecast period) poorly correlated with RMS error. We therefore
conclude that the RMS measure is more suitable to study spread/skill
relationships, and we restrict ourselves to this measure throughout the rest

of the paper.

(It should be mentioned that we have found that the magnitude of the spread
skill correlations using ZAC are not significantly larger using regional
rather than hemispheric estimates. This would appear to be in contradiction
to Kalnay and Dalcher's results. However, if a much smaller sample is chosen,
just one year for example, then the correlation between skill and the
magnitude of the anomaly is somewhat larger for limited areas than for the
hemisphere. For example, using data from only the first year of our sample,
the day 1 hemispheric skill correlates 54% with the magnitude of the
hemispheric anomaly, whereas in region 1 the regional skill correlates 71%
with the magnitude of the regional anomaly. We agree with Kalnay and
Dalcher's opinion that this simply reflects the fact that, over a limited time
series, the magnitude of regional anomalies will fluctuate much more strongly
than the magnitude of hemispheric anomalies. Kalnay and Dalcher's forecasts
were all taken during a one month period during 1979, therefore their weaker
results for hemispheric measures reflects the relatively small variability in

the magnitude of hemispheric anomalies during that period.)
In conclusion, therefore, it appears that the spread estimator based on

anomaly correlation coefficient, is not an entirely appropriate estimate of

ensemble dispersion in the sense envisaged above. Its skill in predicting
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anomaly correlation is significantly influenced by the relation between such a
measure and the departure of the forecast from climatology. Moreover, if
anomaly correlation is nevertheless the required measure of skill to be
predicted, the magnitude of the forecast anomaly itself would be a more

skilful predictor.

Fig 6 shows four curves describing the correlation between (RMS) spread and
skill throughout the forecast period: the thin lines show calculations
performed with daily unfiltered data, the bold lines show calculations on data
which had been filtered by the 5-day running mean. The full lines show the
correlation between the skill of a day n forecast and the spread between that
day n forecast and the day n+1 forecast verifying at the same time. We call
these 'prognostic correlations' since this spread indicator is available
'operationally ' as a predictor of forecast skill. The dashed lines show the
correlation between the skill of the same day n forecast and the spread
between that day n forecast, and the day n~1 forecast verifying at the same
time. We call £hese 'diagnostic correlations', since they are cleariy not

available operationally.

It can be seen that diagnostic correlations are larger than prognostic
correlations. One way to understand why this should be is to note that
'‘tomorrow's' day n-1 forecast is, in general, a more skilful representation of
reality than 'vesterday's' day nt1 forecast. Hence the diagnostic RMS spread
should, in general, be a more faithful representation of the RMS forecast
error than the prognostic spread. Put another way, given the spread between
today's and yesterday's forecast, it is easier to predict the skill of

yesterday's forecast than today's forenast.

It could be argued that it may be worth waiting a day in order to have the
more reliable information supplied by the prognostic spread; however, it can
be seen that the only substantial improvement in skill of the diagnostic
spread over the prognostic spread is in the first few days of the forecast
period. The loss of forecast skill incurred in the short range by 'waiting a

day' may be unacceptable.

There is an interesting corollary to this result relevant to lagged average

forecasting. 1In the short and medium range, the optimal lagged average
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ensemble would be obtained by some weighted combination of its members.
Forecasts from the most recent initial conditions would have the largest
weights. Hence for an optimally weighted forecast, the ensemble mean initial
conditions are weighted towards the more recent initial conditions. Consider
for simplicity, a two member ensemble. By the above argument, the ensemble
spread at any verification day, will correlate more strongly with the skill of
the earliexr forecast than with the skill of the later forecast. Hence we
would expect that the spread will correlate more strongly with the skill of
the uniformly weighted ensemble forecast, than with the skill of the optimally
weighted ensemble forecast. Again this demonstrates the principle that, in
order to improve ones a priori estimate of forecast skill using the spread
indicator, it is necessary to operate in a forecasting environment in which
forecast skill itself is not optimised. Whether anything is gained in the
long run by taking such an approach would need a careful ‘trade=off’

analysis.

It is interesting to note that (see Fig. 6) the 5-day mean filter has a
comparatively larger effect on prognostic correlations than on diagnostic
correlations. This suggests that the high frequency (day-=-to-day) fluctuations
in skill and diagnostic spread are better correlated than the high frequency
fluctuations in skill and prognostic spread. This can be better understood if
we think of the compariéon between today's forecast and tomorrow's forecast as
a 'perfect model' predictability experiment (Lorenz, 1982), where the
diagnostic spread (RMS difference) between today's day n forecast and
tomorrow's day n-1 forecast (that verify on the same day) is to be interpreted
as the consequence of the growth of the day 1 error of today's forecast.
{Remember that the day 1 diagnostic spread is nothing but today's day 1
forecast RMS error). If we take the day 1 forecast error as a proxy for the
analysis error, it would be reasonable to interpret the high frequency
fluctuations in diagnostic spread as indicative of fluctuations in the quality
of today's analysis. On the contrary, correlations in the high frequency
component of today's analysis error and yesterday's analysis error will in
general, be small, so that high frequency fluctuations in prognostic spread
would not be expected to correlate well with today's analysis error. .This is
another way to understand why diagnostic correlations are generally larger

than prognostic correlations (see above).
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Fig. 6 Correlation between RMS skill and RMS spread. Full lines show
prognostic correlations, dashed lines show diagnostic correlations
(see text for definition of these terms). Bold lines show
correlations after a five day running mean temporal filter has been
passed through the skill and spread data.
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So far we have considered mainly hemispheric relationships. Fig 7 shows the
spread~skill relationships for the twelve regions at day 6 of the forecast.

