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1. INTRODUCTION

Refined numerical methods are increasingly used in meteorological forecast
models. The spectral method, used in the current ECMWF model, has a high
numerical accuracy, resulting from a Galerkin method with spherical harmonic
basis functions (see Machenhauer, 1979). The implementation of this method
requires transformations from the spherical harmonic representation of a field
to a grid point representation. This is done by a Fourier transform in the
zonal direction and a Legendre transform in the meridional direction. Whilst
fast Fourier transforms allow a very efficient treatment of the zonal
direction, the Legendre transform programs applied presently are slow,
requiring 0(N) operations per gridpoint, with N being the number of gridpoints
in the meridional direction. Currently the ECMWF model maintains a reasonable
balance between the numerical cost of transforms and other parts of the model.
However, should progress in computer technology allow an increase of
resolution in atmospheric models by an order of magnitude, an increasing part
of the model's computational cost would be required by the Legendre transforms
and alternative means of discretization are required. BAn estimate of the run

time dependent on resolution was given by Steppeler (1987b).

Another reason to investigate alternative discretization schemes is the
different ability of the schemes to represent local detail. BAll methods are
able to represent features within their mesh length. However, the transport
of features with sharp structures is often very inaccurate, involving strong
deformation or dissipation of structures. The spectral method transports
sufficiently smooth structures rather accurately, but it loses some resolution
by the spectral transform. The modgl resolution is smaller than indicated by
the transform grid, and the high order interpolation employed introduces
oscillations of the fields which in many situations have to be considered as
unphysical. WNumerical methods which avoid the creation of artificial maxima
and minima of fields should therefore be considered. This gives preference to
a rather low order of interpolation of fields between the gridpoints, if

sufficient accuracy can be maintained in this way.
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Future model generations may incorporate the semi~Lagrangian method, as
proposed by Bates et al. (1982) and Robert (1982). A numerical method should
be able to support the Lagrangian method. A problem of the application of
semi-Lagrangian methods to global models is that some of these don't formally
conserve quantities like energy or mass. Structured elements can easily
conserve mass, and, with more effort, may be able to conserve energy as well.
Finally, discretizations of a local nature may offer advantages with respect
to the computer organization of the code, depending on the computer
architecture employed. Points to be observed are the use of memory,

vectorization and multitasking.

The present paper will discuss the use of finite elements as an alternative

discretization of the ECMWF model. These methods offer an economical way to
obtain a high accuracy, and with respect to most operational features, like

computation time per gridpint or organizational complexity, they perform

rather like finite difference methods.

In meteorological applications normally finite elements on quasi regular
grids are employed, as exemplified by Staniforth et al. (1977). More refined
versions of the finite element method, as commonly applied in other fluid
computational problems, are less popular for meteorological applications,
though some limited research into their application to atmospheric and ocean
simulation probleqs has been done. Crépon et al. (1984) used an unstructured
irregular grid for an ocean model. Use of finite elements to achieve a
regular resolution on the sphere was proposed by Baumgartner (1985).
Triangular elements for the formulation of a shallow water equations model
were employed by Navon (1987). Even though such methods may have a high
potential of efficiency, the present paper will consider only finite elements
on a quasi-regular grid, where the solution procedure factorizes and for this
reason offers great numerical economy according to Staniforth et al. (1986).
A number of options for the choice of basis functions will be considered in

Section 2.

For finite difference equations it has turned out to be important to observe
conservational constraints with the discretization (see Arakawa, 1966). For
model equations employing a non-divergent velocity field, standard finite

element schemes are automatically energy conserving (see Fix, 1975;
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Jespersen, 1974). Energy conserving finite element schemes for the Boussinesg
equations were introduced by Cliffe (1981) and Lee et al. (1982). For the
divergent barotropic equations, standard finite element schemes will not lead
to formally conserving schemes. Conservation can be obtained by using special
versions of the Galerkin schemes according to Steppeler (1987). Similar
principles to obtain conservation are used with a three dimensional model by
Steppeler (1988). Section 2 will give examples of finite element schemes
conserving energy and potential enstrophy. These schemes are independent of
the choice of basis functions, and they work as well for linear and quadratic

elements, or the Lagrangian elements introduced in Section 3.

2. ENERGY AND ENSTROPHY CONSERVING FINITE ELEMENT SCHEMES

A finite element discretization is based on the field representations

~r N ~
o (x) = ) b e (x) (1)
v=1

Eg. (1) defines the space of the approximating functions $(£). The basis

functions ev being non zero only in the interval (x ), may be

v=1" Ty
piecewise linear or quadratic polynomials, the corresponding approximation
spaces according to (1) being denoted as 91 and 92. Piecewise constant basis
functions may be used by considering them as distributions according to
Steppeler (1987). For a general field ¢(r), not necessarily represented by
(1), an operator G is defined which approximates ¢ by an element $ of the

space of approximating functions according to (1).

b =G ¢, (2)

Q

=

N
i

) ¢, e, (x)
v

G is defined by

(e v G§) = (e, ¢), with u e {1,....5} (3)

For two functions a(x), b(r) (a,b) is derived by

(a,b) = [ dxdy a(r) b(r) w(r) (4)
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According to (3) the scalar products of the function $(£) are the same as
those of the function ¢(r) to be approximated. (3) is a system of N linear
equations for the coefficients $v in (1), determining the element $(£) of the

approximating function.

