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1. INTRODUCTION

Despite impressive improvements in numerical weather prediction over the last

few years, the ECMWF forecast model shows considerable variability in

predictive skill on mény different timescales. An example of such variability

(taken from Simmons, 1986) is illustrated in Fig 1, showing the day 3, 7 and

10 hemispheric skill scores. for the operational model for November 1983. It

can be seen that the later the model validity time, the 1argef the daily

variability about the monthly mean score. BAs suggested by a straightforward

extrapolation of these results, the mean skill of dynamical models in the

extended range is typically very small, though case-to-case variability is

sufficiently large that a few may be of genuine practical use (Mansfield,

1986, Molteni et al, 1987, Miyakoda et al, 1987, Tibaldi et al, 1987).

Tt is apparent, therefore, that a scheme to predict forecast skill will have

substantial benefit in the medium range, and is an essential requirement for

dynamical extended range forecasting. In order to quantify, in a simple way,

the possible impact of such a scheme, we show in Fig. 2 the mean hemispheric

RMS error of the ECMWF model averaged over the last 7 winters (solid line).

If it was possible to discriminate between forecasts of above average and

below average skill, and forecasts of below average skill were rejected, then
the increase in mean skill of retained forecasts, shown as a dashed curve in
Fig 2, is equivalent to enhanced predictability time of 2 days at day 10.
Moreover, if a scheme could be devised which predicted when a-foreéast wds‘at
least one étandard deviation better than average, and only these were
retained, the mean skill (dotted curve) would show an incréase in )
predictability time of 3 days at day 10. To puﬁ these numbers into context,
Miller et al (1987) found that the orographic gravity wave drag
parametrization which has a profound impact on model dlimate, improves

predictability time by only about }~1 day at day 10.
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The top and bottom diagrams of Fig 11 show the same correlation cdefficients

except that the bottom diagram has been produced by first filtering all time

series concerned (skill and spread) with the 5 day running-mean filter, to

remove the high-frequency (day-to-day) variability of skill and spread,

highlighting the low-frequency variations of both quantities (see above).

The large differences between the correlation coefficients shown in the two

panels of Fig 11 underline the great difference in predictability of the
high-frequency and the low-frequency variations of the forecast skill. It is

also particularly interesting to note that the filter has a comparatively -

smaller effect on the correlation between the skill of today's forecast and

the diagnostic spread between today's and tomorrow's forecast (.50 + .61). It

is easier to interpret this if we think of the comparison between today's

forecast and tomorrow's forecast as a sort of 'perfect mode! predictability

experiment. If we think of the difference between today's and tomorrow's

forecast as the growth, propagation and dispersion of the day 1 forecast error

of today's forecast (as Lorenz did in his predictability work on the ECMWF

forecasts; Lorenz, 1982) we can qualitatively understand why the spread

between these two forecasts "knows" more about the skill of today's forecast

than the spread between today's and yesterday's forecast (this spread, in

turn, "knows" about yesterday's forecast skill, not today's). 'We should also

remember that short range (day 1) forecast errors are our best proxy for

analysis errors. We can then conclude that the comparatively smaller effect

that the (5-day running mean) filter has on the correlation - -between skill and

diagnostic spread suggests that the high-frequency variability of the forecast

skill is more connected to analysis errors (that pPresumably have large

day-to-day variability) than with any measure of the instability properties of

the large-scale flow. Such instability properties might (and will indeed be

shown later in the report to be) more correlated with the low—frequency

variability of the skill, as skill of previous forecasts and prognostic

.forecast spread also are.
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Let us now tuin to spread-skill and skill-skill relationships on_limited
areas. Fig 12 has exactly the same iayout as Fig 11, but refers to areas 1
(60N-30N, 0-30E), Western Europe; and 8 (60N-30N, .150W-120W), Eastern
Pacific, botﬁ using the 5 day mean filtered data. As can easily be seen, the
level of spread-skill correlation, althoughvsomewhat lower, is comparable to

the hemispheric values. The skill-skill correlations, however, show a
markedly different,behaviour in the two areas. Let us consider, for example,
the correlation between day 1 and day 6 forecast skill, with both forecasts
starting from the same initial conditions (that is the same forecast run).