In fact, it should be mentioned that correlations were calculated between (day
6/day 7) spread in some region i and (day 6) skill in all other regions j
(i,3=1...12), both contemporaneously, and with all possible time lags. The
results showed invariably that the highest correlations are to be found
between quantities computed on the same limited area and at the same time,
(however, see section 3.3 for possible upstream effects). Therefore, all
results below are for contemporaneous correlations between spread and skill in
the same area. 1In Fig 7 it can again be seen that the prognostic correlations
are sensitive to the temporal filter, whereas the diagnostic correlations are
not. Neither prognostic nor diagnostic correlations are strongly sensitive to
region, though the prognostic spread shows somewhat higher correlations for

regions near the end of storm tracks.

3.2 Flow pattern predictors

A conceptually different predictor to forecast spread is given by the synoptic
features of flow patterns associated with the forecast height field. Forecast
quality may depend on the current flow regime. Gronaas (1985) studied the
skill of the ECMWF model during subjectively defined blocking and non-blocking
spells. The question we wish to address is how to describe objectively the
modes of atmospheric flow variability associated with forecast skill
fluctuations. To answer this we congider a linear regression of forescast
skill against the EOF coefficients of either the 500mb height field of either
the forecast or initial conditions, or both. Some aspects of this study have
been given by Palmer (1988) in relation to forecast skill dependence on the
PNA mode, but a more extensive analysis is given below. In the following we
use either the N=23 truncation of EOF coefficients or the reduced (N=9) set

comprising the first 3 zonal EOFs and the first 5 eddy EOFs.

In order to fix notation, we give below a basic description of the algebra of
linear regression analysis applied to the EOF coefficient predictor sets

described above.
Let 1<0<600 denote a daily index over the sample of training data (600

wintertime forecasts from 1980/86). In addition, let M denote the number of

predictors used in the regression, and N the truncation of the EOF expansion.
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Correlation between day 6 forecast skill and both prognostic (day
6-7) and diagnostic (day 5-6) forecast spread. Bold lines and large
dots: diagnostic spread. Thin lines and smaller dots: prognostic
spread. Full lines and full dots: 5 day running mean filtered data.
Dashed lines and circles: wunfiltered data. The dots on the left
represent hemispheric values.
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Furthermore, for day o, let eja denote the jth EOF coefficient, 1<j<M, of
either the forecast flow (M=N), initial flow (M=N) or both forecast and
initial flows (M=2N). The hemispheric or regional score for that day will be
denoted by Sa. We shall assume in the following that for fixed j {eja}' {Sa}
have been normalised and standardised, i.e. if < > denoctes a mean over o,

<8 > =<e, >=0
o jo

A
n
N
v
it
il
—

<e? >
ja
In linear regression theory one finds a set of weights aj such that
= < - 25
9] (§ aj eja Sa)

is minimised. The condition BQ/aaj = 0 straightforwardly gives these weights

as
= -1
5 7 PiCi3
where
p. = <8 e. >
] a joa

.= <e, e, >
ij io jo

The quantity
o Z aj eja
]
is the regressed or ‘predicted' skill score given a forecast with EOF

coefficients eja° The sample-mean correlation between the real and regressed

skill score is
< = -1l 45, =
r s> I e;cit oo P

The so=-called factor structure constants pj give the correlation between the
scores Sa and each EOF coefficient ejao Forecasts with EOF coefficients
proportional to pj are most strongly correlated with variations in £forecast
skill. Alternatively, writing

.= a, C,.

p] J 1]

then a forecast field with EOF coefficients equal to pj can be thought of as
representative of the synoptic situations associated with the regression
weights, taking climatological correlation between EOF coefficients into

account.
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A number of different regressions have been calculated as outlined below. The
regressions with the largest number of predictors {M=46) used the full set of
EOF coefficients on both the forecast flow (for different forecast days) and
on the initial conditions. In addition, regressions were performed using the
EOF coefficients of the forecast flow only, or the coefficients of the initial
conditions only. Regressions were also run with the reduced set (N=9) of
coefficients, using forecast and initial conditions, or forecast or initial
conditions separately. Finally, some regressions were performed on the

temporally filtered training data.

For reasons of space, it will not be possible to give full details from all
these calculations. However, some results from the various regressions are
recorded below. For example, regression correlations for day 9 forecasts with
different values of N and M are recorded in Table 1 for the twelve regions and
the whole hemisphere using RMS error as the measure of skill. With forecast
and initial data (column 1) and no temporal filtering, there are three regions
with correlation coefficient larger than .5: regions 1, 8, and 12. The fourth
highest limited-area correlation is for region 2. As noted in the
introduction, these 4 regions are distinguished dynamically in having
relatively large low-frequency atmospheric variability, and relatively small
band-pass variability. Using only data from the initial analysis (column 2),
the correlations are considerably smaller, generally around .3. Correlations
using only the 23 EOF coefficients of the forecast flow (column 3) are larger
than those using only the initial data, and in region 1 only 6% smaller than
the correlation using the combined forecast and initial analysis data. The
fourth column shows correlations using 9 EOF coefficients from the forecast
data only. 1In region 1, the correlation is only 3% smaller than that for the
regression using the full 23 EOF coefficients. However, in the adjacent
region 12, there is a 12% drop in the magnitude of the correlation, and in
general the drop in correlation in different regions is significant. 1In
column 5 we show correlations using forecast data only, with 23 EOF
coefficients, but where the 5-day running mean filter has been applied to the
data before the regression analysis. Correlations are not only higher than
those using 23 predictors on daily unfiltered data, but also higher than those
in the first column with 46 predictors (with the exception of region 8 where
the correlation coefficients are equal). Correlations with 5-day filter and