In (4) w is a positive weight function. Galerkin operators G can therefore be
distinguished by the different spaces §, on which they project, and by
different choices for the weight function w. In the present paper we use only
the space 91 of piecewise linear functions and the space 92 of piecewise
quadratic functions. At element boundaries continuity of the basis functions

is required with methods of order 1 and 2.

Among the different choices of the gquadratic space 92 we choose the one

defined in Steppeler (1987), which has the property

2
2, = fu@ v(x), u, v e 91} 2, (5)

In the following, two Arakawa finite element schemes will be defined,

conserving energy and potential enstrophy, respectively.

An energy conserving Galerkin finite element scheme for the shallow water

equations is defined by

a=~-G, {(uu +vu +H)
1. X y b4

v=-G, (uv +vv +H) (6)
1 X y Yy

f=-¢6, (WO _+ (v H)y)

u and v are represented by the space @, (linear elements) and H is represented

1

by 92 {(gquadratic elements). G1 will therefore project on 91, and G2 on 92.
The weight functions w being associated with G1 and G2 according to (4) are
w(r) = H(r) for G, and w(r) = 1 for G,e
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The following Galerkin finite element scheme will conserve the enstrophy

zZ = fdxdy reH:

. ~ 2 2
a=g, (nu - (% ((cm” + (6.v)) +H)x)

~ 2 2
v=6, (-nv - ¢ (W7 + (V)7 + H)y)
(7)
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I
i
o)
e
+
<

u v = G1 Hv

In (7), u, v, H are represented by the quadratic space 92 (G2 => 92), and G1
projects on the space 91 of linear functions. The proof of the conservation

properties of the scheme (6) is given by Steppeler (1987), and can be obtained

in a similar way for (7).

3. LAGRANGIAN ELEMENTS

3.1 The formalization of Lagrangian elements

Semi-Lagrangian methods approximate equations of the form

d

E ) (t,x) = - u (x) d)X (t,x) (8)
by

n+1 n n

¢ (%) = 2 ¢ (%) = ¢ (x=u*(x)A) (2)

with n being the time level. In (9) u* is interpolated from the u-velocity
field. 1In the present paper we will not give specific examples, how to
compute u* from u, but in this respect one can draw on experience with finite
difference Lagrangian methods. We deal here only with a case of one space
dimension x. In addition to the finite element approximation spaces 91 and
Q,, introduced in Section 2, we will consider the space QO generated by
piecewise constant basis functions on the elements defined by the grid xv.
The methods given in the following are valid for all the approximation spaces
QO' 91,’ Qz.

Generalization to more than one space dimension is possible. This is straight

and 92 methods.

forward for the ﬂb methods, but more complicated for 91
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Lagrangian methods, as currently used (Robert, 1982), don't imply formal mass
conservation. Achieving conservation of mass with a Lagrangian finite element
method will be the only conservation law dealt with in this section. In the
framework of Galerkin schemes mass conservation is rather trivial, and for
this reason the choice w1 with (4) will be sufficient to obtain

conservation. However, if more advanced methods are required, the methods
described in Section 2 can be adapted to obtain conservation of other
quantities as well. In a finite element framework, ¢n+1’ ¢n and u* in (9) are
defined for all x, and we assume they are represented in one of the finite
element approximation spaces Qv. The most natural Galerkin scheme based on

(9) would be

n+1 n n

p (X)) =G L ¢ (X) =G ¢ (x-u*(x)At) (10)
With G being a Galerkin operator.

In (10) we have to assume that u* ¢ ﬂv, with v=1 or vw2. If the basic
representation for u is in QO, the Galerkin operation G1 = Qb > 91 may be used
to obtain a suitable u*.

Experience of Bates (1982) with finite difference Lagrangian schemes indicated
that a high order interpolation between gridpoints is required to obtain good
results. This would suggest in (10) to use approximation spaces of high

order.

High order approximation spaces are used much in meteorological models, and
Steppeler (1987a) used finite elements of order 2 for the vertical with a
3-dimensional model. These models have a high accuracy when applied to smooth
data. If, however, the data have strong gradients, the high order
interpolation can create artificial maxima and may create artificial negative
values for quantities which according to their physical meaning should be
positive. Conservation of high gradients and positivity of fields is a
requirement raised mainly in connection with the moisture variable of the

model.

In order to discuss conservation properties of the Finite element Lagrangian

method, we consider the discretization of a variable p obeying the following
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equation of motion:
3
Pl Rl = S B B (11)

In (11) u is variable in time. We don't give the equation of motion for u,

since it's discretization does not affect the conservation of mass.