This correlation (the only other example of 'diagnostic' correlation, as

opposed to 'prognostic', shown in both Figs 11 and 12) measures essentially

how good the low-frequency variability of the medium-range forecast skill is

as an indicator of the low-frequency variability of the short-range forecast

skill. The answer is quite different in different parts of the Northern

Hemisphere: .38 correlation in Western Europe and -.03 (esseﬁtially nil) over

the Eastern Pacific.

Given such a different result it is interesting to show the behaviour of such

correlation as a function of the limited area (and therefore of longitude).
Fig 13 shows this for filtered and unfiltered data; Two things appear
clearly: the three limited areas for which guch correlation is highest are
limited areas 1, 2 and 9; and the correlatiop itself is made evident in these
areas only after the 5-day mean filter hés been applied. Fig 4 showed the

location of such limited areas, together with the climatology of the high

frequency eddy activity during the Northern Hemispheric winter. We therefore

deduce that the short-range forecast skill is an indicator of medium~-range

forecast skill only in those areas of the Northern Hemispheré where the

high-frequency (mainly baroclinic) eddy activity is lowest.

If we now £urn.to the spread-skill relatiohship and to its longitﬁdinal
dependence (Fig 14) we can recognize again fhat the prognostic spread-skill
relationship shows a marked sensitivity to the 5-day filter (it exists 6n1y
between the low-frequency variability parts of both spread and skill). The
diagnostic spread-skill relationship, on the contrary, in addition to being
N higher (as noted before for hemispheric values) is little sensitive to the
&ia, use of the 5-day filter (again as noted before), suggesting the notion that

the diagnostic spread carries information about the effects of growth,
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propagation and dispersion of short rapge forecasts (and therefore_énalysis)
errors. Neither prognostic nor diagnostic spread-skill relationship seem to (ﬂi
be particularly sensitive to lonéitude (i.e. to the particular limited area)
save for a weak longitudinal trend, with (again) somewhat lowei values over

the Central Pacific and somewhat higher values over continental Europe.

It should also be mentioned that spread-skill and skill-skill correlations

were also computed between different limited areas and at différent time lags.

The results were rather disappointing and‘showed that, almost invariably,.the

highést correlations are to be found between quantities computed on the same

limited area and at the same time. Therefore when skill spread correlations -
are computed for the (independent) winter 1986/7 they will be correlated using

the same regions. ’ ’ ) -

To summarise the results of the skill-gkill and skill-spread relationships, we

conclude that

a) regarding the low-frequency variability of the skill (and spread), the
skill-skill correlation is fairly good hemispherically, but on limited
areas the signal can be seen clearly only in those regions not dominated (.
by baroclinic activity (areas 1, 2 and 9), while the skill-spread o
correlation is higher (both hemispherically and on limited areas) and
shows little longitudinal dependence. V

b) regarding the high~frequency (day-to-day) variability of the skill,
there are indications that it might be connected to analysis errors -
this hypothesis should be confirmed by analyzing the relationship
between medium-range skill and very short-range forecast error patterns.
Work is already under way along this line. - ‘

4.2 Forecasting the forecast skill for 1986/7 and operational
implementation

In this section we present some graphs of attempts to 'predict' the skill of
forecasts of the winter 1986/7 using the variety of predictors discussed
above. We shall concentrate entirely on predicting the day 3,‘6 and 9 RMS
error for regioné 1 (60N-30N, 0-30E) and é (60N-30N, 150W-120W). In'eaqh
graph the dashed line shows the actual forecast .skill with 5-day running mean,
the solid line shows the predicted skill. The correlation between actual

skill and regressed skill for each predictor set is given in Table 3-5.