M=46 (column 6) are larger again, though generally the increase in correlation
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between columns 5 and 6 is not as large as between 3 and 5. That is to say, a
larger increase in correlation obtains when the data is temporally filtered,
than when the number of predictors is enhanced. Overall, this suggests that
the regression analysis is defining flow patterns correlated principally with

low-frequency atmospheric variability.
The 500mb height anomaly patterns corresponding to the factor structure

constants pi for the four regions 12,1,8 and 9 are shown in Fig 8-=12. Such

patterns were derived from the formula

Z (XIY) =

o=

N

g Py By (x,y)

where Ei(x,y) is the ith EOF. If a particular forecast flow was given by this
z(x,y), its EOF coefficients would equél'% Py and its regressed skill scores
would be one standard deviation worse than average. This sets the amplitude
of these plots. Fig 8 shows the anomaly pattern corresponding to regressions
with forecast EOF coefficients only (M=23,N=23) for regions 12, 1, 8 and 9.

In synoptic terms, the pattern for region 1, for example, can be interpreted
synoptically by saying that if in the day 9 forecast there is anomalous north
westerly flow over the NW Atlantic, with an anomalous trough over central
Europe, then the forecast will be relatively poor over Europe. The pattern is
somewhat different for région 12, where a geographically concentrated trough

to the west of the British Isles is associated with relatively poor forecasts.

The patterns for regions 8 aﬁd 9 (Fig. 8c, 4), on the other hand, are fairly
similar to each other; they indicate that forecast skill is correlated with
the signed amplitude of the Pacific/North American (PNA) mode of low-frequency
variability of the atmosphere (Wallace and Gutzler, 1981). When there is
strong troughing over the Aleutian Islands, and strong ridging over the
Rockies, forecast skill will be relatively high. This association of forecast
skill with the PNA mode has been discussed in Palmer (1988), where it was
shown that forecast skill in the extended range also strongly correlated with
the signed amplitude of the PNA mode. It should be mentioned that there is a
weak correspondence between the patterns for both regions 12 and 1, and
Wallace and Gutzler's teleconnection patterns for the Euro/Atlantic sector.
However, these are much less clear than the PNA correspondence with patterns

for regions 8 and 9.
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Fig. 8 Factor structure constants expressed as 500 mb height anomaly maps
(geopotential metres) from a regression between day 9 RMS error, and
day 9 forecast EOF coefficients. a) Region 12, b) Region 1, c)
Region 8 and d) Region 9. The amplitude of the pattern is such as to
correspond, in the regression analysis, to a skill score one standard
deviation worse than average.
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For region 1, by far the largest eddy weight in the regression analysis is for
forecast eddy EOF number 5. On the other hand for region 12 forecast eddy
EOFs 5 and 7 have comparable weights, and for region 8 forecast eddy EOFs 6
and 10 have the largest of the eddy weights. This is consistent with the fact
(noted above) that with a reduced set N=9 of predictors comprising 3 zonal and
5 eddy EOFs, the correlations for region 1 are barely reduced over the full
set, whereas for the other regions (12, 8 and 9 in particular) there appears

to be a loss of correlation.

The 500mb height anomalies associated with the factor structure constants for
regions 12, 1, 8 and 9 for the regressions with initial data only (M=23, N=23)
are shown in Fig 9. We have already noted that the correlation between
regressed and actual scores is smaller using initial rather than forecast
EOFs. 1In addition to this, the factor structure constants have some
differences with their counterparts in Fig 8. 1In particular, the localised
anomaly centre to the west of the British Isles in Fig 8a for region 12, is
absent in its counterpart in Fig 9a, and overall the pattern is less
geographically localised. The pattern for region 1 is qualitatively similar,
but the position and magnitude of the anomaly centres differ between Figs 8
and 9b. For regions 8, and 9, there is still evidence of the dependence of
forecast skill on the signed amplitude of the PNA pattern in the initial
analysis, but again the patterns are less geographically localised than their

counterparts with forecast EOFs.

