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1. INTRODUCTION

The skill of forecasts produced by any numerical weather prediction (NWP)
model varies considerably on many different time scales, as is clearly shown
by fluctuations in all the indices (for example, RMS error or anomaly
correlation coefficient) used to quantify the similarity between predicted and
observed fields. This variability has periodic components related to the
seasonal cycle, random day-to-day components due to the variable quality of
initial analysis, and low-frequency components that, some recent studies
suggest, may be related to transitions between different circulation types or

regimes (see Palmer, 1988; Tibaldi and Molteni, 1988).

The variations in forecast skill are substantial as forecast time approaches
the limit of deterministic predictability, though with a present
state-of-the-art model, they are already significant after 5 days. (For
example, for the anomaly correlations of 5-day 500 hPa height forecasts over
Europe issued by ECMWF in two recent winter periods, 20% of the forecasts had
a correlation greater than .91, another 20% a correlation lower than .65).
Such fluctuations are obviously associated with considerable variability in
the practical usefulness of the forecast itself. Consequently, an a priori
indication of the likely level of skill of a numerical forecast would be of
enormous assistance to the forecaster in making the best use of the predicted

fields, at least in the most predictable situations.

Dynamical predictability clearly depends on the instability properties of the
atmospheric flow, and the idea that the departures between integrations
started from similar initial conditions can give an estimate of the limits of
atmospheric predictability has been the basis of a number of studies in the
last decade (see the review by Shukla, 1985). However, NWP models have only
receﬁtly reached a level of sophistication that allows them to simulate a
realistic proportion of atmospheric variability; necessary for forecast

dispersion to be a reliable indicator of forecast error. Indications that the
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spread of an ensemble of forecasts started from slightly different analyses
could be effective as a predictor for forecast error, not only on average but
also on a case-to-case basis, came from the idealized study of Hoffman and
Kalnay (1983) (so far, however this idea has found only partial confirmation
in the studies of Molteni et al. (1987), Kalnay and Dalcher (1987), Murphy
(1988) and Brankovic et al. (1988), where actual numerical forecasts are

considered).

Whilst forecast spread can give an indication of error amplification due to
dynamical instability, it cannot account for sources of error variability
related to the quality of initial analyses, or regime~dependent systematic
deficiencies in the model. On this basis, Palmer and Tibaldi (1988) studied a
number of possible predictors for the forécast skill of the ECMWF model,
including very-short-range forecast errors and indices of flow patterns, and
concluded that at least the low-frequency components of the skill variations
could be predicted to some extent. The promising results of their diagnostic
study encouraged implementation of a guasi-operational experimeht during
winter 1987/88, in which indices of the skill of the ECMWF forecast are
predicted statistically every day, from predictors computed from the forecast

fields and the initial analysis.

The methodology and the results of the experiment are described in this paper,
which is organized as follows. Section 2 describes the predictands, that is,
the way in which we chose to quantify the skill of the forecasts, and the
geographical areas for which these indices were computed. Section 3 discusses
the nature of the predictors used in the statistical scheme; the mathematical
algorithm is presented in Section 4. “The statistical method was tuned and
tested using values of predictands and predictors computed from forecasts and
analyses for the winters 1985/86 and 1986/87, in which the T106 spectral
model, currently used at ECMWF, was operational. The performance of the
scheme on this training data set is described in Section 5, while Section 6
presents the actual results of the experiment for winter 1987/88. &An example
of how the nature of atmospheric dynamics can influence the prediction of
forecast skill is discussed in Section 7, and finally our conclusions and

plans for future developments are presented in Section 8.
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2. PREDICTANDS

Root mean square (RMS) error and anomaly correlation coefficient (ACC) for the
500 hPa height field are probably the most common indices used to verify
numerical weather predictions. Given the experimental nature of this study,
we assumed that a prediction of these two parameters would give a reasonable

indication of the overall skill of a forecast.

Kalnay and Dalcher (1987, KD hereafter) and Palmer and Tibaldi (1988, PT
hereafter) found that the latter parameter is easier to predict than the
former, at least in the short range, using forecast consistency as a
predictor.' PT showed that this is due to the fact that, in the short range,
ACC is posiﬁively correlated with the amplitude of the anomaly itself, which
in turn is mainly determined by the amplitude and phase of the large-scale
planetary waves. These waves are usually very well predicted in the short
range, due to their persistence over short time scales. On the other hand,
short-range errors are mainly determined by failures in predicting the
intensity of baroclinic waves, which account for a much lower proportion of
the anomaly spatial variance. Therefore, the day-to-day variability of the
ACC is largely determined by the variations in the amplitude of the
large-scale anomaly whilst RMS error is influenced more by the variability of
the skill in predicting baroclinic activity. It is not surprising that, when
the spread of two or more forecasts started from slightly different initial
conditions, is measured in terms of ACC, this measure is correlated with the
ACC between each of the forecasts and the verifying analysis, as long as the
initial pattern 6f large~scale planetary waves persists. This éffect will be
clearly illustrated by the results of the present study. However, this does
not mean that ACC is not a practically useful measure of foreéast skill, as
has been confirmed by discussions with a number of operational forecasters.

The scheme described below therefore includes ACC as a predictand.