ECMWF/SAC(87)8 ‘ 14



LoL

One final predictor whose skill we have indicated in Tables 3-5 is.the
prognostic equivalent of the persistence erxor diagnostic discussed above.
Specifically we have calculated the RMS difference between the day n forecast
field and the initial analysis in the appropriate region ('RMS tendency') and
correlated this against skill. - Note that for day 3 this is a poor indicator
of sgkill in region 8 - the model is good at forecasting changes in flo& at
this range. >However, at day 9 itvis a much better indicator - with a
correlation of .42 in region 8. There are some encouraging preliminary
results that the RMS tendency of ten-day mean forecast fields may be a good

predictor in the extended range (see, for example, Molteni et al, 1987).

Fig 15 shows graphs of the predicted and actual scores for day 3 RMS over
regions 1 and 8,'fcr the three predictor sets. As indicated in Table 3 the
highest level of skill is achieved by ‘the spread indicator in region 1 and the
EOF indicator in region 8. The day 1 forecast error is a good indicator of
skill in region 1, less so in region 8, consistent with the discus51on in
Section 4.1. the in Fig 15 that there is no obviously strong correlation

between the predictor sets, indicating some degree of independence.

Fig. 16 shows graphs of predicted and actual scores for day 9. BAs shown in
Table 5, the spread indicator is the most skilful in region 1 whereas RMS
tendency is most skilful, and EOF and spread indicators equally skilful, in

region 8.

The relatively.pcor performance of the EOF predictor in region 1 may indicate
that the training data is insufficiently homogeneous to give reliable results.
As discussed in Section 3, the factor structure constants for skill in region
1 suggest that forecasts which develop anomaly patterns consistent with the
model systematlc error may be relatively unskllful. However model systematlc
erroxr changes as a result of improvements to model formulatlon.v In '
particular, only during the last year (1985/6) of the training period was the
model horizontal resolution the same as that for the independent test year.
(1986/7) . It was therefore decided to run, in addition to the six year
regreSSLQn, a regre551on using just the data for 1985/6. 0f course the

penalty for using a more homogeneous dataset is its relative shortness.
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Table 4 shows correlations between predlcted and actual skill at day 6 for
both regressions for N=23. It is clear that the predictions using 1985/6 data
are more skilful than those using all six years for -both regions. Whether
this is a reliable result will depend on analysis of the forthcoming winter.
It is also interesting to note that when a réduced (N=9) predictor set is
used, the skill of the regression using 1985/6 data is reduced, both for
regions 1 and 8. This suggests that problems of oﬁerprediction are not

occurring with N=23.

Predictions for day 6 are shown in Fig 17; As above, for region’1 the
correlation between predicted and actual skill using spread is superior to the
EOF prediction using 1985/6 data, though for region 8 it is inferior. For
region 1 it is interesting to note that both spread and flow pattern
predictors capture the poor forecast skill,around day 40. However, they
subsequently disagree after day 40. The skill of a day 1 forecast initialised
1 day before the day & forecast, whilst correlating reasonably Weil with
observed skill at day 6, has failed to predict the poor fofecasts near day

40.

It would appear that all techniques show some promise as potential predictors,
and the most obvious conclusion is that some combination of them may prove
optimal. For operational implementation we shall attempt to do this through a
probabilistic categorical approach. First of all the distribution of each
chosen predictor (eg spread, day 1 forecast, and rotated EOF coefficient) will
be divided into five equally likely categories (much above average, above
average, average, below average, and much below average), based on data for

1985/6 and 1986/7, when the T106 model was in operation.

Secondly, contlngency tables will be constructed for each predictor showing
the probabillty that a prediction in category i corresponded to a forecast
error in category j. The weight that one ‘predictor is glven relatlve to

another can be determined essentially by the trace of the contlngency matrlx.

