CURRENT WORK AT THE FRENCH D.M.N.:
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P. Moll, Y. Durand, M.-C. Pierrard, Ph. Caille, P. Betout
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Paris, France

Summary: This article describes the current work at the French
D.M.N. on the relevant topics for the "Data Assimilation and
the Use of Satellite Data" E.C.M.W.F. seminaf. Four
lindependent studies are presented. The first one is an
application of the Kalman filter to a vertical primitive
equation model. The second study exemplifies the difficulties
to implement an operational variational analysis. The third
study is an example of an application for the variational
methods} the goal to be achieved is satellite temperature
profile retrieval. The last study is a satellite data impact

study in a mesoscale scheme.

1 INTRODUCTION

As the’E.C.M.W.F; seminér,is dedicated to deal with
data assimilation and thé use of satellite data, the relevant
studies performed by the French D.M.N. data assimilation team
are presented. Some of them are not yet finished, and the goal
of fhe present paper is'essentially to present the current

state of the works under way.

Four independent studies are presented and any chapter

can be read independently of the others. The second chapter is
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an application of the Kalman filter to a primitive equation
spectral (21 waves on the horizontéi) teh' level two
dimensional model. Some results on the error structures and
their time evolution are given. The cdmplete presentation éan
be found in the paper by Moll and Durand (1987), available in
French only. The third chapter shows the (small) progress of a
weather numerical project including a three dimensional
variational analysis. The general theory is given in the paper
by Courtier (1987). The main difficulties aré listed but the
feasibility study must be carried on. The fourth chapter shows
how wvariational methods can be used to retrieve a vertical
profile of temperature and humidity from observed raw
radiances. A complete description can be found in the paper byb
Moll (1988), ‘available in French only. The fifth chapter
corresponds to a satellite data impact study in a mesoscale
data assimilation scheme; several data sets are compared and
some preliminary resuits are shown.wA paper on this subject

will be submitted to a meteorological review.

2 AN APPLICATION OF THE KALMAN FILTER TO A VERTICAL MODEL

2.1 Introduction

In many meteorological centres, the technique used for
data assimilation is the objective analysis based on optimal
interpolation coupled with a weather prediction model (e.g.
Lorenc, 1981). This method explicitly uses the statistical

structures of the prediction errors, but these structures are
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quite empirically modelled. The time evolution of these

structures relies mostly on intuition.

The Kalman filter is an approach which combines the
error statistics and their time evolution due to the dynamic
part of the model. This method is a four dimensional
generalization of the optimal interpolation, and +the time
evolution of the prediction errors will be supposed to be
determined by the linear tangent model (because of the non

linearity of the model).

"First, the experimental vertical model is described.
Then, some general ideas about the Kalman filter theory are
recalled. Lastly, some results are presented as experiment

outputs.

2.2 The vertical model

The dynamic part of the study is an adiabatic forecast
model in a vertical periodic plan with 9 non equidistant
pressure levels. It is a Fourier spectral primitive equation

model (see Lepas et al., 1977). The basic equations are :

Ou du du  QZ alu‘ |
2 Vw3 ok M
A 3T dT R .T P
2t ax Tp e MR
W du
-—a-—p = - a—; H dZ = - RT d(log(p)) 7

269



and for the lowest level :

272 P)  RT 2z

\Er; = - u.E;;(Z - H) + —;—.w + Uy E;;z
wheré u and w are the horizontal and vertical wind components,
p is the pressure, H is the orography, T is the temperature, Z
is the geopotential height, t is the time, R is the gaz
constant, Cp is the thermodynamic coefficient, py and BT, Mz,

are horizontal diffusion coefficients.

The spatial discretization is shown on figure 1. The
truncation is spectral with a triangular truncation at wave 21
(equivalent discretization on 64 grid points). A coarser
resolution was wused if +the impact on the results was
negligible. The temporal discretization wuses a Matsuno

explicit scheme.
The model was implemented and wvalidated with an

orography corresponding to a 2 km high gaussian mountain.

Figure 2 shows the orography and the wind initial conditions.

2.3 The Kalman Filter

The Kalman filter theory is known in meteorology
thanks-to earlier publications, e.g. Ghil et al. (1980) or
Cohn and Parrish (1985). The method consists in estimating

both the state of the atmosphere +through the assimilation
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Figure 1 : grid corresponding to the spatial discretisation .
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system and the error covariances relative to this state for

each assimilation time step.

The mathematical theory can be found for instance in
the paper of Cohn and Parrish (1985); the Kalman filter scheme

can be synthetized by the following five equations:

X (-)

Pr (-)

A . xg-1 (+)

R . Pgop (+) tE 4T

Kg = P (-).tH. ( H.Pg (-).tH + R )-1

P (+) (I -Kkg .H) Pk (=)

X (+) X (-) + K .( z2x - H.xg (=) )

where x is the state of the atmoéphere at time k; (-) denotes
the state at time k before the analysis, whereas (+) denotes
the state after the aﬁalysis; A is the non linear prediction
model, A is the matrix of the tangent linear model associated
to the prediction model; T, is the predictidn model error
covariance matrix; P is the atmospheric sfate error covariance
matrix; z stands for the observations made at time k} R is the
observation error covariance matrix; H is the 1linear 1link
operator between the observations and the atmospheric state;
Kk is the objective analysis weight matrix at tiﬁe‘k (also
called Kalman filter), I is the unity matrix and the letter t

denotes the matrix transpose.