The studies of PT and KD also show that the predictability of forecast skill
depends on geographical region; not only does the overall accuracy of the
prediction of forecast skill vary from region to region, but so does the best
predictor of the skill variations. Consequently, better results were obtained
for (at least some) areas of continental size (for example, Europe or North

America) than for the Northern Hemisphere as a whole. This appears to be due
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to the relative importance of low-fregency variability, baroclinic activity
and the model systematic error in determining the variability over different

areas.

From a practical point of view, predictions of forecast skill are more useful
on a synoptic than on a hemispheric scale; on the other hand, the smaller the
verification area, the shorter the forecast time for which that area can be
considered a dynamically closed system. There is probably an optimum size for
the areas over which predictions of forecast skill can be performed using
predictors computed only on that area. In order to get some indication of
this, we computed our predictands for 7 areas of very different extension: one
Hemispheric area (the Northern Hemisphere), two continental areas (North
America and Europe), and four sub-continental areas covering parts of the
European continent. The skill scores were computed from grid-point fields
over a regular latitude~longitude grid with a mesh of 3.75 in both directions;
the coordinates of the latitude and longitude lines that delimit the seven
areas are listed in Table 1; the limits of areas 2 to 7 are also shown in

Fig. 1.

The need to provide a forecast of forecast skill is a consequence of the
intrinsic probabilistic nature of even an apparently deterministic prediction
of the state of an unstable, non-linear system such as the atmosphere. For
this reason, it was considered that a probabilistic prediction of forecast
skill should be provided; that is, an estimate of the probability distribution
of any parameter thatAquantifies the possible distance between the forecast
and the actual state of the atmosphere. The simplest way of representing a
probability distribution is a histogram giving the probabilities of occurrence
of a number of classes into which the range of variability of the predictand
has been divided. For a number of reasons, it is convenient to choose the
classes so that they are, a priori, equally likely. 1In practice, they are
chosen to occur with the same frequency in the available data. We chose to
divide the range of our predictands into five classes. Using the values of
RMS error and ACC of forecasts started in the periods 1 Dec. 1985/28 Feb.
1986 and 1 Dec. 1986/28 Feb. 1987, we determined the quintiles of their
distribution, that is the four values that divide the range of variability
into five classes occurring with the same frequency. We also chose to limit

our skill prediction to forecast days 3, 5, 7 and 9. Consequently, our
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estimate of the skill of one forecast consists of the probabilities of
occurrence of 5 classes of RMS error and 5 classes of ACC, for the 500 hPa

height field over 7 areas and at 4 forecast times.

For the sake of coherence, we ordered the classes of both RMS error and ACC in
such a way that class 1 corresponds to the most skilful forecasts according to
both the skill scores, class 5 to the least skilful. This means that class 1
includes the lowest values of RMS error and the greatest values of ACC, and so
on. Table 2 shows the quintiles of ACC at different forecast times for three
areas of different size: area 1 (Northern Hemisphere), area 3 (Europe), area 5
(south-western Europe). One can clearly see that the variability of the skill
increases with forecast time, and it is greater for smaller verification
regions. One should also note that our classes simply reflect an ordering of
the forecasts on the basis of their skill scores, and do not necessarily
correspond to given levels of practical usefulness for the forecaster. For
example, forecasts belonging to class 4 (corresponding to below-average skill)
at day 3 can still be very useful for many purposes, whereas all the
hemispheric forecasts with ACC belonging to class 2 (above- average skill) at
day 9 are below the value of 0.6, which is commonly considered as a threshold

for the practical usefulness of a medium-range forecast.

A prediction of forecast skill is clearly of most use when it is issued for
the latest available forecast. However, PT showed that more effective
predictors can be found for the skill of the forecast started one day before.
First of all, the actual day 1 error is available; in addition, the spread
between two consecutive forecasts is more correlated with the error of the
less recent one. Waiting one day is obviously not viable, practically
speaking, for short-range forecasts, but possibly some users might prefer to
use a medium-range forecast started one day earlier if a good estimate of
reliability could be given; In order to test this possibility, we decided to
perform a prediction of forecast skill not only for the latest forecast, but
also for the previous forecast (i.e, started the day before), with slightly
different predictors. In the following, we shall refer to the statistical
scheme for the skill prediction of "today's" forecast as the prognostic
scheme, to the scheme for "yesterday's" forecast as the diagnostic/prognostic
(D/P) scheme. The predictands for the latter scheme are the same as those for

the former.
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VERIFICATION AREAS:

Area
Area
Area
Area
Area
Rrea

Area

1:
2:
3:
4:
5
6:
7

Noxrthern Hemisphere
North America

Europe

Northern Europe
South-Western Europe
South=-Eastern Europe
Central Europe

LAT(N)

78.75
60.00
71.25
71.25
45.00
45.00
56.25

LAT(S)

18.75
22.50
33.75
52.50
33.75
33,75
45.00

LON (W)

~120.00
-11.25
3.75
-11.25
15.00
-11.25

Table 1: Boundaries of the verification areas

FC Day Area Quintiles of ACC

.93 .92 .90 .89

3 3 .97 .95 .93 .91
5 .99 .97 .94 .88

1 .80 .77 .73 .68

5 3 .91 .85 .79 .65
5 .95 .90 .79 .57

1 .66 .58 .51 .41

7 3 .80 .72 .55 .27
5 .89 .76 .57 =.02

.51 .42 .33 .19

9 3 .65 .45 .24 =,09
5 .79 .45 .13 =.36

LON(E)

-71.25
41.25
37.50
15.00
37.50
15.00

Table 2: Quintiles of the distribution of ACC in winters 1985/86

and 1986/87, for areas 1 (Northern Hemisphere) ,

3 (Europe) and 5 (South-Western Europe) .
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3. PREDICTORS

The predictors used in the statistical scheme are essentially those studied
and discussed by PT, and are computed from observed and predicted fields of
500 hPa height. Each predictor is, conceptually at least, distinct from the
others; in practice, however, they do overlap in terms of explained variance
of forecast skill. They are outlined in rough order of importance below.