In order to consider how this procedure would give a probabilistic prediction
of forecast skill, consider the following hypothetical examplé where we use
two predictors A and B, whose contingency tables in terms of a tercile .

categorisation are

ECMWF/SAC(87)8 A 16



forecast error category

.30 .01 .01
predictor .02 «30 .02
category

.01 .02 .30
errof category
.20 .08 .03
predictor .10 -.20 .10
cateogry
.03 .05 .20

A is a better discriminator than B, and we will weight predictions from A by

the factor

(-3 + -3 + 03) - -33

T - .33 = -8

and predictions from B by the factor

(-2 + '2 -+ -2) - -33

7 - .33 = .40

(If we had decided to include a third predictor C whose contingency table had
elements each equal to .11, i.e. no discrimination, its weight would be equal
&~ to zero). Now suppose, for a given operational forecast, predictor A gives
category 3 (ébove average) and predictor B gives category 2 (average). The

probability of the three categories of forecast error are

~ .03 .24 .10
.85 .40 : .
8% + .40 (o8] + (-85 + .40) x-[.60] = [.23]
.90

.15 .66

ie a probability of 10% of a below average forecast, 23% of an average

forecast, and 66% of an above average forecast.

This approach is at present under development, and, it is hoped, will be

implemented for the winter season 1987/8.
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5. A POSSIBLE PHYSICAL MECHANISM FOR MEDIUM AND- - o
' EXTENDED-RANGE FORECAST SKILL VARIABILITY ) ( 5

In this section we shall discuss.a possible mechanism that might explain the
dependence of~forecast skil1 on the modes of variability illustrated in

Figs 6 and 7. Broadly speaking\céhdidate meéhanisms could be classified as
those related to systematic deficiencies in model formulation, and those |
related to intrinsic loss of predictability of the atmospheric flow. Indeed
the existence of model systematic errors can give rise to a “trivial'

relationship between forecast skill and variability in forecast flow.

Consider, for example, a model with no predictive skill and a climate drift

Ac(t) where t is the férecast verification time. Clearly, over a large enough
sample the RMS error of those forecasts which are close (in an RMS sense) to
the observed climate will be smaller than those which are further away. Hence
forecasts with anomaly - AC(t) (relativé to the model climate) will over a

large sample, have smaller RMS error than those with énomaly + Ac(t).

Fig 18 shows the ECMWF‘model mean (or systematic) day 9 wintertime error,

from 1980/1 to 1984/5. If the PNA-like mode of variability shown in Fig 8

correlated strongly with this mean error pattern, there would be strong prima
facie evidence that variability in the impact of model systematic errors was
the dominant mechanism explaining the results correlating PNA mode and
forecast skill. However, it can be seen that the principal anomaly centres of
the PNA mode are not in phase with the centres of maximum syétematic error.

On the other hand, as discussed above, there is some correspondence between

Fig 18 and the mode shown in Fig 7, correlating with European. scores.

In order to study the stability characteristics of flow patterns associated
with either skilful or unskilful forecasts, it is worth recalling that in the
medium and extended range, forecast errors are dominated by large-scale
guasi-stationary patterns (e.g Wallace et al, 1983).‘ Simmons et al.(1983)
have shown that the climatological zonally—vérying flow is bafotropicalLy
unstable to just such large-scale guasi~-stationary modes. Therefore, in'o:der
to test the importance of wvariability in the intrinsic predictability of
forecast flows, thelﬁarotropic stability of basic state flows which differ
from climatology by either the subtraction or addition .of the anomaly field

shown in Fig 7 was studied. These two basic states are shown in Fig 19. - (‘
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(More precisely these represent BOOﬁb sfreamfunction fields formed'by adding
to a climatological 300mb streamfunction field, either minus (Fig 19a) or plus
(Fig 19b) the geostrophic streamfunction anomaly formed from Fig 2, scaled by
the density factor 5/3). One can see that with the mode subtracted, (basic
state B~), the east Asian jet extends across the Pacific and is weakly
diffluent over the east Pacific. The jet is then steered north by tﬁe
enhanced Rockies ridge. With the mode added (basic state B+), the jet is more

strongly diffluent over the central Pacific.

In order to present results in a way that corresponds most closely with the

hypothesis that the variability in skill is related to the rate at which
initial errors grow, we show in Fig 20 results from two initial value
problems, where in both integrations an identical disturbance was introduced
at 30N, 120E. (Similar types of initial value problems were ;eported by
Simmons et al, 1983. As discussed by these authors, the quasi-stationary '
growth of an initial disturbance can be interpreted in terms of its projection
onto the unstable normal modes of the basic state flow. Readers unfamiliar
with this type of calculation, and its interpretation are therefore referred

to Simmons et al for details.)

