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Summary: The interaction of atmospheric transients with localized orggraphy
can give rise to modifications of "average" circulations ("weather regimes").
In this lecture a simple example of orographic modification of transients and
one of non-linear feed-back on average circulation are analyzed. A model is
used capable of reproducing some of the basic mechanisms operating in the real
atmosphere, but still simple enough to allow for controlled experimentation

and physical interpretation.

1. INTRODUCTION

In this presentation I will concentrate on a very specific topic: the
interaction between large scale (in particular "baroclinic") atmospheric
transients and localized orography. The studies I will refer to have nothing
to do with "multiple equilibria" theories in which topography of global scale
excites a global resonance of atmospheric circulation. They should rather be
considered an extension of the "theory of lee cyclogenesis" (see Speranza
1986b for a summary and critical discussion) to the regime of finite
amplitude, nonlinear growth of orographically modified atmospheric

transients.

The basic purpose of the studies discussed here is very simple and worth
formulating explicitly from the start: if atmospheric transients are the
physical manifestatioh of a turbulence, characterized by an attractor
developed on the manifold of some instability, we have to understand what the
modifications induced by the orography on the attractor are and compute them

(perhaps as modifications induced on the unstable manifold).

Atmospheric transients are traditionally interpreted in terms of baroclinic
conversion and we shall therefore concentrate on baroclinic instability.
However, most of our considerations would apply to other types of transients

as well.
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In order to keep the presentation as clear as possible we shall limit
~mathematical complications to a minimum by adopting.the classical two-layer,
quasi-geostrophic model. However most of the conclusions here presented,
including the relevant ones, are fairly general and could be tested with much
more complex models: the use of a two-layer, quasi-geostrophic model should

not be felt as a methodological limitation.
The basic equations are, in standard notation (see Pedlosky, 1964):
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where shallow topography enters through the slope effect of h'.

2. BAROCLINIC INSTABILITY (CYCLOGENESIS) AND LOCALIZED OROGRAPHY

2.1 Baroclinic instability and cyclogenesis

Baroclinic instability is traditionally considered as the basic physical
process operating in cyclogenesis. Although from time to time altermative
interpretations of this or that type of cyclone growth appear in literature, I
am personally convinced that the energetic interpretation of atmospheric
cyclonic "eddies" in terms of baroclinic conversion is well posed. I have
more problems (expressed, for example, in Speranza 1956a) with the
calculations (including my own!) that appear quite often in literature.
Essentially I do not believe that the ensemble properties of "baroclinic
noise" can be represented in terms of the instability (linear or nonlinear) of
one single flow pattern (stationary solution, time-average, etc.). It is with
this "caveat" in mind that I pose, in this section, the problem of orographic
modification of transients in terms of a linear stability analysis of a
stationary (time - independent) zonal flow. We will concentrate on the

modification induced by topography on a baroclinically converting basic flow.

2.2 The model

We assume topography as an infinite East-West ridge h'(y). Any stationary
zonal flow is consistent with the boundary conditions imposed by such
topography; for simplicity we consider u, = const = E, u. = 0.

1 2
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The set of equations resulting from a linearization of equations (1) under the

above conditions is:
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By introducing solutions of the form:
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the linear set (2) can be transformed into the eigenvalue problem:
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The parametric dependence on the transversal coordinate y of this problem
makes its solution not straightforward. We need to have recourse to either
numerical or perturbation techniques. Outlined here is the perturbation
approach since, in some of its aspects, it is physically instructive. If
topogfaphy is small we can expand the eigenvalues and eigenfunctions of tha

problem (4) in terms of the small parameter & (we pose h'/Ro = th):
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By substituting (5) into (4), reordering terms in powers of € and assuming
different orders of expansion to vanish independently, we obtain a sequence of

linear problems.

The 0O-th order expansion gives:
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which is the classical baroclinic instability problem (on a flat bottom
boundary). The eigenvalue problem (6) has solutions of the form:

(0)
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which can be found in any textbook on the subject (see, for example, Pedlosky,
1979). We interpret this solution as a "primary" baroclinic wave (primary

cyclone).

Topographic effects appear in the first order expansion:
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From the solvability condition of (8) we obtain the 1st order "topographic"

correction to the eigenvalue:
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The first order correction vanishes if topography is symmetric in latitude.
It is only at the second order that we obtain:
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This represents the topographic effect we are interested in.
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Analytical solution for a baroclinic wave in the infinite R-plane

two-layer model, with an east-west ridge. The arrows mark the

position of the ridge crest. The parameter values are: u = 1.5,

F=2.0, B=1.6, A= 1.0, k= 1.1, A = 0.3, h, = 1.0, X = 3.0, growth

rate Wy = 0.29. The contour interval is arbitrary. A portion of the

domain of 8x8 non dimensional length units is shown.