This set of five equations is sufficient to assimilate
the data and to forecast the error covariances. As the
prediction model is rather sophisticated, A is not explicitly

determined, but the model is first 1linearized around the
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current equilibrium state (such "linear" states will be
deduced as results of the non linear version model at each
time step), and the adjoint equations are deduced from the
discretized linearized direct equations. This wrifing réquires
a great attention, because any error will induce a divergence

for the scheme, but this way avoids to handle huge matrices.

Oof dourse, the method proves successful when the
prediction model is linear. As our prediction quel is non
linear, the method would work correctly only if the time
evolution of the prediction errors are determined by the
tangent linear model (see Lacarra and Talagrand, 1988). This
condition has been checked with the vertical plan model, and

the whole systém was validated.

Several experiments were carried out to test the error

behaviour. The main results are given in the next paragraph.

2.4 Main results

2.4.1 Correlation dimensional separability

The correlation dimensional separability is commonly
assumed in operational analysis schemes. This hypothesis means
that the prediction error correlation between any pair of
points 1is the product of a vertical correlation by a

horizontal correlation as shown on figure 3.
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Figure 2 : initial horizontal wind speed field with a 2000m high
'~ orography. '

the horizontal axis represents the collocation grid

points corresponding to 22 waves in the Fourier space.

o
cor(4,C) = cor(4,B) x cor(B,C)

Eigure 3 : correlation between any couple of points.
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Figure 4 : spatial representation of the grid points for which
correlations are to be evaluated.
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In order to check this assumption, the correlation
between a point of a given level and nine points located on a
lower level (see figure 4) are evaluated after several steps
of time integration. The computations were made with a TlO
truncation, since this coarse resolution does not change the
results. Figure 5 corresponds to the maps of correlation for
the layer 700/950 hPa after 6 hours of integration : one
endorses the separability assumption, the other one does not.
The two slant lines represent the eastern and western surface
level limits of the orography. After a 12 hour integration,
the differences have dramatically increased, as seen on figure
6. The separability assumption,Seems to systematically under-
estimate the correlation (probably because any correlation is
~evaluated as a product of two correlations, which contributes

to decrease the final correlation).

As a consequence, the correlation dimensional
separability assumption does not seem to fit in with the true
behaviour of error structure. This reveals a weakness in many

analysis schemes.

2.4.2 Error correlation spatial structure

Another phenomenon can be seen on figure 6: the
correlation between two locations does not vary monotonously
with the distahce between the locations. That means there is a
shift of the correlation maximum Value. In order to state this

fact more precisely, the error auto-correlations between an
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arbitrarily chosen location and all the other points were

evaluated.

The computations were performed with a T10 truncation.
Figure 7 shows the initial correlation for the horizontal wind
field with respect to a point located on the 350 hPa level
(with the separability hypothesis used only for
initialization). After a 12 hour integration | of the
- assimiiation scheme, a shift can be noticed for the vertical
correlation on the figure 8. The results are qualitatively the
same for all the other levels, with however some slight

distorsions near the orography at low levels.

Similar results are obtained for temperature error
auto-correlations, but the distorsion axis is quite different.
This can be seen onvfigure 9. A similar feature had already
been the subject of theoretical studies on the atmospheric
fields (e.g. Simmons 1985), but this is rather new for the

error structure.

Our assimilation scheme can generate an error
statistical structure time evolution corresponding to Kelvin-
Helmoltz waves, whereas the current 'operational schemes

cannot.
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2.4.3 Observation impact on error statistics

The goal of this last experiment is to estiméte the
impact of observed data on error statistics. A first
experiment was carried out with a T10 truncation where a
radiosonde was simulated to deliver température and wind

information on a complete profile every three hours.

A basic feature of the assimilation scheme is the
propagation of the information. Moreover, our'scheme is able
to make the error structures evolving. With a radiosonde, the
horizontal propagation is noticed on figure 10 after 6 hours
of integration. The error variances are lower in the vicinity
of the radiosonde (grid point 12) and the eastward propagation

is obvious.

The results for the wind and temperature error
structures are rather similar, but the different tilt of the
axis is visible agaih, as mentioned in the previous part (see

figure 11).

Another ekperiment was carried out with simulated
AIREP reports. As they are single level observations, it was
possible to exhibit both a horizontal and a vertical

propagation of the information.
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2.5 Conclusion

This study has shown that the Kalman filter can be
considered as a very good. tool when it is implemented with a
rather simple model. It improves knowledge of the statistical
error - structures ..(and their time evolution) which is a

prerequisite for a sophisticated objective analysis scheme.

Unfortunately, the high costs of the Kalman filter
will most likely prevent its use in the near future. However,
some experiments are currently carfied out to investigate if
such a scheme could be used with a coarse resolution to model

the error:covariance time evolution.