Fig 20 shows the model streamfunction response at days 2, 4 ,9 and 30 for the
two basic states. At day 2, the initial disturbance is seen propagating
downstream and the effects of the difference in basic states is small. At day
4 the disturbance has propagated further downstream, and, for examéle the
effect of the enhanced Rockies ridge in the basic state B~ ¢an be seen
steering the disturbance to the north. However, the major difference is the
amplitude of the disturbance centre over the central Pacific. By day- 9, this
difference is more clearly marked; the downstream propagating wavetrain has
largely dissipated and a quasi-stationary unstable mode is growing in the
central Pacific. There is alwost a factor of three differende in the
ampli£ude of the central Pacific response at day 9 between B- and B+. :This
difference continues to grow throughout the thirty day integration; by day 30
there is essentially an order of magnitude difference in the response between

B- and B+e.
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A detailed analysis of the normal mode structure of B~ and B+ will appear
elsewhere; however, relative'to B-, the amplitude of the most unstable normal
mode is wel; localised in the Pacific jeﬁ diffluence region. Small scale
perturbations, as they propagate through this region, project significantly
onto this normal mode. With basic state B+ the amplitude of the most unstable
normal mode is more uniformly distributed around the hemisphere, and localised

perturbations project relatively weakly onto this mode.

In addition to these results, it should be remarked that Simmons (1987)fhas
studied the normal que structure of the monthly mean flow for January 1981,
and finds significantly smaller e-~folding times for the most unstable mode

compared with that for a climatological flow.

Of course, it is not possible to claim any quantitative significance to these
results. For one thing, large-scale baroclinic instability wﬁuld alter the
grdwth rates of the modes (Frederiksen, 1986). However, the results are
sufficiently striking that it appears quite possible that the stability
characteristics of the two 'composite' basic states could explain the forecast
skill variability results above. Obervational evidence for the instability of

the PNA mode is presented in Palmer (1987).

It is possible that this technique could be ﬁsed as a dynamical method for
forecasting the skill of a medium or extended range forecast. For example the
ten day mean field of a given forecast could be used to define a basic state,
and the day 1 forecast error could be used as the 'initial' perturbation.

Such a technique would combine dynamically the correlations between forecast

flow patterns and short range forecast error with skill. Work to explore this

possibility is underway.
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6. CONCLUDING REMARKS

Three types of question motivate preaictability research at ECMWf; firstly,
to what extend does interannual variability in the.atmospheric general
circulation.influence'the skill of the forecast, secondly can the observed
variability in forecast skill be predicted,'and thirdly, what are the

dynamical mechanisms that give rise to variability in forecast skill?

With regard to the first question we noted that in regions of large
low-frequency atmospheric variability (only) there were substantial
year—-to-year correlatlons between day 9 forecast error and day 9 persistence
error. Furthermore, differences in model error between years with similar
persistence error but different model formulation were substantially smaller
than differences in model error between years with similar model formulation
but different persistence error. We'can therefore conclude that interannual
variability in the atmospheric general circulation is dominant in accounting

for year-to-year variability in regional forecast skill.

To determine possible predictors for a scheme to predict forecast skill, we
have investigated descriptions of forecast and initial flow patterns
correlated with forecast skill, consistency between consecutive forecasts, and
the skill of a short range forecast verifying on the initialisation date of
the forecast whose skill we wish to predict. Each of these predictors
appeared to show useful skill when applied to the winter 1986/7, and a
probabilistic approach to combining these predictors was described. It is
hoped that this approach will be used to provide real-time estimates of

forecast skill for the coming winter.