(a) Streamfunction of orographic perturbation only, in the lower
layer;

(b) Total streamfunction of modified baroclinic wave in the lower
layer; ’

(c) and (d) as in (a) and (b), respectively, but in the upper layer,
and with a double contouring interval. The basic zonal wind is
not added. (From Speranza et al., 1985).
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2.3 Topographically modified planetary waves

The field of topographic distortion can be shown to possess a "far-field" of
large scale (of the order of the Rossby deformation radius) and an asymmetry
as dictated by the h-term in eguation (8) (see Speranza et al., 1985 for

details). Fig. 1 shows the flow pattern obtained in the specific case of a

ridge of cosine form in a limited latitudinal strip.

It can be noticed that the topographic correction, besides displaying the
high-low symmetry required by observed phenomenology, extends to planetary
scales in the horizontal and throughout the whole troposphere in the vertical.
Note that the dipole structure is vertically coherent. This property is due
to the particular symmetry of the problem here discussed: for non~symmetric

mountains and/or basic flow the dipole axis rotates with increasing altitude.

We have learned from this simple example that the modifications induced by
localized topography on a baroclinic wave are "global" in extent and more
pronounced in the spatial structure of the wave than in the time behaviour:
the growth-rate is only slightly decreased (the East-West mountain is a

barrier for meridioconal flow and tends to inhibit baroclinic conversion).

3. THE BAROCLINIC JET IN THE PRESENCE OF OROGRAPHY

3.1 The baroclinic jet

It has been repeatedly proposed that the persistence of blocking is due to the
statistical equilibration of transients with some large-scale, long~time
pattern of the global circulation. I personally believe that this
interpretation applies only to some specific blocking events which are not the
ones that play a dominant role in the statistics of low-frequency

variability.

I will try to explore here what type of physical mechanisms can lead localized
orography to maintain a particular "equilibrium" through the modification of
transients (of the type discussed in Section 2). For this purpose we need a

model capable of reproducing the minimal statistics of baroclinic transients.
The simplest model representing the dynamics of interaction of baroclinic

waves with a zonal flow and displaying earthlike statistics has a minimal

vertical truncation (two layers or modes) of the equations of motion, with
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enough latitudinal resolution to guarantee adequate description of barotropic
interaction between baroclinic waves and the zonal flow. I will describe here
the quasi-geostrophic version in two layers, following the notation of
Pedlosky (1979). Starting from the potential vorticity equations with
Laplacian dissipation, written in terms of the barotropic, ®=(¢1+¢2)/2, and
baroclinic, T=(w1—w2)/2, components of the streamfunction, and introducing a

baroclinic forcing 1*, we obtain:
2 2 2 2
BtV &+ J(¢, V &+By) + J(Tt, V1) = - VE/2 VA(d - 1) (11)

2 2
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We separate now the symmetric and the asymmetric components:

®(x,y,t) = - [ U(y,t) dy + 0" (x,y,t) - (13)

- [ m(y,t) day + T'(x,y,t) (14)
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and introduce the separated form:

+ oo

o' (x,y,8) = ) (A (y,t) g (x) + (%)) (15)
n=1
+co
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The main purpose of the assumptions (15-16) is to allow a simple
representation of nonlinear wave-wave interactions: in fact, by inserting
(15-16) into (11-12) and projecting onto the functions gn(xf, equations in
which nonlinearity is lumped into scalar products of gn—functions can be
obtained. Here, however, we shall concentrate on the wave-mean flow

interactions. Consequently we assume:
g1(x) = exp(ikx) , gn(x) = 0 for n#1 (17)
which reduces (dropping superfluous indices) the equations of motion +o:

BtU + vE/Z (U - m) + 2k Im(AA* + BB*) = 0 (18)
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where any trace of wave-wave interaction has disappeared, except for the
momentum and heat fluxes in the zonal flow equations. Since A and B are
complex, (18-21) constitute a set of six field equations in latitude y and
time t. Notice that when U and m are fixed, as in some cases of marginally
unstable flow which we consider later, the wave amplitude vector (A,B) can be
written explicitly in terms of zonal flow (U,m) as exp(Tt), where T is the
matrix of the evolution operator in (20,21). In general though, the evolution
operators of different instants T(t), T(t') do not commute and the generalized

exponential solution cannot be written.

3.2 The statistical properties

Experience Shows that the system (18-21) displays realistic statistical
properties and these are conveniently modelled by means of a spectral
representation in terms of a few tens of modes. The results shown here are
relative to an integration with a leap-frog time-scheme (time-step ~1/10 day)
and a pseudospectral representation of fields in terms of 32 latitudinal
components. The integration is carried out for 10 years (~ 350.000 steps

corresponding to about 1 hour of CRAY1).