With the exception of predictor (b), all of them are defined as RMS values of
the difference between two fields, and for each of the 7 verification regions

the computations are performed over the corresponding areas.

a) Spread between consecutive forecasts. The first predictor is an

(inverse) measure of the consistency between forecasts initialized from
consecutive 24 hour analyses. It is computed as the RMS difference
between forecast fields verifying on the same day. So, for example, in
order to forecast either RMS error or ACC over Europe at day 5 in the
prognostic scheme, the RMS difference in 500 hPa height over Europe
between the current 5-day forecast and the preceding 6-day forecast is
computed. In the D/P scheme, conversely, the difference between
yesterday's 5-day forecast and today's 4-day forecast is used to predict

the skill of the former forecast.

b) Circulation index. The second predictor is an objectively defined

measure of the hemispheric-scale forecast flow pattern. From a
diagnostic point of view, the dependence of the forecast skill on the
circulation regime has been documented in the works of Grgnaas (1982),
Tibaldi and Molteni (1988), Palmer (1988). Here the difficulty is in
translating this knowledge into a prognostic tool, and for this purpose
PT showed that the use of forecast fields, rather than initial analyses,
gives better results. In order to define this index, forecast fields of
500 hPa height for six winters (from 1981/82 to 1986/87) were projected
onto 23 empirical orthogonal functions (see Molteni, 1987). The 23 EOF
coefficients were used as independent variables in a linear regression
equation for the RMS error over each verification area. 1In order to
take into account the changes in the operational forecast model from a
gridpoint N48 model in the first two winters, to a spectral T63 model in
the two central winters, and finally to a T106 spectral model in the

last two winters, the data have been standardized using
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c)

d)

appropriate means and standard deviations computed for the 3 different
periods. The circulation index is defined as the output of the
regression equation, that is, as a linear combination of the 23 EOF
coefficients according to the regression weights. The index can be seen
as the time coefficient of a rotated EOF, the rotation being defined in
such a way that the time coefficient of one EOF has the maximum possible
correlation with the RMS error, while the coefficients of all the other
rotated EOF's are orthogonal to error time series. This rotated EOF is
proportional to the covariance pattern between the standardized RMS
error and the forecast field; such covariance patterns are shown in

Fig. 2 for areas 1, 2 and 3 (Northern Hemisphere, North America and
Europe, respectively) and for forecast days 3 and 9. One can clearly
see that the patterns associated with above-average errors over the two
continents are very different, especially at day 9, when they have
almost opposite phases. The pattern for North America, as well as the
hemispheric pattern, shows a negative PNA signature, in agreement with
the findings of Palmer (1988). However, the small amplitude of the
covariances, in comparison with the natural variability of the height
field, reveals that a lot of error variance remains unexplained by this
simple linear approach. We shall discuss this point further in Section

7.

Skill of very-short-range forecast. Our third predictor is the RMS

error of the day 1 forecast over the region of interest. In the
prognostic scheme, the error of the forecast preceding the current one
is used; in the D/P scheme, the error of the current forecast is used.
Due to the downstream propagation of initial errors, this predictor is a

priori unlikely to give good results for small areas.

Forecast tendency. The fourth predictor is a measure of the variability

occurring in the forecast from the initial to the verification time. It
is defined as the RMS difference between the forecast height field at

the verification time and the height field in the initial conditions.

‘The results of PT suggested that this predictor could be effective in

the medium range; lower variability tends to be associated with higher

skill.
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e) Amplitude of the forecast anomaly. Finally, the RMS difference between

the forecast and the climatological field of 500 hPa height is used as
an additional predictor for the ACC at forecast day 3 and 5. We decided
to use this approach, rather than computing the predictors as RMS values
for the forecast of RMS error and as anomaly correlations for the
prediction of the ACC, in order to make the effect of the variability in

the anomaly amplitude more evident.

Time series of the five predictors were computed for all the forecasts in the
two winters 1985/86 and 1986/87, which constitute our training data set. Data
for only these two winters were also used for the circulation index, even
though the regression weights were computed from a 6-year sample in order to
improve their statistical significance; in fact, the circulation index kept
its predictive skill when compared with actual errors in the last two winters.
As already done for the predictands, the guintiles of the distributions of the
predictors were found, and the continuous values were converted into a class
index ranging from 1 to 5. The classes were ordered so that class 1 of each
predictor should correspond to class 1 of each predictand, and so omn, if a

perfect correlation existed between the two variables.

In summary, the dependent data set used to tune our statistical prediction
scheme consisted of 9 time series of 180 class indices (one value for each day
in the two winters) for each verification area: two series for the predictands
and seven for the predictors, since predictors (a) and (c) are different for
the prognostié and the D/P scheme, while the other three predictors are
identical. We are aware of the limitations of this data set, but continual
development of the operational model prevented us from having a statistically

uniform sample for a longer period.