There are many ways to base mass conserving Galerkin schemes for (11) on (10).
We give here an example using a Galerkin adaptation of the semi-implicit

Lagrangian scheme used by Bates (1988).

n+1 B

n n+1
(p =G Lp)/ht=-5—G (u

n n

* - 1 *
+ u¥ ) = G((&p") ug) (12)
In (12) n is the time level and p is a constant such that p = ptp'. u* is the
interpolated velocity used in the definition (9) of %, and G is the Galerkin
operator defined in (2), (4) using the weight w(x) = 1.
To prove conservation of the mass M for (12) form

-M = f pn+1(x) ax - f pn(x) dx

_ n __i n+1
= f G £ p dx A f G(ux

. + u;n) (13)

- & [ el(e ") wr™) ax - [ o ax

Using (9), defining x' = x—u*n(x)At and using the fact that G conserves linear

guantities, we obtain:

[ ax p(x") (1—u;n(x)At)
(14)
- f dx p(x)
Transforming to the variable x' in the first integral of (14), we obtain

M -M =0 (15)
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The Jefinition of Lagrangian elements will make approximation (10) accurate
even for low order approximation spaces . The Lagrangian element

approximation will have the following properties:

A mass conserving approximation for (11) is provided by (12) for p being in

any of the approximation spaces QO, Q 92 and u* having appropriate boundary

1’
conditions and being approximated in 91 or 92.

® For ¢ in (1) being approximated in QO (piecewise constant basis
functions) the scheme given in (10) conserves the positivity of the

field, and does not create artificial maxima or minima.

[ For the test problem
3, 39
ot Yo ax (15)

(v(x) in const. in (8)) 10 provides the exact solution for all cases whose
initial conditions can be presented in the basic grid xv. The basic feature
of Lagrangian elements is a grid x; introduced in addition to the basic grid
X While X, is constant in time, the x; grid is variable, and adapts to the

solution at each timestep.

3.2 An example for the treatment of the Lagrangian node points

Since the derivation of variants of this method is rather straight forward, we

describe here only the most simple method. The assumptions are:

° The x'v grid has the same number of gridpoints as the X\) grid, and we

).

can assume: x' eg(x x
v v vk

] ¢ in (10) is approximated in the space QO (piecewise constant basis

functions) and u* is given as a function in 91.
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The x; develop in time according to the following rules:

1) At the initial time x;o is chosen at the lee side of the interval (x ,
v

xv+1), that is

x'0=x for u* _ + u* > 0 and

Y v ° uv+1' uv an

(16)

x'0 = x for u* +u* < 0

v v1 vt1 v

2) In order to obtain the time development of x; we compute the grid ;v

as -
~ n+1 n
x 7 = x'" + u* (x') At (17)

v v v

. + s 3 s +1
If there is Jjust one gt ! per grid interval (xu, xu+1), these are the xbn

for the next timestep:

n+1 ~ nt+1

%! = x ' (18)
v v ~e ~
If there is an interval (x , x +1) without an x;, an x; is created according
]
to (16) which then becomes xvn 1. If there is an interval (xu, xu+1)
containing more than one ;b: ;'v... ;;+a £ (xu, xu+1), all except one £;+B
are deleted. The X;+B not to be deleted is determined by the relation
DR, ) - ol (% 19
Loy (=3, 9 = &2 (x, 0] ‘ (19)
- ' _ '
max |op (x}, ) - o Q]
with
n . n .
¢+ (XE) = lim ¢ (x)
XX
X>X . (20)
€
and
n . n
¢_ (xg) = lim ¢ (x)
XX
g
x<x
~t . . 'n+1
The x determined by (19) is the x .
vt B , v
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3) The x'™F1
v

After the grid x; has been determined according to 1), 2), 3), the timestep is
performed according to (10). The Galerkin operator G in (10) is that
belonging to the QO approximation space on the combined x and x‘n+1 grid.
Note that L ¢n(x) in (10) is defined in the combined grids §1?+1 according to
(17) and the grid ;z+1 defined by

;n+1 =x + v¢= (x ) At (21)
v v

3.3 The organization of the computer code

When using (10) with Lagrangian elements of order Qb to approximate (8), the

computation is organized in the following way:

~ n+1 +1
1) The grids xbn and x;n are computed following 1), 2), 3) above.
. =n+1 , . ,
2) The grid xv is determined according to (21).
~ n+1 +1
3) For the intervals (x , x') and (x', x ) the points e and x°
v v v v+ v

belonging to these intervals are determined. L ¢n is defined in the

+1 +1
and x. grids. The values of L ¢n in the intervals of

v
~ n+ +
the combined x;n ! and ;i 1 grids have to be determined.

. ~
combined x'

+1
4) @n (x) is determined according to (10) in the combined xv and x;

grids. The procedure is illustrated in Fig. 1. Note that errors can
be generated only for nonconstant velocities u(x) or irregular meshes
xv. In these cases the error is a smoothing error. Rather accurate
solutions for nonconstant advecting velocities can be obtained when

using more points xb than there are xv.

Because of the additional grid xb the resources needed for the

Lagrangian element method amount to a doubling of the resolution, and

storage for the grid xb must be provided, since this grid varies in
time. However, in this double resolution grid it is a rather simple

method.
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1 A timestep with Lagrangian elements in the g approximation space.
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