The values of dissipation coefficients are respectively vE=0.45 (decay=-time
~2.5 days in dimensional form) and vs=vH=.1157 (decay—-time ~10 days in
dimensional form). The external forcing, operating only on the gravest
latitudinal mode, is m*=1.41. This corresponds to a thermal forcing vE=9. The
zonal wavenumber is k=1.3 (~4800 km). The energy cycle is correctly closed

and very realistic.
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Fig. 2 displays the scatter of different components of states sequentially
occupied by the system in time and Fig. 3 the relative probability densities.
Fig. 4 shows the time average of the zonal flow; although characterized by a
high degree of variability from year to year, the average is quite stable
after ten years. The average of wave amplitude is obviously zero. Power
spectra are shown in Fig. 5. It should be kept in mind that our dissipation
is not scale-selective and that, therefore, we are not dealing with an
inertial range: the -3 spectrum is not that ofAtwo—dimensional turbulence
theory! The time spectra, shown in Fig. 6, confirm the "turbulent" nature of
the system. Combined wavenumber-frequency spectra reveal the dominance of the
lowest harmonics (Fig. 7). These statistical properties are in reasonable
agreement with those of the real atmosphere. For comparison a typical

histogram of short baroclinic waves is shown in Fig. 8 (see also Fig. 3).

3.3 Insertion of topography

The above described model of a baroclinic jet is particularly useful for
studying orographic modification of transients along the lines discussed in
Section 2. By inserting into egqs (18-21) terms of the form hy we can
represent the action of zonal topography h(y). This type of orography cannot
change the time-mean, zonal flow directly: such a change can only take place

through modification of transients of the type discussed in Section 2.

In fact, baroclinic waves like the one shown in Fig. 1 (*) display fluxes of
momentum and heat which tend to modify the latitudinal structure of the jet.
This effect is quite well displayed by the results of numerical experiments
with the model including topography. 10 year runs have been performed under
conditions identical to those discussed in Section 2, except for the presence
of the East-West, infinite ridge. The statistics of transients (not shown
here) does not seem to be suggestive of any major change. However, the
distortions of the unstable "eddies"™ induced by topography seem to produce
noticeable changes in the time-mean flow. Fig. 9 shows the new shape of the
jet, to be compared with Fig. 4: the jet is displaced in latitude and one of
the secondary jets if considerably attenuated, while the other is strengthened

with respect to the case without topography.

(*) Although, I insist, linear stability analysis of Hadley circulations does
not provide an adeguate theory of atmospheric transients!
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Fig. 2 (a) Scatter diagram of the first meridional component of zonal wind
shear (m¢) versus the first component of zonal wind (Uq). Units
are dimensionless (one unit corresponds to 10 m/sec). The total
time of integration is about 10 years.

(b) Same as (a) but for the real and imaginary parts of the first
barotropic meridional component of the wave-field (A1).
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Fig. 3 (a) Histograms of U, (solid line). The dashed line represents a
gaussian having the same mean and variance as the distribution of
Uge
(b) sSame as (a) but for the real part of A

2
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(a) Ten year average of the zonal wind at the upper level (lev. 1) and

lower level (lev. 3).

Units are m/sec.

Examples of averages over

individual years are shown in (b) and (c}.
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Fig. 5 Fourier spectrum of the total energy (kinetic + available) as a
function of the meridional wavenumber wi=73j/Ly, 3 = 1, 2, 3,... The

slope of a wgn law, n = 2, 3, 4, is also plotted for comparison.
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Fig. 6 Power spectrum of (a) real part o? Ay and (?) flfstacomponent of the
mean zonal wind U1. In abscissa 1s the period (in days) on

logarithmic scale.
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Fig. 7 Wavenumber-frequency power spectrum for (a) barotropic wave-component
(contour interval .1) (b) mean zonal wind. On the y-axis is the
period on logarithmic scale.
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Fig. 8
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Histogram of spectral power of short (zonal wavenumber s7-18)

baroclinic waves in the northern hemisphere computed from 500 mb
heights of winters 1966-1978. Heights are integrated in latitude
between 30 and 75 degrees. The signal is detrended by applying a

‘running average of 16 days.
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Fig. @ Ten year average of the zonal wind at the upper and lower levels.
Units are m/sec.
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Apparently, small changes in the statistics can produce relevant changes in
the time-mean pattern. How robust this property is will be tested in the

future with more realistic models.

4. CONCLUSIONS

In this presentation I have tried to stress the fact that orographic
modification of the transients shall be part of the final theory of general
circulation, no matter what the physical nature of the transients is. I have
also tried to exemplify the nature of orographic action on transients by means
of a simple model of baroclinic instability that has been used in studies of

orographic cyclogenesis.

With a similarly simple mode of a baroclinic jet I have shown how the

orographic modification of transiewmts can affect time-a¥eccdged circulations.
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