4. THE ALGORITHM FOR SKILL PREDICTIONS

Given the time series of one predictand and one predictor (converted into
class indices) from the training sample, a simple way of analysing the
correlation between the two variables is the computation of a contingency
table (in our case, a 5 x 5 matrix), in which each element P(i,j) gives the
proportion of cases in which the i-th class of the predictand and the j=-th
class of the predictor occurred contemporarily. The classes have been defined

in such a way that the total frequency of each of them is 1/5. Hence, if each
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element of the contingency table is multimplied by 5, we obtain the so called
conditional probability P(ilj), that is, the probability of occurrence of the
i-th class of the predictand when the j~th class of the predictor has
occurred. If an exact dependence existed between the two variables, in the
form of a monotonically increasing function (not necessarily linear), then
P(i|j) would be 1 for i = j, 0 otherwise. If, conversely, no correlation at
all existed between predictand and predictor, P(i|j) would be equal to 1/5 for

each i and j.

A skill score which quantifies the correlation between the time series can be

defined as

5
S=10() PGiJli))=-11 /4 (1)

i=1

This score is 1 for a perfect correlation, 0 if the two variables are

statistically independent.

The matrix P(ilj) provides an immediate way of performing a probabilistic
prediction of forecast skill from an independent data set if only one ’
predictor is taken into account. Once the value of the predictor is computed
and converted into a class index Jj, the vector | P(i'j), i=1,5 1 deduced from
the training set can be assumed as the best estimate for the probabilities of

occurrence of the 5 classes of the predictand.

When more than one predictor is available, one must combine the conditional
probabilities deduced from various predictors. A number of statistical
techniques are available for this purpose, which extend the concept of
multiple linear regression to probabilistic or categorical variables. The
output of these techniques is obviously optimized in order to get the best fit
over the training sample; given the very limited size of our training set,
there was a strong risk of overfitting the data, i.e. obtaining results with
poor statistical significance. Therefore, we decided to test a very simple
method, on the basis that results obtained on the training set would have

comparable levels of skill for the independent data. The method consisted of
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taking a simple weighted average of the conditional probabilities given by
different predictors, with the weights being proportional to the skill score S

of each predictor.

An example of our procedure is given in Table 3. The conditional probability
matrices for one predictand and two hypothetical predictors are given. The
skill score is 0.1 for the first predictor, 0.2 for the second one;
unfortunately, such low values are typical for our predictors when the full
range of daily variability of RMS error and ACC is considered.. Now, let us
suppose that from the height field of an independent forecast one obtains 2 as
the class index of predictor 1, 1 as the index for predictor 2. Our
probabilistic forecast for the predictand will be a weighted average of the
second column of the first matrix and the first column of the second matrix,
with weights 1/3 and 2/3 respectively. In this example, the output indicates

that a forecast skill above or much above the average should be expected.

This procedure has been applied independently for the prediction of RMS error
and ACC over different areas and at different forecast times. Despite its
simplicity, it gives better skill forecasts than those obtained selecting only
the most correlated predictor for any predictand, area and forecast time in

the training set. These results will be discussed in the next section.

Operationally, the probabilities have been graphically displayed in the form
of histograms. Fig. 3 gives an example of the actual output for ACC over the
Northern Hemisphere, pfoduced by the prognostic scheme for the forecast
started on 8 December 1987. For this day, a clear indication of a very good
forecast was provided for forecast day 3 and 5; a good forecast is also
predicted for day 9, but with much less confidence, while the results for day
7 give a very confused indication, which appears in contrast with the results
for other forecast times. 1In a few days, inconsistencies were also noticed
between predictions of RMS error and ACC, beyond what could be expected
because of the inexact correlation between the two measures of skill. The
fact that independent forecasts were issued for the two predictands and the
four forecast times is the cause of these shortcomings. However, as we shall
see in Sect. 7, another apparent source of uncertainty for the forecaster,
namely the occurrence of bimodal probability distributions in the medium

range, in many cases reflected a real feature of the large-scale dynamics.
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CONDITIONAL PROBABILITY MATRICES

S = (1.4-1)/4 Class of predictor 1
= 0.1 1 2 3 4 5
1 =25 .25 .20 .20 .10
Class of 2 « 25 =30 <20 .15 .10
3 .20 .20 =25 .15 .20
Predictand 4 <20 .15 .15 225 .25
5 .10 .10 .20 .25 =35

s = (1.8-1)/4 Class of predictor 2
= 0.2 1 2 3 4 5
1 40 .25 «20 .10 .05
Class of 2 .25 =30 .20 .15 .10
3 .20 .20 30 .15 .15
Predictand 4 .10 15 .15 =35 .25
5 .05 .10 .15 .25 =45

If predictor 1 is in class 2 and predictor 2 is in class 1, the estimated
probabilities are:

r.25ﬁ[ .40 35
. .30 «25 27
(1/3) .20 +(2/3){ .20 = .20
.15 .10 <11
.10 .05 .07

E | H

Table 3: Example of a hypothetical forecast skill prediction
(See text for explanation)
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PROBABILISTIC ESTIMATE OF FORECAST SKILL
AREA NO. 1 — ANOMALY COR. — PROGNOSTIC - INIT. DATE : 871208
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Fig. 3 Example of graphical output from a quasi-operational prediction of
forecast skill during winter 1987/88.
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5. RESULTS ON THE TRAINING SAMPLE

The results of the applicaﬁion of ocur statistical prediction scheme to the
training data are summarized in Table 4. This table gives the best predictor,
the skill score S of this predictor, and the skill score of the full scheme
for each verification area and forecast time. A skill score for the full
scheme was computed by selecting for each day the skill class with the highest
predicted probability; the proportion of correct forecasts (that is, cases
with coincidence between observed and predicted class of skill) over the two
winters, C, was computed and converted into a normalized skill score defined
as ( C - 0.2 ) / 0.8, which again is zero for a random forecast and 1 for a

perfect forecast.