The 500mb height anomalies associated with the factor structure constants for
'regions 12, 1, 8 and 9 for the regressions with both initial and forecast data
(M=46, N=23) are not shown for reasons of space. However, the patterns for
the forecast anomalies and initial condition anomalies are very similar to
those shown in Figs 8 and 9 respectively, though the amplitude of the patterns
corresponding to the initial conditions are much smaller than those shown in
Fig 9. This is consistent with the fact that the regression weights for the
initial conditions are relatively small compared with the weights for the

forecast flow.
The 500mb height anomalies associated with the factor structure constants for

regions 12, 1, 8 and 9 for the regressions described in column 4 of Table 1

are shown in Fig 10. With 9 forecast EOF coefficients only (M=9, N=9), the
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As Fig. 8 but for a regression between day 9 RMS error and EOF

coefficients from the forecast initial conditions.
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Fig. 10 As Fig. 8 but using an EOF truncation retaining 3 zonal EOFs and 5
Eddy EOFs.
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pattern in region 1 is very similar tc that shown in Fig 8 using all 23 EOF
coefficients. This, of course, is consistent with the fact just mentioned
i

that eddy EOF number 5 has the ovewhelwingly largest weight in the regresion.

ja

or reglon 12 in particular, and 8 an
9 to a lesser extent, the regression with 9 EOFs does not give rise tc a

geographically welli~localised 500mb height pattern.

The forecast flow anomaly patterns using 5-day mean filtered data {not shown)
are very similar to those using the daily unfiltered data, except that the
amplitude of the patterns are much smaller {since standard deviations of 5 day
mean fields are smaller). One might infer from this that the basic regression

itself acts as a filter on the daily data, only picking out low-fr

®
s
<
@
=
&
g

modes of variability of flow. This is consistent with an interpretation of
gsome of the patterns in Fig 8, for example, as modes of model-atmosphere

low=frequency variability.

We can make a number of conclusions based on these results. Firstly, the
relative smallness of the correlations using initial data only, and the
relative smallness of the amplitude of the anomaly patterns for the initial
data in the M=46 regression, together with their relatively poor geographical
localisation, suggests that the initial conditions may be of marginal use in
the regression analysis. Indeed, with the full set of 46 EOFs we run the risk
of over-fitting when the regression weights are applied to an independent set
of data. We shall test this when we attempt to predict the forecast skill for
the independent winter 1986/87. Secondly, with the exception of region 1, the
*delocalisation’ of the anomaly patterns using 2 EOFs, suggests that this
small number may give a poor prediction of gkill when the regression is
applied to independent data. Hence for a given number of predictoys, it may
be preferable to increase the detail of the representation of the forecast
flow, than include aspects of both forecast and initial conditions. However,
results have shown that there is no obvious gain to be had by pre-—filtering
the data temporally, rather than temporally filtering the output of the
regression analysis (that is to say, the operation of time filtering would

appear to commite with the regregsion analysis).

Before concluding this section, we give gome brief results from two further

sets of regressions, one for day 2 hemispheric scores, and the other for
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regional day 3 scores. The correlations between actual and regressed
hemisphere scores are given in Table 1. Fig 11 shows the anomaly pattern
associated with the factor structure constants from a regression of the set of
23 forecast EOF coefficients (only) against day 9 hemispheric skill scores.
The magnitude of the correlation between regressed and observed skill scores
is equal to 0.34, and this is close to the mean correlation coefficient for
the twelve regional regressions in the third column of Table 1. The anomaly
pattern appears to be composed of a combination of patterns already discussed
above; ie the patterns in Fig 8 for regions 8, 12 and 1. In particular the
PNA mode appears to be correlated with hemispheric skill scores, albeit less
emphatically than with regional scores over the Pacific/North American

region.

Finally, in the columns 7-9 of Table 1, we show some correlations derived from
regressions for day 3 of the forecast. The regressions are for (M=46, N=23),
and (M=N=23), both temporally filtered and unfiltered. Comparing columns 7
and 1, 8 and 3, 9 and 5, it can be seen that of the 4 regions, 1, 12, 8 and 9,
described above, day 3 correlations are not consistently larger than day 9
correlations. This gives some support to the contention mentioned in the
introduction that just because mean day 9 skill is lower than mean day 3
skill, it does not follow that it will be more difficult to predict day 9

skill than to predict day 3 skill (at least using the EOF predictor sets).

Anomaly maps showing the forecast factor structure constants for day 3 are
shown in Fig 12. These should be compared with Fig 8 for the day 9 forecasts.
It can be seen that whilst the pattern for region 1 is very similar to that
for day 9, the patterns in the other regions are quite different. 1In
particular, for regions 8 and 9 there is no evidence of the PNA mode. It can
also be seen, and this is true for all the day-3 patterns for the other
regions, that over the region of interest there is a negative height anomaly.
Whist this is true for some of the patterns at day 9, it is by no means always
true, as the pattern for region 8 in Fig 8 illustrates. The possible

significance of this is discussed in section 5.

3.3 Skill of the short range forecast

The guality of the initial analysis is an important influence on day to day

variations of forecast skill. Since we have no direct knowledge of analysis
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Pig. 11 As Fig. 8 but for a regression with day 9 hemispheric RMS error as
predictand.
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Fig. 12 As Fig. 8 but for day 3 RMS error and day 3 forecast EOF

coefficients.
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errors in our dataset, we must loock for proxies. As discussed above,; the day
1 forecast RMS error of the current forecast might serve as just such a proxy,
though clearly this is not available at initialisation time. Again, as above,
we refer to correlations between the gkill of 'today's' forecast at day n>i
with the skill of the same forecast at day 1, as diagnostic. A 'very pocr
man's' analysis error for today's forecast is provided by yesterday's day 1
forecast error, in general agreeing with today's day 1 forecast error only in
the low~frequency component. Correlations between today's day n forecast and
yesterday's day 1 forecast are, in line with earlier terminology, prognostic.
As with correlations between spread and gkill, we show in Fig 13 the
prognostic and diagnostic correlations between hemispheric RMS day n skil
hemispheric RMS day 1 skill. Results are qualitatively similar to those for
spread/skill correlations shown in Fig 6. 1In particular, it can be seen that
the diagnostic correlations are larger than the prognostic correlations, and
that, in the short range at least, the 5-day mean filter has a more
substantial effect on the prognostic correlations than on the diagnostic

correlations.