3 DIFFICULTIES TO IMPLEMENT A VARIATIONAL ANALYSIS

3.1 Introduction

In a recent paper, Jarraud and Geleyn (1988) presented
the strategy of the French DMN for numerical weather studies.
As France is a . member sfate‘of ECMWF, it has been decided to
focus the = internal research and operational efforts in
numerical. .weather prediction on the short range (from 0 to 72
hours). The current -operational system has revealed some
deficiéncies and limitations. This has led to the definition
of an ambitioué new project based on a variable mesh spectral

model with a. more .consistent processing of water cycle and on

283



a variational analysis, initially three dimensional and later

four dimensional.

Jarraud and Geleyn (1988) quote Talagrand and Courtier
(1987) who have proposed to use a variational method to cure
(or at least alleviate) some of the known deficiencies of the
optimum interpolation. Some of the benefits expected are, for

instance:

(i) removal of sophisticated data selection algorithms;
(ii) absence of discontinuities in the analysed fields;
(iii) better use of new kinds of data;

(iv) better integration of constraints (e.g. geostrophism);

(v) ability to include initialization in the analysis.

3.2 Presentation of the problem

The variational method consists in minimizing a cost
function by wusing an iterative scheme which requires the
computation of the cost function and its gradient (see
Courtier, 1987). In the close future, a four dimensional
variational analysis seems far too expensive to be
operationally implementable. Both the necessary computing time
and the required storage allocation cannot be supplied by

current computers.

However, a three dimensional variational analysis

deserves to be studied, because some advantages of the method,
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such as those 1listed in section 3.1, could 1lead to an
improvement of the analysis quality. Three ' dimensional
analysis means that the variable time is not taken into

account, i.e. the cost function is not time dependent.

The scalar cost function J 1s a function of the
atmospheric state vector X, i.e. X is the variable to be

analysed. The function J can be defined as the sum of three

contributions :

where Jgpsg ié a function of the "distance" between the
atmospheric state X and the observations, Jpre is a function
of the "distance" between X and the state corresponding to a
guess-field usually provided by a numerical prediction model,
Jeon is representativé of some constraints which are supposed
to be valid for the final solution. As some problems with Jobs
and Jpre still await a solution, it is still too early to

study the contribution Jgpop-

According to Jazwinski (1970), it 1is possible to
define a cost function J to get an equivalence with the
statistical optimum interpolation if +the 1link operator H
(between the observations and the guess field) is linear. In

such conditions, J is decomposed as follows :

!

Jobs(X) = t(H.X-R).0-1l.(H.X-R)

Jpre(X)

t(x-xg).P-1l.(X-Xg)
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where Xg is the guess field atmospheric state, H is the link
operator between X and the observations, P is the guess field
error covariance matrix and O is the observation error

covariance matrix. The letter t denotes the transposition for

a vector.

It is a prerequisite to test the feasibility of the
method since several problems must be faced : central memory
and computing time requirements, efficiency of the iterative
scheme, independence of the results on initial conditions,
final result quality... A definitiﬁe answer must be given by

the beginning of 1989 and the definition phase will then

start.

3.3 Consequences of the use of observations

3.3.1 Data checking

It is obvious that all the obsefved data must be
carefully ehecﬁed befere,use. The optimum interpolation is a
useful tool for this pﬁrpose,‘since an‘analysed value can be
easily estimated at each observation location without using
the observation to be checked. Then a comparison between the
analysed value and the observed value allows a choice : either

keep a good data or discard a wrong data.

286



Such a scheme cannot be simply implemented in the
variational analysis, as any analysed value is obtained as a
result of a heavy iterative scheme. Moreover, as an iterative
scheme is used, it is importaht~to decide whether a value is
either good or wrong. Otherwise, if an observation is good for
some descent steps and wrong for other steps, the scheme could
not converge. Anyway, even if it is desirable to perform the
data checking in the variational analysis, a solutioﬁ must be
found for two problems:. (i) how to wvalidate an observation
without using the observation itself; (ii) how to evaluate the
quality of a variational analysis. The computation of the
second derivation of the cost function brings information on

the analysis quality, but this seems to be rather expensive.

Therefore, a preliminary optimum interpolation
analysis seems necessary to check the data before the
variational analysis. This would be the least expensive way to

provide the variational scheme with clean data.

3.3.2 Observation error statistics

The implementatién of an analysis scheme requires the
knowledge - of observation error statistics for all the
observing systems. The "observation error" can be split into
two parts. First there is the instrumental error, which is
generaily not correlated with other measurements performed by
other instruménts. Correlations are however significant when
the same instrument makes several measurements (ascending

balloons TEMP, SATEM, SATOB...).
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Then there is. the representivity error. The observed
parameter can be different from the parameters which can
directly be forecast. Therefore a link operator is necessary
between both parameters for converting their values, but this
link operator cannot be perfect which implies modelling
errors. Besides, the observed data correspond to certain
scales of time and space whereas the forecast model haé other
time and space characteristics. All the phenomena_with small
scale characteristics cannot be represented by the forecast
model, and this induces other representivity errors. Of
course, the two sources of representivity errors involve

significative correlation values between observations.