In the prediction scheme for RMS error, the circulation index was the best
predictor in more than half of the cases (15 out of 28), particularly at day 3
and 9; in general, spread appeared as the second predictor in order of skill,
and was the most skilful one in 8 cases. However, the skill score of even the
best predictor was usually very low, and only in a few cases exceeded 0.1. As
a result the predicted probability distributions were often almost flat,

reflecting the strong uncertainty in the prediction.

The situation improved clearly in the diagnostic/prognostic scheme for RMS
error, where the spread from the latest forecast was almost always the best
predictor. TIts skill score was greater than 0.1 in all cases (with only one
exception), and between 0.2 and 0.3 in 8 cases. Even though the highest
scores occurred in the short range, when the D/P scheme is not useful

operationally, an improvement over the prognostic scheme could be still

detected at day 7 and 9.

The addition of the anomaly amplitude as a predictor for ACC at day 3 and 5
shows its clear effect in the results of the prognostic scheme. The anomaly
amplitude is the best predictor over all areas at day 3 and 5, with a skill
score generally between 0.1 and 0.2. At forecast day 7 and 9, when this
predictor is not used, the situation is similar to that for the prognostic
prediction of RMS error; the circulation index becomes the best predictor in

most cases, but with very low skill.
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Table 4

RMS | RMS ACC ACC
prognostic | diag./prog. prognostic diag./prog.
BEST PREDICTOR S : spreod C : circ. index E : day 1 error
T : fec. tendency A : anomaly ampl.
areada area areag area
fc. 1234567 | 1234567} 1234567|1234567
day
3 ECCCCCC|SSSS5SSS|AAAAAAA]AAASAAA
5 TSSSSCC|SSSSSSS|AAAAAAA|SASSSAS
7 CESSTCS|SESSSSS|CEECCCE|SESCSSS
9 ccsSccTCc|CSSsSsSSSC|]CCCCCSE]CSSSSSS
SKILL SCORE of BEST PRED. +: .0~ .1 ] -2 X:>.2
area areaq area area _
fc. 1234567 |1234567]|1234567}|123456¢67
day
3 s+ 4+ +F+x ] XXX e Xxx]| =25 XXc2 % &2 X X X %
5 + 4+ + % + 4+ = # s XX e+ X | + 2% 2%z % 4+ 5 % 2 2 ® %
7 + x4+ 2+ ++ [ Xseezrsx|+++r++d ] s+t +
9 2 4+ = + & 4 =% ®x & % ¥ % & x  + + 4+ + + + s 4+ 4+ a8 F 4+ %
SKILL SCORE of 4+ : .0 - .1 «: 1 - .2
FULL SCHEME X: .2-.3 X > .3
girea area area area
fe. 1234567 | 1234567]1234567]123456¢67
day
3 XXX # XXX | XXXXXXX]XXXXXXX]XXXXXXX
5 X2 %X | XXXXXsX|*xXXXeXs | XXXXXXX
7 | eXXX#X*x | XXXXXeX|[#XssXsx]|XeXsXXe
-9 XXXX XXX ] XXXXXXX|XX#XXee] s XXXXXX
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Best predictor (top panel), skill score of the best predictor (centre
panel) and skill score of the full prediction scheme (bottom panel)
for all the predictands, verification areas and forecast times, as
deduced from the training data.




In the D/P scheme for ACC, the 'diagnostic' spread generally becomes the best
predictor from day 5 onwards, but the improvement in skill score is not so
strong as for the RMS error. At day 3 and 5, anomaly amplitude and diagnostic

spread have comparable skill scores.

When the skill score of the full scheme (for both RMS error and ACC, and for
both the prognostic and the D/P version) is compared with that of the most
skilful predictor, a clear improvement can be seen for all areas and forecast
times, despite the simplicity and non-optimal nature of our algorithm. 1In
most cases, the skill score of the full scheme was between 0.2 and 0.3; a
number of cases with skill score over 0.3 wefe also found, even though most of
them were obtained by the D/P scheme in the short range. Such scores, even if
not exceptional, are close to what could be expected on the basis of the
diagnostic study of PT, if one takes into account that we have tried to
predict the full daily range of variability of the forecast skill, and not
only its low-frequency component. An example of how much time-filtering the
observed and predicted variables can improve results will be shown in the next

section.

