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1. INTRODUCTION

Extra-tropical cyclogenesis has been the topic of numerous theoretical
discussions in the last fifty years. In many ways the best modern perspective
is provided by "potential vorticity thinking". However since this is a
viewpoint to be addressed in other talks, the approach here will be a more

classical one.

As our starting point we take the parcel energetics argument of Eady (1949)
which was elaborated on by Green (1960). Consider the situation shown in

Fig. 1 in which there is an atmosphere in thermal wind balance
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The slope of the isentropes Og = - 3; / 3z 1S also constant. If we now assume

that a ring of fluid (P) is displaced polewards along a trajectory sloping at
an angle o then the reduction in basic state potential energy and thus the
energy available for the perturbation may be shown to be (with the hydrostatic
approximation)
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This is positive for trajectory slopes between the horizontal and that of the

basic isentropes. For such angles the parcel is warm compared with its

surroundings and is rising. The maximum value is obtained for a=ae/2and is

2 o, f — . (1.1)
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However a rapidly rotating atmosphere has angular momentum constraints which
usually act against such a displacement. The Coriolis force will imply a

westerly wind along the ring and a horizontal acceleration back towards its



initial position. This will not occur only if there is inertial instability
or neutrality in the chosen direction. The first direction in the "wedge of
instability" for which this can occur is along the isentropes so that the
condition for this direct conversion of energy by overturning is (in the

‘Northern Hemisphere)
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or P <O where the potential vorticity P = ;e (-% %g)

or n = fy - u surfaces more horizontal than 6 surfaces.

(In the x direction the relevant "absolute momentum" surfaces would be

m = fx + v = const).

The instability that occurs in this situation is usually referred to as
symmetric (baroclinic) instability. The large-scale atmosphere does not in
general satisfy these criteria and so release of potential energy by zonally
symmetric overturning is inhibited by the angular momentum constraint. This
constraint can be broken by allowing variation in the zonal (x) direction.
Suppose now that some parcels are displaced polewards as P in Fig. 1 and at
different longitudes other parcels are displaced southwards along similar
sloping trajectories. In this sloping plane the motions will look like the
continuous vectors shown in Fig. 2, with parcels curving in a clockwise sense.
However this tendency for trajectories to curve can be opposed by pressure
gradients corresponding to a simple pressure pattern of the form shown. The
meridional motion will then be in balance between the Coriolis and pressure

gradient forces i.e. there will be geostrophic balance.

A vertical section across the system must then look like the schematic shown
in Fig. 3 with the warm air moving polewards and upwards east of the low
pressure region and the cold air moving equatorwards and downwards to the
west. From hydrostatic balance, the warm air being less dense, corresponds to
a relatively small change in pressure with height. This implies a tendency to
the low pressure at low levels to be shifted towards the warm air region
whilst at upper levels it is shifted away. Thus the low (and high) pressure

region tilts westwards with height.
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Fig. 1 - Basic isentropes at an angle ag and a displacement at an angle a.
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Fig. 2 The motions as seen in the plane of the trajectories. The continuous
vectors are those that would occur in the absence of the pressure
field indicated by L and H, and the dashed vectors are the actual
trajectories.
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Fig. 3 A longitude-height section showing poleward (®), equatorward (™
and vertical motion, and the longitudinal wvariation of pressure for a
wave that converts potential to kinetic energy.



From the energetics argument above we can even obtain an idea of maximum
possible growth rates by assuming that all the energy can be realised by the

perturbation in the kinetic energy of the-N-S motion. From (1.1),
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Thus for such a structure,

du
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(1.3)
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Taking reasonable parameter values

£ = 10~% 5=}, N = 102 s~1 and g% = 3 ms~1l/km (gf > = 1X/100 km)

this suggests a maximum possible growth factor in 1 day of about 3.7.



2. NORMAL MODE INSTABILITY

2.1 Linear quasi-geostrophic theory

The quasi~geostrophic equations when linearised about a basic westerly flow in

(y,z) may be written
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and ZT is the level of the upper boundary, if any. The basic flow appears

through its advection and in the terms
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It was shown by Charney and Stern (1962) that growing normal mode solutions of

o
the form {'(y,z) e t cos k(x-ct) (with o > 0) are possible only if

39 e 26 | ;- 28 are somewhere positive and negative (2.3)
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Further, they must be positively correlated with E, though this restriction is

not usually of practical importance in the atmosphere.

We note that a natural ratio of scales such that the contributions for the

vertical and horizontal derivative terms in (2.2) are comparable is
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Further, if 4 is a function of =z only, then we may seek solutions which are

sinusoidal in y with wavenumber & . The structure of (2.1) implies that
g =kF(K), (2-5)
i
where K = (k2 + 22)% is the total wavenumber.