If the forecast model has a variable mesh, the
variance of the representivity error will change from one
location to another (éven for the same observing system), and
neighbour observations will be highly correlated. As a
conseguence, the variable variances and the associated
correlations must be modelled. They will vary with respect to
both the observing systems and the geographical location.
Moreover, the complete observing error covariance matrix used
in Jgobg Will not be as hollow as expected. Its handling will

require more computing time and more memory allocation.
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3.4 Distance with respect to the first-guess

3.4.1 Study of the matrix P

As shown in section 3.2, the contribution Jpre implies
some handling of the matrix of prediction error covariances P.
This is the major difficulty with the variational analysis
since such a matrix is quite huge. Its dimension is equal to

the number of degrees of freedom of the prediction model.

Instead of working on a ‘covariance matrix, it is
better to look after the associated correlation matrix and to
normalize the differences between the first-guess field and
the unknown field. This is a good means to use geographically
variable prediction error variances, since +they will be

included in the normalization coefficients.

In the current situation, correlations are computed in
the physical space with a model based either on gaussian
functions or Bessel function or other functions. Such a matrix
P is symmetric and its terms far from the diagonal decrease
and can be neglected. For a one level spectral modei with a
triangular truncation Tm and v wvariables, the dimension of P

in the physical space is: dim = (3m+l1l).(3m+l).v.

Therefore, its total size is dim*dim. In the spectral
space, the dimension of P is only (m+l).(m+2).v. Consequently,
it seems interesting to stick to the spectral space to cope

with the matrix P. Moreover, it has been demonstrated that if
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the error correlations are isotropic and homogeneous, the
matrix P is diagonal (Courtier, 1987). Correlations may vary a
little with the location, but even though it is expected that
P will remain easy to handle. As sﬁch variations of the
correlations are usually implemented, a study was carried oﬁt
on the shape of the matrix P and the consequences oftsome

simplifications.

Although such a study is rather simple from a
theoretical point of view, its practical implementation needs
a large memory storage allocation. With skilful programming,
the requested space is about 3m%4 words if m is the truncation.
For instance, the total size needed wifh a one level one

variable T79 model is about 117 millions words.

The provisional results are as follows. As soon as the
correlations vary with the location, the matrix P is not
diagonal in +the spectral space. If the matrix P is then
modified to be diagonal in the spectral space (only the
diagonal wvalues are kept), the corresponding matrix P in the

physical space is rather different from the initial one.

Another way was explored, following the works of
Phillips (1986) and Parrish (1988). If some of their
assumptions are correct, the matrix P must be diagonal in the
normalAmodes space associated with the prediction model. This
was experimenfally checked. Unfortunately, as soon as .the
correlations are not homogeneous, the matrix P is not diagonal

again.
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'In order to conclude, it is obvious that the size of
the matrix P will be an important problem to be solved. If
some Vefyhstrihgeht éssumptions must be proposed to make the
mafrix P"diégonél, this 1is not satisfactory because the
optimum ihfefpoiation would be a better scheme. As the normal
modeﬁépace'is not Very user-friendly, a special effort will be

taken to carry on the investigations in the spectral space.

3.4.2 Convergence of the iterative scheme

AISmali'simple experiment was carried out to check the
convergence of the iterative scheme. A simulated one level
variational ianalysis« of a geopotential height field was
designed on a 15 x 15 grid with a guess field, sixty
observations, constant prediction error wvariances, constant
observation error —variances, gaussian correlation with
inflexion at 500 km, mesh size of 300 km. The cost function is
the one proposed in section 3.2. The iterative scheme requires
sevefal  ingredients:  evaluation of the cost function,

evaluation of itsvgradient and definition of a scalar product.

When the scalar product is the classical Euclidian
scalar product, i.e. (X,Y) = tX.Y, the method does not
converée;fThe trouble comes from the contribution Jpre- This
is due to the féct'that the correlation matrix P (size 225 x
225) is rather”unstable. Its determinant is about 10-500, The

evaluations of the cost function and its gradient are not. very

291



stable either since they use the inverse of P. Under such

conditions, the scheme is not satisfactory.

Another scalar product can be chosen to improve the
conditionment of the problem. For instance, if the scalar
product is (X,Y) = tX.P'l.Y, the method does converge. One
drawback is that the evaluation 6f the gradient for Jobs is

more difficult.

As a conclusion, this short experiment shows an
important sensibility of the method with the ingredients to
the iterative scheme. The problem must become more difficult
when the size of P increases because its determinént will be
equal to =zero for the computer. Hence some clever algorithms

will have to be found to handle the inverse of P.