6. RESULTS OF THE QUASI-OPERATIONAL PREDICTIONS FOR WINTER 1987/88

The results of the daily predictions of forecast skill during the period 1
December 1987/28 February 1988 are summarized in Table 5. The top panel is
the exact countérpaft of the bottom panel in Table 4: it shows the skill score
of the prognostic and the D/P scheme for RMS error and ACC, defined as
(C=~0.2)/0.8, where C is the proportion of correct forecasts (again, a
forecast is assumed to be correct if the observed class of skill was the one
with the highest probability in the prediction). The bottom panel presents
the results of verifications performed in terms of correlation between the
observed and the 'expected' class index. The expected class index is defined

as a continuous parameter in the following way:

5
EI(k) = ) P(i,k) i (2)
i=1

where i is the class index, k the index of the day in winter 1987/88

(k=1,..,90) and P(i,k) the predicted probability for class i on day k. If
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| RMS | RMS | ACC | ACC |

| prognostic | diag./prog. | prognestic | diag./prog. |
SKILL SCORE +:.8- .1 s 1.1 = .2 X :> .2
area area area - area
fec. 123456867 12345687 1234567 1234567

day

3 b4+t +Ft | vrr X e | eere XX | Xe+XXXX

5 * F 4+ +F | ArFEXs | X2 e | X+ x4t oo
7 + +++ + ++ 4+ + wox + + +++ + 4
9 + + + + + |+ ++ * + + +

CLASS INDEX CORREL. + : .06- .2 = 2~ .4
X .4 - .6 X > .6
area area area area

fc. 12345867 123456867 1234567 1234567
day

3 +++++++ ] XXAXXXXX XXX XX XX X XXX XXX
5 + a4+ 4+ 4+ [ X e r e X[ XaaXXXXTX*xXXXX
7 +++ o+ 4ok X % o» +  + R
9 |+ - ++ ++ | +rrx x|+ ++ 4+ |+ ++++

Table 5 Skill score (top panel) and class—index correlation (bottom panel)
for all the predictand, verification areas and forecast times, as
computed from the gquasi-operational predictions of forecast skill
during winter 1987/88.
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OI(k) is the observed class index, a class~index correlation (CIC) can be

defined as

20 90 20
CIC = } (EI(X)-3)(0I(k)=-3) / [ ( § (EI(k)=3)2)( ) (OI(k)~3)2)]
k=1 k=1 k=1 '

} (3)

Since 3 is the class index corresponding to average skill, a positive

value of the CIC is given if both the observed and the expected class index
indicate an above-average or a below-average skill. This verification method
takes into account the fact that if a distinction between 5 classes seems to
be beyond the practical skill of our prediction scheme, a cruder estimate

could still be useful to operational forecasters.

When comparing the (normalized) proportions of correct forecasts obtained on
the training data with those in winter 1987/88, the results appear
disappointing: the clear improvement over individual predictors shown in Table
4 has been strongly reduced in most cases. There are very few correct
forecasts at day 7 and 9; the skill score of the prognostic scheme for RMS
error is generally below .1, and the only predictions with practical

usefulness seem to come from the prognostic scheme for ACC at day 3 and 5.

The situation becomes more optimistic when the verification is performed in
terms of class~index correlation. Over the two large continental areas (North
America and Europe), a CIC between .2 and .4 is obtained with the prognostic
scheme for RMS error at day 5; although these values are low in an absolute
sense, they are not very far from the theoretical upper limits for areas of
similar size estimated by Kruizinga and Kok (1988, this volume). The results
of the prognostic scheme are much better for ACC at day 3 and 5, with CIC
generally greater than .4. The fact that this improvement over the RMS error
predictions disappears at day 7 and 9 clearly shows that it is due to the
inclusion of the anomaly amplitude as a predictor at days 3 and 5. For both
RMS error and ACC, the results are much better with the D/P scheme than with
the prognostic scheme. In general, the improvement is much more evident at
day 3 and 5, when its usefulness is limited, but for RMS error, CIC between .2

and .4 can be found over 5 areas even at day 9.
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Since no specific information about the initial or very-short-range gfror of a
given forecast is used in our prognostic scheme, this scheme esseﬁtiaily gives
a measure of the instability of the circulation regime occurring during the
period from the initial to the verification date, together with indications
about some systematic deficiencies of the model, typical of that reglme.
Therefore, a better correlation can be expected between observed and predlcted
skill scores if a time filter is used to remove the day~to-day variability
induced by the quality of the initial analysis, as shown by PT. In our case,
verifications for running 3-day means of predicted and observed RMS error and
ACC were performed in the following way. For the observed values, 3-day
averages of the actual scores were computed, and the mean value was .
subsequently converted to a class index. For the predictions, a 3-day average
of the ‘expected' index given by Eg. (3) was considered. The use of 3-day
means, although less effective than the 5-day filter used in PT, did not
change too much the range of variability of the scores, so that the same

classes defined for the daily values could still be used.

Scatter plots comparing the class-index correlations for daily values and
3-day means of RMS error and ACC are shown in Fig. 4; predictions fromhthe
prognostic scheme at forecast day 3 and 5 are used in this verificatigh. One
can see that the improvement in skill is greater for RMS error than for ACC,
and is greater for hemispheric or large continental areas than for the small
sub-continental regions. The reason is tﬁat the correlation between ACC and
the anomaly amplitude exists on all time scales, so that the daily predictions
of ACC have some skill even in forecasting the day-to-day fluctuations of this
index. Moreover, the smaller the area, the stronger the high-frequeqcy
variability of the anomaly ampiitude. In fact, when the 3-day filter is
applied, the predictions of RMS error over areas 2 and 3 at day 5 become as
good as the corresponding predictions of ACC; conversely, on average there is

no improvement in the ACC predictions for the sub-continental regions 4 to 7.