In the Eady (1949) model, the basic state and approximations are:

u
— = ¢cst., £ = cst., N = cst., boundaries at z = 0, z.

dz

The Charney-Stern conditions (2.3) are satisfied by the corresponding negative
aé/ay at both boundaries. The growth rate curve is shown in Fig. 4. For no y

dependence, the maximum growth rate is at

k = 1.6 £/(NH) and has ¢ = 0.31 f %Z‘i/u . (2.6)

The wavenumber is consistent with the ratio of scales (2.4) and the growth
rate shows the same parameter dependence as (1.3) and does not fall far short
of this upper bound. For the values‘used in Section 1 and Zg = 10 km, the
maximum growth factor is 2.3 per day, the wavelength 4000 km and the phase
speed equal to the flow at 5 km. The most unstable mode has a structure
similar to that deduced in Section 1. It has maximum v' amplitude at both
boundaries. The short waves are‘stable because for H ~ fL/N <K zT they do not

"feel" the upper boundary.

The Charney (1947) model differs in having

-Z/H
£ = fo + By, p = poe / and no upper boundary.

The Charney-Stern conditions (2.3) are satisfied by the negative aé/ay at z=0
£2 1 3u
N2 H 3z
curve for % = const. is sketched in Fig. 5. The long waves are stabilised by

and the positive Ba/ay =B + in the interior. A typical growth rate
the B-effect but the short waves, even though they are shallow now "feel" the
positive interior ai/ay. The growth rates, wavelengths, phase speed and

structure are generally similar to those of the Eady modes, though lacking the



)

0.31

» NH

16 2.4 T

Fig. 4 Schematic growth rate curve for the Eady modes with zero latitudinal
variation. This is the most unstable wave for each value of k.
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Fig. 5 Schematic growth rate curve for the Charney modes with zero
latitudinal variation, for typical parameter values. For k > K, this
is the most unstable mode for each k. For k < Kc the most unstable
mode has latitudinal variation such that the total wavenumber is Kc

and the growth rate as shown by a heavy dashed line.



upper v' maximum. The importance of the long wavelength stabilisation should
not be over-stated. If % is allowed to increase, then from (2.5) and
following Hoskins and Revell (1981), the most unstable long waves have a fixed

total wavenumber Kc and 0 = kF(Kc). This modification is shown in Fig. 5.

2.2 Linear and nonlinear normal modes using primitive equatioﬂs on the sphere

Numerical stability calculations have been performed by e.g; Simmons and
Hoskins (1977) for more realistic zonal flows, including westerly wind maxima
on sloping tropopauses, and using spherical geometry and the primitive
equations. The growth rate curves are generally similar to the modified
Charney curve. There is generally a growth rate maximum near zonal wavenumber
8 (zonal wavelength ~ 4000 km). For a 47ms~1 jet, this growth rate is

equivalent to a factor of 3.1 per day.

The phase speeds are similar to the 700 mb flow. Wavenumber 6 and longer tend
.to have a maximum in v’ at the tropopause comparable to the surface maximum.
The large change in static stability and reversal in shear there imply a very
large value in Ba/By and a behaviour akin to the 1id in the Eady model. The
shorter waves are shallower and their structure is similar to that of the
short Charney modes. All the modes have a structure similar to that deduced

in Section 1.

Of course mid-latitude cyclones are of practical interest when they are of
large amplitude, with perturbation velocities comparable to that of the
ambient flow in which they are embedded. We are therefore interested in the
behaviour of normal modes after they have grown to finite amplitude.
Primitive equation models including only horizontal diffusion terms have been
initialized with zonal flows plus small amplitude normal modes (typically a
surface pressﬁre wave of amplitude 1 mb). As described in detail in Simmons
and Hoskins (1978, 1980) and reviewed in Hoskins (1983), after a period of
essentially linear behaviour frontal structures and the occlusion process
occur. The low-level 0 contburs are virtually expelled from the latitudinal
band occupied by the baroclinic wave. However for wavenumber 6 and longer,
upper tropospheric growth, which may be envisaged as an upward propagation of
wave activity (Edmon et al., 1980), continues for a day or so. The energy
then peaks and decays rapidly. This may be viewed as an equatorward

propagation of wave activity and a "wave-breaking"” in the region where the



flow speed relative to the waves is small (Held and Hoskins, 1985). Shorter
waves (wavenumber 9 or greater) which do not "feel" the tropopause, tend not
to experience the large upper tropospheric growth phase and achieve much

smaller energy levels in their non-linear development.



3. OTHER DYNAMICAL CONSIDERATIONS

Underlying the work of many, but of Eady (1949) in particular was the idea of
natural selection. From an initial state, the normal mode components would
grow according to their particulaf growth rates. In time the most unstable.
normal mode would dominate and so ﬁhis mode has often tended to figure largely
in the discussion. 1In reality the growth rate spectra e.g. Figs 4 and 5 are
generally not very peaked so that even if the initial conditions are in the
linear regime, non-linear effects such as the higher energy levels attained by

the longer wavelengths mentioned above, become crucial.