3.5 Provisional conclusion

It seems still too early to draw | definitive
conclusions about the feasibility of a three dimensional
operational variational analysis for the beginning of the
1990's. The main problems are identified: lack of quick
efficient data checking inside the va:iational method,
possible difficulties to rapidly converge with the iterative
scheme, difficulties of memory storage for all the necessary
ingredients associated with the guess-field handling and
difficulties to limit the required computing time to reach a

result.
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A preliminary optimum interpolation analysis should be
indispensible in order to check all the observed data before
use and‘to give the iterative scheme initial fields close to
the final solution. The principal items to be studied for the
next months are: (i) to carry on the work on the contribution
Jpre (first with a 2D scheme, then with a 3D scheme), (ii) to
deal with the highly correlated observations such as SATEMs or
SATOBs, (iii) to investigate efficient algorithms for rapid
convergence of iterative schemes, (iv) to study error
structure functions with respect to a variable mesh prediction

model.

4 VARIATIONAL INVERSION OF RAW RADIANCES

4.1 Introduction

The use of data which are non-linearly related to the
analysis parameters is a crucial problem for operational
assimilation schemes. For instance, optimal interpolation used
in most operational centres does not permit a simple use of

this kind of data.

In contrast, variational methods offer a powerful way
of solving this kind of problems through a more or less simple
minimization process. The coding of the adjoint of the
associated operator is the major practical difficulty for the

implementation of the method.
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As satellite radiances are to become a major source of
information for weather prediction, it is important to set up
efficient methods to deal with them. The goal of the study is
to retrieve a vertical temperature and humidity profile using
a first guess profile and a set of observed HIRS radiances.
The link operator is the radiative transfer equation, which
can be modelledbwith the "TOVS Export Package" releaséd by the

University of Wisconsin.

4.2 Theory and implementation

Variational methods have been suggested for a long
time in meteorological science. Here, the variational method
consists in minimizing a cost function by using an iterative
method which requires the computation of the cost function and

its gradient at each minimization step.

The scalar cost function J is defined as the suﬁ of
two contributions: the- first one estimates +the distance
between the unknown profile and the first guess-field whereas
the second one estimates +the distance between the unknown
profile and the observed raw radiances. The retrieved profile

solution is the one which minimizes the complete function J.
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The corresponding mathematical equation can be written

as.
J(X) = ¥(x-xg).p~1l.(X-Xg) + Y(H.X-R).0"1l.(H.X-R)

where X is the analysis variable (i.e. an unknown vector
containing a temperature and humidity profile), Xg is the
first guess profile, R is the vector correspondiﬁg to an
observed HIRS radiance data set, H is the radiative transfer
model (inputs = temperature and humidity profiles; output =
synthetic radiances), P is the guess field error covariance

matrix and O is the observation error covariance matrix.
The gradient of J with respect to X is estimated by:
1 Ve 1
V,J(x) = 2.P~1.(X-Xg) + 2.H .0"1.(H.X-R)

where ﬁ* is the adjoint of the linear tangent model associated
with the radiative transfer model H. Should H have been
linear, vthe, optimum interpolation would have been powerful
enough to solve the problem, as shown by Jazwinski, 1970.
Nevertheless, some difficulties must be removed before
implementing the method. As the radiative transfer model is
rather sophisticated, the adjoint model cannot be analytically
derived. Therefore, the adjoint model was directly encoded in
Fortran from the linearized direct model, i.e. the program
TOVSRAD (extracted from the TOVS Export Package) after

linearization. A problem could have occured to the relative
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humidity processing since the variable cannot be
differentiated in the vicinity of its thresholds. Fortunately,
this difficulty was overcome because all the processed values

were far enough from these thresholds.

The matricest and O where chosen as a blend of the
ones used by Eyre (1987) and thé French meso-scale PERIDOT
model statistics. The conjugate gradient method then becomes
an efficient tool for the minimization process: a solution for

a retrieved atmospheric profile can be reached.

Before using the minimization scheme, it is important
to check the direct model linearity (the model should better
be rather lihear). This was performed close to various
equilibrium states. The results were globally satisfactory,
although the water vapour absorption channels were found
rather non linear. This is due to the transmittance high
dependency with respect to the water ' content for these“
channels. As a consequence, a particular attention must be
paid to the HIRS channel 11 and mostly channel 12. Moreover,
the cost function must have only one local minimum in order to
help the minimization scheme. This wés successfully tested by

checking various projections of the cost function.

4.3 Results

In order to retrieve atmospheric' profiles from raw

radiances, the following experiments were set up. "True"
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profiles were chosen from numerical prediction model outputs.
Then, corresponding synthetic radiances were computed with the
radiative +transfer equatibn model. These radiances were
evaluated as,CIGar "true" radiances. These radiances are then
modified by small perturbations compatible with the given
observational error covariance matrix. The "true" profiles are
similar;y modifisd by‘ perturbations consistant with, the
prediction error covariance matrix. The obtained profiles can
be used both for providing relevant informatiqn and for

initializing the minimization process.

The first result is the feasibility of the method. A
minimum is found for each radiance set and it corresponds to a
meteorologically relevant atmospheric profile. This was
reached after a few iterations, generally less than ten steps.
The upper levels converge more rapidly, probably because the
information is more ihdependent in the stratospheric levels.
On the other hand, the method converges a bit slower in the

planetary boundary layer due to the information redundancy.