Figures 5 to 9 show time series of daily values for observed and predicted
class indices at day 5. Figs. 5 and 6 present the results for RMS error over
North America and Europe respectively, while Figs. 7, 8 and 9 refer to the
predictions of ACC over the Northern Hemisphere, Europe and south-western
Europe. Here the predicted class is the one with the highest probability; an

open circle marks the days in which this probability is greater than v3, a
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Fig. 4 Comparison between class~index correlations computed from daily
values and 3-day means of observed and predicted RMS errors and
ACC's. Black square: Northern Hemisphere (area 1). Circles: North
America and Europe (areas 2 and 3). Triangles: European
subcontinental areas (4 to 7).
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.

VERIFICATION OF SKILL PREDICTIONS
FORECAST DAY 5 — AREA NO. 2 ~ R.M.S. ERROR

PROGNOSTIC SCHEME

T
23

e

T T T T T T
21 22 23 24 25 26

W

mime series of observed (solid line) and predicted (dashed line)
classes of RMS error at forecast day 5 over North America in December
1987 (top panel), January 1988 (centre panel) and February 1988
{bottom panel). The predicted class is defined as the class with the
highest probability: a circle on the dashed line indicates that, in a
particular day, this probability was higher than .3 (open circle) or
higher than .4 (full circle).
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VERIFICATION OF SKILL PREDICTIONS

FORECAST DAY 5 — AREA NO. 3 — R.M.S, ERROR

PROGNOSTIC SCHEME
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VERIFICATION OF SKILL PREDICTIONS
FORECAST DAY 5 — AREA NO. 1 — ANOMALY COR.

PROGNOSTIC SCHEME

Fig. 7 As in Fig. 5, but for anomaly correlation over the Worthsrn
Hemisphere.
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VERIFICATION OF SKILL PREDICTIONS
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VERIFICATION OF SKILL PREDICTIONS

FORECAST DAY 5 — AREA NO. 5 — ANOMALY COR.
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PROGNOSTIC SCHEME
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Fig. 10 a) Time series of observed (solid line) and predicted (dashed line)

class of ACC of forecast day 3 over South-Western Europe in
December 1987. The predicted class is the class with the highest
probability as estimated by the prognostic scheme.

b) As in a), but for forecast day 5.

c) As in a), but here the predicted class is assumed as the class of
the forecast anomaly amplitude.

d) As in c¢), but for the forecast day 5.
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full circle the days in which the maximum probability exceeds .4. From the
proportion of open and full circles one can clearly see that the predictions
of RMS error suffer from a greater uncertainty than those for ACC; however, at
least some periods of persistent high RMS error were reasonably forecast (see
the second half of December 1987, for example). The predictions for ACC are
clearly better, and in general the probability distributions have a stronger
peak. Over the Northern Hemisphere, the low-frequency variations of ACC are
well captured, while over south-western Europe the scheme seems to be able to

forecast many high-frequency fluctuations.

The fact that the strong skill of ACC predictions over small areas is almost
totally due to the correlation between ACC and anomaly amplitude is clearly
demonstrated in Fig. 10. Here, the predictions of ACC over south-western
Furope provided by the full prognostic scheme at day 3 and 5 in December 1987
are compared with those obtained using the anomaly amplitude as the only
predictor: the results are practically identical. We want to point out that
these predictions are not totally trivial, since they imply the existence of a
good correspondence between the observed and the predicted amplitude of the
anomaly; besides, they can still be useful practically. However, this type of
practical skill has little in common with our knowledge about the instability
processes that determine the dynamical predictability of the atmogpheric

motion.

7. THE EFFECTS OF ATMOSPHERIC DYNAMICS

As we discussed in Sect. 2, probabilistic prediction is the most appropriate
way of providing a forecast of forecast skill from a scientific point of view.
On the other hand, we have seen in the previous section that the most
efficient way of extracting valuable indications from our skill predictions
was to compute an ‘expected class index', which summarizes the probabilistic
information in a single number. So, is it really worth adopting the
probabilistic approach? Can we say something more about atmospheric
predictability with a histogram rather than with a single number, which would
be easier to estimate by means of regression techniques and easier to

interpret from the forecaster's point of view?

A reasonable compromise might be to provide, in addition to the expected value

of the skill score, a standard error of this estimate, that is, the mean and
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the standard deviation of the estimated distribution of the score. It is
clear that this information is sufficient if the distribution of the score is
gaussian, or at least if the probability density is a unimodal function with a
known mathematical form. Fig. 11 shows probability density estimates of

RMS error at forecast days 3, 6 and 9 over the Northern Hemisphere, deduced
from the 180 forecasts in our training sample. The statistical algorithm that
produced these curves is dependent on a smoothness parameter,; which was set to
a sufficiently high value to minimize the probability of getting a multimodal
distribution by chance. One can see that at day 3 and day 6 the probability
density function is unimodal, with a positive but not excessive skewness,

whereas a multimodality appears at day 9.