The diagnostic correlation as a function of limited area is shown in Fig 14
for day 6 of the forecast. Twe things appear clearly: the three limited areas
for which such correlation is highest are limited areas 1, 2 and 9, and the
correlation itself is significant in these areas only after the 5-~day mean
filter has been applied. Fig 4 showed the location of such limited areas,
together with the climatology of the band-pass eddy activity during the
Northern Hemispheric winter. We therefore deduce that short-range forecast
skill is an indicator of medium~-range forecast skill only in those areas of

the Northern Hemisphere where barcclinic eddy activity is relatively low.

In Table 2 we show possible 'upstream influences' for skill/skill
correlations. Specifically, where day 3 skill is evaluated in regions 1 and
8, we show temporally unfiltered correlations with day 1 skill, evaluated in
the same region and in the three immediate upstream regions. The day 3 skill
lags day 1 skill by up to 3 days. The 3 day lag gives the prognostic

correlations, 2 day lag gives the diagnostic correlations, discussed above.

For day 3 skill evaluated in region 1 the highest correlations, for all lags,

occurs when day 1 skill is also evaluated in region 1. However, one can see
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Fig. 13 Correlation between RMS skill and the RMS error of a day 1 forecast.
Description of curves as in Fig. 6.
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Table 2

Table 2

Region
1 12 1
.00 .07 .37 0
.07 ' .14 .45 1 lag
(days)
23 11 «42 2
.09 .05 .31 3
Region
5 7 8
.00 .10 .23 0
.03 .14 .21 1 Lag
(days)
.11 .15 <17 2
.04 .02 .08 3

Correlation coefficients between day 3 skill in a) region 1 with day
1 forecast skill in regions 10-1 inclusive. b) region 8 with day 1
forecast skill in regions 5-8 inclusive. Both simultaneous and
lagged correlations (day 1 skill leading day 3 skill) are shown.
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secondary maxima in upstream reglons for positive lags. For a 1 day lag, the
secondary maxima is in region 12; for a 2 day lag it is further upstream in
region 11, and for a 3 day lag it occcurs in region 10. This is certainly
suggestive of the effects of both propagating and stationary short range
forecast errors effecting the day 3 European forecast errors. However, it

would appear that the growth of guasi-statiocnary errors is stronger.

A similar, though less clear-cut pattern can be seen for region 8. For a
three day lag the *stationary' and 'propagating' signal have approximately

equal (albeit weak) amplitude.

It should be mentioned that with both these skill/skill correlations and the
spread/skill correlations, we have considered the more generalised correlation
matrix between day n skill and day m skill/spread, for various time lags. 1In
no cases were results deemed to be significantly better than those described
here, and in most cases the correlations were smaller. Some description of

these correlation matrices are given in Palmer and Tibaldi (1986,87).

3.4 Forecast RMS transience

Motivation for the use of this predictor, defined as the RMS difference
between 500mb forecast height and the 500mb height of the initial conditions,
evaluated either regionaily or hemispherically, came from purely diagnostic

studies of interannual variability of the RMS error of persistence forecasts.

Fig 15 shows a scatter diagram of the winter mean 500mb height error of the
model forecast error (ordinate) and persistence error (abscissa) for the seven
winter periods 1980/81 to 1986/87, for region 1. For thie region in
particular, the model performance for 1986/87 certainly fell short of
expectations, especially since a number of model and analysis changes had been
made to the forecast system (see Palmer and Tibaldi, 1987). F¥Fig 15 shows
there is a marked correlation between RMS forecast error and RMS persistence
error, with 1986/87 being one of the least persistent winters (and 1985/86
being the most persistent) of the seven year sample. Note also that the
difference in model error between 1986/87 and 1980/81, years with similar
persistence error but with very different models, is significantly smaller
than the difference in model error between 1986/87 and 1985/86, years with

similar models but very different persistence error. This is certainly
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Fig. 15 Scatter plot of winter mean day 9 500 mb height RMS error against the

day 2 500 mb height RMS error of a persistence forecast (in region 1)
1=1980/1, 2=1981/2 ... 7=1986/7.

298



indicative of the relative importance of interannual variability of the
atmospheric general circulation in influencing regional scores in the medium
range. (It also suggests that none of the modifications to the model or
analysis scheme between the winters 1985/86 and 1986/87 were responsible for
the relatively poor forecasts over Europe during 1986/87, a fact further

confirmed by numerical experimentation).