A great deal of experiments were carried out to check
the quality of the retrieved profiles. To avoid saturation
problems, the "true" profiles were perturbed only with
temperature modifications. This is a limitation because the
humidity first guess profiles are considered perfect, but this
has a weak impact on the temperature retrieval. Besides, the
first guess profilss were‘used to initialize the minimization

scheme.
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FIRST GUESS FIELD ERROR ‘ OBSERVATION ERROR

STANDARD DEVIATION STANDARD DEVIATION
Error
Level Temperature Humidity Channel correlated uncorrelated
(hPad (degrees) - (g/kg (degrees) (degrees)

44 2.01 1.65 1 0.55 4.00
100 ' 1.90 1.65 2 1,00 0.55
150 1.72 1.65 3 1,05 0.45
200 1.90 1.65 4 0.45 0.45
250 2.69 1.65 5 0.70 - 0.30
300 1.90 1.72 6 0.80 ~0.60
400 2.03 1.80 7 1.00 1.00
500 1.75 1.70 8 1.40 2.00
600 1.87 1.65 9 6.00 20.00
700 1.90 1.59 10 1.40 1.50
800 2.06 1.51 11 3.50 1.50
850 2.15 1.45 12 3.50 1.80
200 2.32 1.42 13 1,28 0.75
950 2.50 1.38 14 1.10 0.50
1000 2.53 1.35 15 0.70 0.20
Tsol 3.67 16 9.90 1.00
’ 17 2.05 0.15
18 1.40 2.20
19 1.40 2.20

Table 1 : first guess field error standard deviation and
observation error standard deviation with and without
spatial correlation.
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Table 1 displays the r.m.s. of observation errors and
first guess errors. The temperature first guess error r.m.s.
is about 2 K. After retrieval, this temperature r.m.s. is
about 1 K, as seen on figure 12. This result is consistant
with the one of Eyre (1987) in spite of (different
circumstances. The humidity error r.m.s. corresponds to the
temperature impact on the humidity via the water channels and
the first guess cross correlation betweén temperafure and

humidity.

4.4 Conclusion

The experiments carried out up to now have
demonstrated the feasibility of the method with clear
radiances. The ~error r.m.s.‘ related to the retrieved
temperature and humidity fields are very encéuraging. Similar
experiments are under way ﬁith cloudy radiances. Extensions
can bé envisaged with three dimensional (and even four

- dimensional) retrieval.

5 IMPACT STUDY OF SATELLITE DATA IN A MESO-SCALE SCHEME

5.1 Presentation of the experiment

This sfudy was carried out in order to achieve two
goals. Firstly, the satellite data impact must be assessed for

a meso-scale assimilation system ; secondly, various methods
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for inserting satellite observation in a meso-scale objective

analysis scheme must be compared.

The assimilation system used is the current French
operational PERIDOT system. Its main characteristics are

described below.
Analysis

The objective analysis is performed by a multi-variate
three dimensional optimal interpolation for the prognostic
variables of the model (Surface Pressure, Temperature and
Wind Components) on the prediction model's sigma levels,
followed by a relative humidity analysis on slabs related
to model layers. This is described in the paper of Durand
and Bougeault (1987). The data which can be assimilated
are the GTS data and the raw radiances (clear and partly
cloudy HIRS and MSU data). These radiances can be directly

used by the scheme without any retrieval.
Forecast model

Predictions are obtained by a grid point sigma
coordinate primitive equation model (C grid). The domain is
a stereographic 95 x 95 square grid centered over western
Europe with a mean mesh of about 35 km. The vertical sigma
grid consists of 15 levels, with a parabolic dependency
towards' the bottom. The temporal discretization uses a

leap-frog semi-implicit scheme with a 4 minute time step. A
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complete description is given in the publication of Imbard

et al. (1987).

Several parallel runs were performed. The assimilation
step was set to 6 hours. The lateral boundary conditions were
provided by the ECMWF operational analyses; they are identical
for all the assimilation runs. Therefore the observed impact

will only involve the satellite data over the PERIDOT domain.

The assimilation period starts from 30 January 1987 at
0 UTC and ends at 12 UTC on 3 February 1987. This time

interval was chosen for four reasons :

(i) two polar orbiting satellites were in nominal operation;
(ii) corresponding magnetic tapes with high resolution
satellite data were supplied by NOAA/NESDIS to ECMWF;

(iii) ECMWF has applied the LMD "31I programme" on the
NOAA/NESDIS data to get other retrieved profiles (see Chedin
et al. (1985));

(iv) other experiments, with various domains and resolutions,
were carried out over the same period by other centres (ECMWF,

UKMO, HIRLAM).

5.2 Description of the data sets

Six data sets were used as input for six assimilation

runs. Each run is called by an upper case letter.
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* The run "A" is the reference run. All the land based
observations are used, including upper air messages TEMP's,

PILOT's and AIREP's. There is no satellite data.

* The run ."S". includes all the data of "A" and the
operational SATEM's with 500 km resolution. These SATEM's were

produced by NOAA/NESDIS with the TOVS package.

* The runk"T“ includes all the data of "A" and the SATEM's
with 250 km resolution produced by NOAA/NESDIS. These SATEM's

are called TOVS at ECMWF.'