Farrell (1982, 84, 85) has recehtly made an important contribution in
stressing anqther reservation aboutbthe concentration on normal modes.
Pedlosky (1964) and others have shown that the representation of arbitrary
initial conditions requires a so-called continuous spectrum in addition to the
normal modes. Although the long-term amplitude of this continuous spectrum
decays as £—-2, in the short-term it can be very important. For éxample there
can be transient growth in a baroclinic system with growth rate apﬁroaching
(1.3) even in cases where the Charney-Stern criteria (2.3) are not satisfied.
Of course the energetics argument leading to (1.3) did not embody these

criteria.

Farrell (1985) went further and proposed that for reasonable surface friction
the atmosphere is in fact not baroclinically unstable. Using a more complete
linear model, Valdes and Hoskins (1988) find this mot to be thé case, though
the shallow short waves are stabilised. However, the point still remains that
in a certain sense the initial perturbation for an individual weather system
is the debris from previous weather systems and has a non normal mode
structure, and that for a period of a day or so, local transient growth at
rates well above that of the most unstable normal mode is possible. Normal
mode theory and the Charney-Stern criteria should not be taken too seriously.
Its value is in providing well posed problems in which the structures
hypothesised to exist in the eﬁergetics arguments are indeed found, which show
the details of these structures, and their dependence on parameters in the
problem. They further provide the only general initial conditions for
non-linear integrations, in the sense that the prescribed amplitude is

irrelevant provided that it is in the regime of linear theory.
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One example of an initial value problem is the study of Simmons and Hoskins
(1979) in which a localised perturbation was included in an unstable flow. An
orderly growth of baroclinic instability occurred in space and time. The
longitude of the development of the downstream waves moved at a speed
approximately that of the 300 mb jet and these waves had amplitude more biased
to upper tropospheric levels than the most unstable normal modes. Upstream
tﬁe waves continued to develop at almost the same longitude. The spatial
fringes of this development were found to be well represented by a sum of
normal modes. An interpretation of the spatial growth is given by an
extension of the normal mode theory in which the dispersion relation is
considered in complex wavenumber space. In particular,_ygrkine (1977) has
differentiated between convective instability in which the growth from an
initial perturbation is all downstream from that perturbation and absolute

instability in which there is growth at the point.

Pierrehumbert (1984) has pointed out that this distinction is very important
in the context of a longitudinally varying flow. In the case of only
convective instability, normal modes will tend to be global even if there is a
region of enhanced instability. However if there is absolute instability,
there can be local modes in such a region i.e. a self-sustaining storm-track
region. He interpreted some of the normal mode calculations of Frederiksen

(1983 and refs) in this context.
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4. DIABATIC PROCESSES

In the previous section we mentioned the stabilising effect of surface
friction. There does not yet appear to be any definitive work on the effects
of boundary fluxes of heat. However observational studies of rapidly
developing systems such as that of Reed and Albright (1986) have stressed the
very large heat fluxes into the warm air ahead of the system. When the cold
continental air behind a depression moves over a warm ocean there can be
enormous heat fluxes into the atmosphere. 1In this case their effect is

presumably in the direction of damping growth.

Latent heat release in the large-scale ascent of the warm air can be
approached in a number of ways. In the parcel energetics argument of Section
1 we may anticipate that the relevant isentropes are now the moist isentropes
and that the ascent will tend to be steeper and at half their angle with the
horizontal. From (1.1) we expect that the growth rates will be
correspondingly increased. In a similar qualitative manner one may anticipate
that the Eady growth rate (2.6) should be increased by replacing N by a
reduced effective moist Nw. Both these discussions gloss over the fact that

one can expect little direct impact on the descending dry cold air.

Hoskins (1982) has discussed how as a frontal region becomes strong, though P
is approximately conserved, the stability to "symmetric" motion along
isentropes becomes smaller. When the rising air becomes saturated and the
relevant surfaces are ee then it is possible that these surfaces are more
vertical than the absolute momentum (m or n) surfaces. This has been
described by Bennet and Hoskins (1979) as conditional symmetric instability
and was raised as a possibility for the origin of frontal rainbands. Thus
although energy could not be released in this manner in the ambient flow and
longitudinal variation was necessary to overcome the angular momentum
constraint, at this stage such direct energy release is a possibility.
Fmanuel (1983) has found that the saturated warm air in an active depression
is usually observed to be neutral to this slantwise ascent, suggesting that
the adjustment by symmetric instability type motions is relatively fast and
efficient. This led Emanuel et al. (1987) to their very interesting study of
baroclinic instability in which moist processes were parametrized by setting
the "moist" potential vorticity based on ee to zero in the rising air. They
found a shrinkage of the longitudinal extend of the region of rising motion
which was relatively larger in magnitude. The maximum growth rate in the Eady
problem can be as much as twice that in the original dry model.
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5. FINAL COMMENTS
The theories discussed above, as well as potential vorticity thinking, all

influence our view of the development of extra-tropical cyclones. However the
observed developments clearly involve a longitudinally varying ambient £flow,
small and finite amplitude perturbations of various structures, nonlinear

dynamics, and boundary layer and free atmosphere frictional and diabatic

processes.
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