Tn Palmer (1988) it is shown that a similar correlation holds for region 7 °
over the north east Pacific. However, as shown in Palmer and Tibaldi {1987),
the correlation breaks down in other regions, and, ih particular, breaks down
on the hemispheric scale. However, in view of the success of this diagnostic
relationship, at least over Europe, it is worth considering whether the degree
of persistence of a given forecast, (as opposed to the degree of persistence
of the atmosphere) could be used as a predictor of forecast skill. Because of
the above diagnostic results, we have only considered this potential of this
predictor on a regional basis. Table 3 summarises the results, showing the
correlation between the day n RMS error, and the RMS difference between the
day n forecast 500mb height, and 500mb height from the initial analysis, using
daily unfiltered data. Columns 1 and 2 show results for n=3; columns 3 and 4
for n=6; and columns 5 and 6 for n=9. Only regions 12, 1, 8, and 9 are shown
(no significantly higher correlations were found in the other regions). For
unfiltered values the magnitude of the correlations generally increase with
forecast time. This would seem to make sense, after all we would expect the
model to forecast a change of weather regime if it occurred within a day or so
of the initial conditions. In most cases, time filtering the data increases

the magnitude of the correlations, though not in a particularly coherent way.

In columns 7 and 8 of Table 3 we show a minor variant of this tendency
predictor. Instead of calculating the RMS difference between the day ©
forecast and initial state, we calculate the RMS difference bhetween the day ©
forecast and the day 3 forecast. The rationale for this is that whilst the
model may be relatively good at predicting transient behaviour within the
first three days of the forecast, any predicted change after three dayvs may be
somewhat unreliable. Results of correlations using this predictor do show
increased skill for region 1, however, the magnitude of the correlation is not

consistently larger compared with columns 5 and 6 for regions 8, 9, and 12.
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Region

12

8

9
Table 3

day 0/day 3
filter filter
off on
«17 «27
«24 .50
.13 .26
.14 .28

Table 3

day 0/day 6
filter filter
off on
.18 «19-
24 23
.16 .41
.11 .08

day 0/day 9
filter filter
off on
.25 «25
29 .36
.21 .25
27 «37

day 3/day 9
filter filter
off on
23 .28
.32 .46
.18 22
22 .39

Correlation coefficient between RMS error and the RMS transience

predictor for regions 12,
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In conclusion, we would appear to have somewhat mizxed results with this
predictcr. The correlations are positive, though there is no clear pattern to
the results. HNevartheless we felt that, overall, it was worth testing this

predictor, at least for the day 9 forecasts, on the independent 1986/7 data.

4. PREDICTION OF FORECAST SKILL FOR THE WINTER OF 1986/87

In this section we present sowme results of attempts to ‘predict’ variability
in the the skill of forecasts of the winter 1986/87 using the variety of

predictors discussed above.

In Table 4 we show results for a variety of EOF /skill regressions for day °
and day 3 scores in regions 12, 1, 8 and $. Except column 4, the regressed
and observed skill scores have been smoothed with the running five day mean
filter before the correlation coefficient was calculated. It should be noted
that the predictand for these regressions was 1n(RMS). This was done to avoid
regressed RMS error becoming negative (as it occasionally did when RMS itself
was used as predictand) and has the added advantage of making the measure
unbounded. The factor structure constants are essentially unchanged by this

transformation of the predictand.

The first two columns show that, overall, for day 9, there is no advantage to
be had by using EOF coefficients from both initial and forecast data; indeed
for regions 12 and 8, the_correlation coefficients are lower with M=46 than
with M=23., For the other two regions, there is probably no significant
difference. Broadly similar results hold for day 3 regressions. For example,
comparing columns 5 and 6, the two largest corelations are reduced using M=46.
On the other hand the two smallest correlations are increased with M=46,
though it could be argued that they are sufficiently small in magnitude that
this increase is not significant. Overall this appears to confirm our eariier
speculation that the higher correlations using forecast and initial data in
the dependent sample was largely illusory. Furthermere, it can be seen that
at day 9 the forecasts with only nine EOFs are inferior to those with 23 EOF
regressions in regions 12 and 8 (cf columns 2 and 3); again in regions 1 and 9
there is probably no significant difference. The difference between the 9 and
23 EOF regressions are also marked for day 3 forecasts (columns 6 and 7). For
region 8 in particular, the correlation drops from 0.47 with 23 forecast EOFs

to =0.22 with 9 forecast EOFs. As noted in section 3, 9 EOFs may give a poor
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prediction of the skill scores because the structure factor patterns were

generally less geographically localised than with 23 EOFs.

In the 4th column of Table 4, results for day 9 are shown with no time
filtering of regressed and actual scores. Whilst there is an overall
reduction of skill to quite small values, the scores for region © are the same
as when the filter was applied. Presumably this result is not statistically
significant, since a drop in correlation was found when removing the temporal

filter on the training data in region 2 (see columns 3 and 5 of Table 1).

In Fig 16 we compare results from three different predictors for day 3 in
regions 1 and 8; in Fig 17 we show similar results for day . 1In each graph;
the dashed line shows the actual forecast skill, the solid line shows the
predicted skill. The correlation between the two curves is shown
{unbracketed) at the top right hand corner of each graph. In brackets the
corresponding correlations using the training data are shown. In all cases,
both curves have been smoothed by the five-day running mean filter. For day
3, the three predictors are the forecast flow patterns with 23 EOFs, the day
3/day 4 forecast spread, and the day 1 RMS error of 'yvesterday's' forecast.