* The run "N" includes all the data of "A" and high

resolution SATEM's (80 km) produced by NOAA/NESDIS.

* The run "R" inéludes all the data of "A" and clear
radiances data. In bractice,‘about 40 % of these radiance data
have information. = only for sfratosphefic HIRS - channels
(channels 1, 2, 3 and 17), because the other channels were too
much polluted by clouds. This is a major difference to the

daily operational runs at the DMN.
* The run "I" includes all the data of "A" and temperature

prdfiles fefrieved‘ﬁy the “3I method". Only  partial results

are now available for this run.
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5.3 Main results

5.3.1 Differences between analyses

Diffgrences between analyses were evaluated for all
the assimilation steps. Tables 2 to 4 give r.m.s. of the
analyses differences "S"-"A", "T"-"A", "N"-"A" and "R"-"A".
Moreover, charts of differences (see figures 13 to 16) are

displayed and show a slight impact of the satellite data.

Date llSll_I?All IITII_"A" "Nll_llAll llRll_llA'l
30 Jan 00 .11 .36 - .52 .32
30 Jan 06 .59 1.12 1.17 .71
30 Jan 12 .52 .89 1.21 .65
30 Jan 18 .85 1.52 1.60 1.00
31 Jan 00 .36 .73 1.27 .63
31 Jan 06 .66 1.51 1.64 .86
31 Jan 12 .45 .97 1.30 .69
31 Jan 18 .65 1.32 1.60 .84
01 Feb 00 .39 .68 1.20 .53
01 Feb 06 ‘ .63 1.22 1.00 .52
01 Feb 12 .70 1.03 1.12 .67
. 01 Feb 18 ‘ .62 1.35 1.27 .92
02 Feb 00 .40 .58 .95 .70
02 Feb 06 .68 1.26 1.15 | 1.16
02 Feb 12 .45 .84 .98 .76
02 Feb 18 .52 1.34 1.13 1.09
03 Feb 00 .33 .51 .62 .64
03 Feb 06 ‘ .49 1.05 .96 .78
03 Feb 12 .35 .62 .84 .47
Average .51 .99 1.13 .73

Table 2: Difference rms between temperature analyses at sigma
level 3 (about 300 hPa). Unit: Kelvin

This impact increases with the finest space resolution
of SATEM data ("S"-"A" "T"-"A" "N"-"A"). The results seem less
significant with the radiances, but this can be explained by

the great deal of incomplete radiance sets and the absence of
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partly cloudy radiances (which the PERIDOT analysis usually

assimilates).

Date "S"_"A" IIT"_"A" IIN"_"AII "R""'"A"
30 Jan 00 .08 .15 .22 .19
30 Jan 06 .31 .47 .55 .42
30 Jan 12 .24 .39 .44 .36
30 Jan 18 .33 .59 .64 .46
31 Jan 00 .22 .41 -39 .29
31 Jan 06 .29 - .62 .63 .47
31 Jan 12 .22 .44 .52 .40
31 Jan 18 . .32 .57 .62 .47
01 Feb 00 .17 .31 .40 .33
01 Feb 06 .24 .42 .44 .42
01 Feb 12 .32 .52 .53 .40
01 Feb 18 .33 .50 .67 .59
02 Feb 00 .23 .37 .42 .53
02 Feb 06 .24 .44 .55 .70
02 Feb 12 .21 .39 .50 .67
02 Feb 18 .31 .54 .65 .66
03 Feb 00 .25 .45 .42 .33
03 Feb 06 .28 .56 .64 .45
03 Feb 12 .30 .36 .45 .28

Average .26 .45 | .51 .44

Table 3: Difference rms between temperature analyses at sigma
level 5 (abqut 500 hPa). Unit: Kelvin

However, charts of differences show a good consistency
between direct use of radiance and use of SATEM data: same
impact location, same -‘variation sign. The problem still
remains to find out whether this impact is either positive or

negative.
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: — differences between temperature analyses *S® and “gn
at 850 hPa for 02/02/87 at 0 UTC, in 1/10 K, plotting interval 1 K.

: - same as above, for sea level pressure differences in
1/10 hPa, plotting interval 1 hPa.
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Figure 14 : - differences between temperature analyses "T* and “A*
at 850 hPa for 02/02/87 at 0 UTC, in 1/10 K, plotting interval 1 K.

¥
[

L

- same as above, for sea level pressure differences in
1/10 hPa, plotting interval 1 hPa.
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- differences between temperature analyses “N" and “A*

at 850 hPa for 02/02/87 at 0 UTC,

in 1/10 X, plotting interval 1 K.

differences in

for sea level pressure

- same as above,
1/10 hPa, plotting interval 1 bPa.
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: — differences between temperaturé analyses "R* and "A"
at 850 hPa for 02/02/87 at 0 UTC, in 1/10 K, plotting interval 1 K.