Other indications can be deduced from the conditional probabilities of error
classes for different values of the predictors. Fig. 12 shows probabilities
for the 5 classes of RMS error at day 9, computed by averaging the conditional
probabilities corresponding to classes 1 + 2 (high expected skill) and 4 + 5
(low expected skill) of a given predictor. The top panels show the histograms
for the Northern Hemisphere corresponding to different values of the
circulation index, the bottom panels show the histograms for Europe for
different classes of spread from the previous forecast. All these histograms
are bimodal. In the case of the circulation index, the explanation may be
that low values of this index indicate that the forecast is in a more stable
region of the phase space, but this does not necessarily mean that the actual
atmosphere is in that region too; conversely, even in an unstable situation a
good initial analysis can lead the forecast into the right direction. In the
case of the spread, small differences bhetween forecasts sometimes occur when
both the forecasts fail in reproducing a transition in the circulation
pattern; on the other hand, a large discrepancy from the previous forecast may
be due to the fact that the earlier forecast, and not the later one, is

wrong.

In reality, these explanations may justify the existence of a poor correlation
between the predictors and the predictand, but are not sufficient to account
for bimodality. Bimodality can be explained if we assume that the
distribution of atmospheric states is not unimodal, and that the medium~range

errors are mainly due to failures in forecasting transitions between regions
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Fig. 12

Probability density estimates of RMS error at forecast day 3 (dotted
line), day 6 (dashed line) and day 9 (solid line) over the Northern
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of the phase space where the atmospheric states tend to cluster themselves

(see the idealized model discussed in Moritz and Sutera, 1981).

The discovery of bimodality in the amplitude of large-scale planetary waves
(see Sutera, 1986; Hansen and Sutera, 1986) provided the first indication of a
complex structure in the atmospheric phase space. Recently, Molteni et al.
(1988) found 6 clusters in the space generated by 3 rotated empirical
ortogonal functions (REOF's) of the large scale eddies, and showed that
transitions between these clusters can account for the bimodality in the wave
amplitude. However, they also found that this bimodality disappears in the
region of the phase space corresponding to positi&e projectionsvonto the first
REOF, while it is is strongly enhanced in the opposite region. This first
REOF is shown in Fig. 13a; it can be described as a hemispheric-scale version
of the well known Pacific North-American (PNA) pattern. Proofs that
medium-range forecasts are more difficult in negative PNA states were
discussed by Palmer (1988), and also cases with high values of our circulation
index for the Northern Hemisphere (corresponding to large errors) have a

negative PNA signature (see Fig. 2).

If the multimodality in the error is a reflection of the multimodality of the
distribution of atmospheric states, we should expect to see it more clearly
when the observed atmospheric anomaly has a negative projection on the pattern
shown in Fig. 13a. We computed probability density estimates for RMS error
over the Northern Hemisphere at day 9 stratifing the forecasts in our training
data set according to the projection on this pattern. Fig. 13b shows the
result for the positive cases, Fig. 13¢ for negative cases. Only the second
density function is multimodal, as expected from the observed structure of the

phase space.

We can conclude that a probabilistic approach to the forecast of forecast
skill is necessary at least in the medium range, if we want to take account
the actual nature of atmospheric dynamics, and that bimodality in the
predicted probabilities can reflect a real aspect of the problem of

atmospheric predictability.
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8. SUMMARY AND .CONCLUSTIONS

In this paper, we have discussed the methodology and the results of an
experimental, quasi-operational prediction of forecast skill performed at
ECMWF during winter 1987/88. The predictions consisted in probabilities of
occurrence for 5 classes of skill; the classes were defined as categories of
RMS error and anomaly correlation coefficient (ACC) for the 500 hPa height |
field, which occurred with equal frequency during the two previous winters and
could therefore be considered as, a priori, equally likely. The skill
predictions were issued for 7 verification areas and 4 forecast times (namely,

days 3, 5, 7 and 9).

The experimental predictions up to day 5 have provided encouraging results,
but a lot of additional work is needed before they can be used operationally.
The predictions of RMS error over two large continental areas (North America
and Europe) captured at least some low=frequency variations of skill. Better
results were obtained for anomaly correlation. For the Northern Hemisphere,
the correlation between the observed class of ACC and the 'expected' value
computed from the probability distributions was about .5; in some small
regions covering part of the European continent, the ACC predictions were able
to reproduce even some high~frequency variations. However, this additional
skill of the ACC predictions was entirely due to the strong correlation
between the ACC itself and the amplitude of the anomaly, and has little to do

with our knowledge about the error growth due to atmospheric instability.

The unimodal distribution of the error in the first half of the forecast
interval, and the results of our verifications, suggest that the useful
information given by a probabilistic forecast of forecast skill up to day 5
can be effectively summarized by an expected value of a given skill score and
a standard error of this estimate. This is no more true in the medium-range,
when the non-linear nature of atmospheric dynamics produces bimodal
distributions of the error, at least for some circulation regimes. Our
experimental predictions have shown little skill at days 7 and 9; it is our
opinion that more knowledge about the ability of the model in forecaéting
transitions to anomalous circulation regimes should be incorporated in a
statistical prediction scheme, in order to provide useful information about

the expected skill in the medium range. In the future, this knowledge will
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also be essential for a correct interpretation of the results of more

dynamically based methods, such as those based on ensemble forecasting.

Results from this experimental scheme are sufficiently encouraging to warrant
an extension for the coming winter 1988/89. Some of the possible shortcomings
of the present scheme (e.g. independence of results for RMS error and ACC, and
different verification times) will be addressed by using the predictors to
estimate parameters in simple error growth equations. Further details will

appear elsewhere.
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