In fact the highest level of skill is achieved by the spread indicator in
region 1 and the EOF indicator in region 8. The day 1 forecast error is a
good indicator of skill in region 1 , less so in region 8, consistent with the
discussion above. Wote in Fig 16 that there is no cbviously strong
correlation between the predictor sets, indicating some degree of
independence. On the other hand, there are periods when all three indicators
agree to some extent {(e.g. for region 1, the trough around day 50, or the peak
around day 90). Clearly, cne would expect to be more confident about a

prediction if all predictors broadly agreed.

The predictors used to forecast day 9 skill, shown in Fig 17,are the forecast
flow patterns with 23 EOF coefficients, the day 9/ day 0 spread, and the RMS
transience between day 9 and the injitial conditions. It can be seen that the
spread indicator is again the most skilful in region i, whereas RMS transience

is most skilful, and EOF and spread indicators equally skilful, in region 8.

With the exception of the EOF predictors over Europe, and the transience

predictor over the Pacific, the correlations between regressed and actual
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a) 75__Correlahon = 0.05 (0.63) d) 100_Correlatlon = 0.47 (0.54)

25 [ ! T T 1
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Day Number Day- Number
: ion = 0.57 (0. ' Correlation = 0.31 (0.47
b) 75_Correlat|on 057 (0.63) e) 100 orrelation { )

Day Number Day Number

c) 75_Correlat|on = 0.42 (0.6?) f) 100_Correlatlon = 0.16 (0.25)

Day Number Day Number

Fig. 16 Prediction of day 3 forecast RMS error for the winter 1986/7 (day 1 =
Dec 1) using
a) gkill in region 1, and EOF regression
b) skill in region 1, and day 3/day 4 spread
¢) skill in region 1, and day 1 forecast error
d) skill in region 8, and EOF regression
e) skill in region 8, and day 3/day 4 spread
f) skill in region 8, and day 1 forecast error.
So0lid line is regressed skill, dashed line actual skill. 5-day
running filter applied to both curves. Unbracketed number is
correlation between two curves. Bracketed number is the correlation
expected from 1980/1-1985/6 data.
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scores for 1986/7 are about the same or a little less than those derived from
the training period. With these exceptions, this could be described as
reasonably satisfactory. The relatively poor performance of the EOF predictor
over Europe may indicate that the training data is insufficiently homogeneous
to give reliable results. BAs will be discussed in the next section, there are
indications that model systematic error strongly influences the factor
structure constants for the European regions, and clearly the model systematic
error has certainly changed over the training years as different models come
into operational use. Of course the penalty for using only more recent years

in the training data is the danger of incomplete statistical sampling.

The performance of the transience predictor (much better than expected in
region 8 on day 9) is at least consistent with our observation, using the
transience predictor on training data, that the correlation between predicted
and actual scores for different verification times and regions does not
exhibit clearly identifiable patterns. It would appear that there is some
useful signal in this diagnostic; however, further work is required to find a

more reliable indicator based on forecast persistence.

It would appear that all techniques show some promise as potential predictors,
and the most obvious conclusion is that some combination of them may prove

optimal. This will be discussed in a further paper, currently in progress.

5. DISCUSSION

We have investigated the potential of four different types of predictor to
forecast both regional and hemispheric forecast skill of the ECMWF forecast
system. The four predictors, defined objectively, gave measures of the
consistency between adjacent forecasts, patterns of forecast flow anomalies
associated with either skilful or unskilful forecasts, the short range skill
of earlier forecasts, and the degree of persistence of an integration from
initialisation time to verification time. It was found that when high
frequency day to day fluctuations in forecast skill were filtered out, some

encouraging results were obtained.
Possible reasons for the success of these predictors were put forward. Some

of these were, from a dynamical point of view, somewhat trivial, relating, for

example to the extent to which the forecast skill is dominated by model
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systematic error. However, there were alsoc strong indications that
variability in the intrinsic stability of the atmosphere played an important
role, particularly over the Pacific/North American region. On the hemispheric
scale, mechanisms relating to forecast skill variability are both complex and

interactive.

However, it was clear that the predictors also failed to capture a significant
fraction of the variability of forecast skill. It is easy to imagine some
refinement of the EOF regression technigue that may give enhanced skill. For
example, the training data could be classified according to some indicator of
large scale flow (see for example Sutera, 1986), and the regression run
separately on each sample. This would give two sets of factor structure
constants appropriate to each class of the large scale flow indicator. This

technique csuld be generalised further.

However, such generalisation would not address the question of variability in
the quality of the initial analysis. We showed that the day 1 forecast error
of the current forecast could provide information about forecast error later
in the integration. 1In this paper, this was done simply by correlating RMS
errors. However, a more satisfactory and complete approach would be to
perform a regression of EOF coefficients of the short range forecast error
against forecast error later in the forecast. This work is in progress and
will be reported at a later date. If, operationally, it was considered viable
to wait 6 hours, and use this regression analysis on the & hour forecast
error, we may have a more satisfactory measure of analysis variability than is

given in this paper.

Tn order to implement a scheme to predict forecast skill operationally, it
would seem desirable to combine the results of the predictors in some optimal
way. In Palmer and Tibaldi (1987), it is suggested that a probabilistic
categorical approach be used. The overall output would be the probability
that a given forecast lies in one of five a priori equally likely categories.

For further details, see Palmer and Tibaldi (1987).

The approach suggested in this paper is only a first attempt at what is
clearly a complex problem. WNevertheless we hope to have taken a step towards
the more complete forecasting system that Tennekes et al. {1987) so strongly

advocate.