~ same as above, for sea level pressure differences in
1/10 hPa, plotting interval 1 hPa.
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Date "Sll_"All |ITII_IIA" IIN"__IIA" "RII_HA"
30 Jan 00 .05 .10 .20 .06
30 Jan 06 %26 .37 .65 .31
30 Jan 12 .23 .35 .60 .27
30 Jan 18 .27 .50 .61 .29
31 Jan 00 .19 .30 .41 .21
31 Jan 06 .22 .48 .59 .32
31 Jan 12 . .17 .35 .52 .30
31 Jan 18 .25 .37 .63 .27
01 Feb 00 .26 .48 .59 .35
01 Feb 06 .32 .53 .64 .46
01 Feb 12 .42 .52 .58 .29 .
01 Feb 18 .36 .50 .72 .27
02 Feb 00 .30 .46 .60 .36
02 Feb 06 .38 .54 .75 .38
02 Feb 12 .23 .37 .58 .34
02 Feb 18 .34 .44 .67 .37
03 Feb 00 .39 .48 .55 .36
03 Feb 06 .38 .51 .75 .45
03 Feb 12 .28 .31 .52 .37
Average .28 .42 .59 .32

Table 4: Difference rms between temperature analyses at sigma
level 15 (about 15 m). Unit: Kelvin

5.3.2 Comparison between guess-fields and observations

The guess-fields are 6 hour forecast fields computed
by the PERIDOT prediction model. The quality of the
assimilation scheme can be evaluated by comparing the guess-
fields with the radiosondes (for upper levels) and surface
observations. These observations are the core of the reference
run "A", but they are mostly available above land, i.e. about
half of the domain. Statistics displayed in tables 5 and 6
generally show no degradation above land, but a doubt remains

for the run "N" corresponding to 80 km SATEM's.
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Date "A" "sll "Tll "N" Nb.obs.

30 Jan 00 13.10 13.10 13.10 13.10 13.10 67
30 Jan 12 13.70 13.50 14.00 13.60 13.40 75
31 Jan 00 16.40 15.90 15.70 14.80 16.20 69
31 Jan 12 16.90 16.30 16.30 16.20 16.90 75
01 Feb 00 12.90 12.50 12.20 12.50 13.70 68
01 Feb 12 12.70 12.40 12.50 12.90 12.90 72
02 Feb 00 11.70 11.10 11.20 11.90 11.60 65
02 Feb 12 18.40 17.70 17.30 18.20 17.80 72
03 Feb 00 17.10 16.10 15.90 15.60 16.60 66
03 Feb 12 10.60 10.60 10.20 10.90 10.60 69

Average 14.49 14.01 13.92 14.07 14.41

rms 2.76 2.55 2.51 2.33 2.55

Table 5: Statistics
observation" at 500

on the difference rms-"guess-field minus
hPa level. Unit: Meter.

"A“ "S" "T" "N" "Rll Nb. Obs .
(*)

30 Jan 00 9.64 9.64 9.64 9.64 9.64 799
30 Jan 06 11.85 11.82 11.78 11.66 11.81 1061
30 Jan 12 14.13 14.05 | .13.87 14.01 14.05 1088
30 Jan 18 11.27 10.97 11.00 11.04 11.22 1056
31 Jan 00 9.83 10.02 10.20 10.51 9.94 ‘807
31 Jan 06 11.56 11.42 11.41 11.42 11.53 1041
31 Jan 12 11.16 | 11.41 11.72 11.89 11.28 1045
31 Jan 18 10.08 10.11 10.19 10.12 10.07 1021
01 Feb 00 10.57 10.46 10.54 10.69 10.39 818
01 Feb 06 10.85 10.79 11.10 11.15 11.00 1033
01 Feb 12 11.55 11.48 12.41 11.90 11.45 1078
01 Feb 18 11.77 12.04 12.01 11.92 11.68 1038
02 Feb 00 10.79 10.87 11.12 11.30 11.04 795
02 Feb 06 11.93 12.17 11.97 11.84 11.78 1074
02 Feb 12 10.84 11.17 10.80 11.24 | '11.12 1131
02 Feb 18 11.43 11.36 11.51 11.72 11.66 1052
03 Feb 00 10.37 10.53 10.75 10.43 10.53 791
03 Feb 06 10.98 10.81 10.59 10.81 10.93 816
03 Feb 12 11.38 11.56 11.56 11.42 11.17 1100
Average 11.24 11.28 11.36 11.39 11.26

rms .94 .92 .89 .85 .89

Table 6: Statistics on the difference rms "guess-field minus
at surface level. Unit: Meter.
(*) This is the number of observations used for run "A"

observation"
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5.3.3 Quality of forecast fields

The forecast experiments are presently being carried
out. Only a few results are available. A paper must be devoted
to this impact study and all the results are supposed to be

submitted as soon as the study will end.

. 6 CONCLUSION

Four independent studies were presented and concluding
remarks were given. At this point, an overall conclusion will

be drawn.

Some promising results were already obtained with
variational methods. The processing of raw radiances is a good
example. The implemehtation of a variational scheme still
seems difficult for an operational exploitétion. Many problems
must be solved before the present feasibility study can be

concluded.

As a consequence, the present studies must be
continued. It isvhowever expected that the future improvements
in éomputer (hardware and software) will bring én important
help for developing variational methods, since huge central

memory and computing time will be needed.
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