Further diagnosis of these results and discussion of mechanisms or

low-frequency skill variability are given in Palmer and Tibaldi (1989).

References

Arpe, K., A. Hollingsworth, M.S. Tracton, A.C. Lorenc, S. Uppala and

P. K81lberg, 1985: The response of numerical weather prediction systems to
FGGE level ITb data. Part II: Forecast verifications and implications for
predictability. Quart.J.R.Met.Soc., 111, 67-101.

Branstator, G., 1986: The variability in skill of 72=hour global-scale NMC
forecasts. Mon.Wea.Rev., 114, 2628-2639.

Epstein, E.S., 1969: Stochastic dynamic prediction. Tellus, 21, 729-759,

Fisher, R.A., 1921: On the "probable error" of a coefficient of correlation
deduced from a small sample. Metron., 1, 1<32.

Frederiksen, J.S., 1986: Instability theory and nonlinear evolution of blocks
and mature anomalies. Adv. in Geophys., 29, 277-304.

Grgnaas, S., 1985: A pilot study on the prediction of medium range forecast
quality. ECMWF Tech. Memo. No. 119. ECMWF, Shinfield Park, Reading,
Berkshire, UK.

Hoffman and E. Kalnay, 1983: Lagged averaged forecasting: An alternative to
Monte Carlo forecasting. Tellus, 35A, 100-118.,

Hollingsworth, A., U. Cubasch, S. Tibaldi, C. Brankovic, T.N. Palmer and
L. Campbell, 1988: Mid~latitude atmospheric prediction on time scales of
10-30 days. Atmospheric and Oceanic variability. E4. H. Cattle. Royal
Meteorological Society, Bracknell. p 117-152,

Kalnay, E. and A. Dalcher, 1987: Forecasting forecast skill. Mon.Wea.Rev.,
115, 349-356. ' ) : :

Lau, N.G., G.H. White and R.L. Jenne, 1981: Circulation statistics for the
Extratropical Northern Hemisphere Based on NMC analyses. NCAR Tech.Note
NCAR/TN=-171+STR.

Leith, C.E., 1974: Theoretical skill of Monte Carlo forecasts. Mon.Wea.Rev.,
102, 409-418.

Lorenz, E., 1982: Atmospheric predictability experiments with a large
numerical model. Tellus, 34, 505-513.

Miyakoda, K., J. Sirutis and J. Ploshay 1987: One month forecast experiments
- without anomaly boundary forcings. Mon.Wea.Rev., 114, 2363-2401.

Molteni, F., 1987: Empirical Orthogonal Function Analysis of the Zonal and

eddy components of 500 mb height fields in the northern extratropics. ECMWF
Tech.Rep. No.61.

308



Molteni, F., U. Cubasch and S. Tibaldi, 1987: 30~ and 60-day forecast
experiments with the ECMWF spectral models. Proceedings of the ECMWF Workshop
on Predictability in the Medium and Extended Range. 17=19 March, 1986.

ECMWF, Shinfield Park, Reading, Berkshire, UK.

Murphy, J.M. and T.N. Palmer, 1986: Experimental monthly long-range forecasts
for the United Kingdom. Part II A real-time long-range forecast by an
ensemble of numerical integrations. Met.Mag., 115, 337-349.

Palmer, T.N., 1988: Medium and extended range predictability, and stability
of the PNA mode. Quart.J.Roy.Met.Soc. To appear.

Palmer, T.N. and S. Tibaldi, 1986: Forecast skill and predictability. ECMWF
Tech.Memo No,127. ECMWF, Shinfield Park, Reading, Berkshire, UK.

Palmer, T.N. and S. Tibaldi, 1987: Predictability studies in the medium and
extended range. ECMWF Tech. Memo. No. 139. ECMWF, Shinfield Park, Reading,
Berkshire, UK.

Palmer, T.N. and S. Tibaldi, 1989: On the prediction of forecast skill. To
appear in Mon.Wea.Rev.

Schubert, S.D., 1985: A statistical dynamical study of empirically determined
modes of atmospheric variability. J.Atmos.Sci., 42, 3-17.

Simmons, A.J., 1987: Barotropic instability, and anomalies of the
extratropical northern winter circulation. Pontificae Academiae Scientiarum
Scripta Varia 'Drought, El Nino and Teleconnections'. Published by Pontificia
Academia Scientarium. Vatican City.

Simmons, A.J., J.M. Wallace and G. Branstator, 1983: Barotropic wave
propagation and instability and atmospheric teleconnection patterns.
J.Atmos.Sci., 40, 1363-1392,

Sutera, A., 1986: Probability density distribution of large-scale atmospheric
flow. Adv. in Geophys. 29, 227-249.

Tennekes, H., A.P.M. Baede and J.D. Opsteegh, 1987: ECMWF workshop on
predictability in the medium and extended range. ECMWF, Shinfield Park,
Reading, Berkshire, UK.

Wallace, J.M. and D.S. Gutzler, 1981: Teleconnections in the geopotential
height field during the northern hemisphere winter. Mon.Wea.Rev., 109,
784-812. -

Wallace, J.M., S. Tibaldi and A.J. Simmons, 1983: Reduction of systematic

forecast errors in the ECMWF model through the introduction of an envelope
orography. Quart.J.R.Met.Soc., 109, 683-718.

309