Tt was noted that the flow pattern predicted by the regression analysis to be
most strongly correlated with day 9 forecast skill over the Pacific region was
similar to the Pacific/North American (PNA) mode of atmospheric low-frequency
variability. It was noted that variability in extended range forecas? skill
also appeared to be associated with the signed amplitude of the PNA mode.
Using a barotropic model with two basic states with equal and opposite PNA
mode anomalies, it was shown that initial perturbations can grow much more
strongly on basic states with one sign of the PNA mode than the other. This.

suggests that a possible mechanism to explain some of the results described
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above is in terms of (relatively slow) barotropic instability of the large

scale flow, and its dependence on the signed amplitude of the PNA mode. It (ﬂk

is possible that such barotropic model integrations could provide a dynamlcal
tool for predlctlng, operationally, forecast Sklll. '

Research into these three areas is continuing.
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‘Table 1a

Region ; no time filter * with S5-day mean filter

1 .53 . .72

2 .45 ;64

3 .41 | | .61

4 .41 , .65

5 43 T

6 .40 _ | .66

. 7 .43 .64
" 8 «51 .69
R o 44 .69
10 .38 ’ .55

11 .38 : - .59

12 .52 .71

Table 1b

Region 1

day 3 day © day 9

46 EQOFs .78 «75 - .72

18 EOFs .68 .66 .64
‘ Region 8
46 EOFs .66 65 - .69
- 18 EOFs .48 .50 - .54

s _mTable 1 Correlation between regressed scores and actual scores using forecast
and initial data from 1080/86. Day 6 RMS a) for 12 equal area
regions (see Fig 4. b) For region 1 and 8; days 3, 6 and 9 using

N=23 and N=9.
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Initial date Anomaly correlation "~ PNA index

(fn
01 January 1977 ~ .81 T ‘150
01 January 1978 o .68. - . 120
01 January 1979 ‘ .42 ' 20
16 January 1979 " 57 ’ -30
01 January 1980 ‘ «52 -10
01 January 1981 71 210
01 January 1982 .49 -60

01 January 1983 A .83 190

Table 2 1Initial dates, 30 day mean (bias adjusted) anomaly correlations, and
amplitude of the observed monthly mean PNA index for 8 extended range

forecasts, as reported by Miyakoda et al (1987).
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Predictor Set Correlation

Region 1 Region 8
EOF regression using 1980/6 . W16 ;‘ ‘ : .42
training data -
day 3/day 4 prognostic spread. .57 v. .31
day 1 prognostic forecast error 42 .16
RMS tendency .14 -.28

Table 3 Correlation between actual day 3 RMS errors over regions 1 and 8 (see
Fig 4), for the winter 1986/7 using a variety of different predictor
sets (5-day mean filter applied). .
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Fig 1 Anomaly correlations of height for 1000-200 mb and the extratropical
and 10-day forecasts performed from

Northern Hemisphere for 3—,.7-,
initial dates within the month of November 1983.
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Fig 2 500 mb RMS error of model forecasts. Full line - averaged over 7

winter periods from 1980/1. Dashed line - RMS error of those
forecast with above average skill. Dotted line - RMS error of those

forecasts with skill one standard deviation above average.
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ECMWF FOREGCAST SKILL
NORTHERN HEMISPHERE

Forecast Day on which the 500 mb
Anomaly Correlation Reaches 0.8

Forecast Days

b 3
LEGEND
12 Month Moving Average |
1 x Monthly Mean
4 NS AN LA R AR R N R AR R R R R ] Iy R R AR R IR R LA R LR SRR A RS R AN RERLRARLARA)

1980 1981 1982 1983 1984 1985 1986 1987

Fig 3 Monthly and 12-month moving average values of forecast day on which
' the hemispheric anomaly correlation of geopotential height (500 mb)
falls to 0.6.
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500mbZ

Fig 4 Northern Hemisphere wintertime standard deviation of 500 mb

geopotential height (%2 ). Contour interval 5m.-

Blackmon band-pass
filter.

Periods retained between 2.5 and 6 days (a) and larger than
10 days (b) - limited areas where skill scores have been computed are
superimposed (1 to 12, 30° longitude width), . (From Lau et al, 1981).
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Fig 5 Difference in 500 mb RMS error in 12 regions between the winter
1986/7 and the winter 1985/6.

ECMWF/SAC(87)8



G- . Mo r
a) 60 N-I0H 010 E b) 6O'N.30'N 100.150W
150 |- 1 1o |-
7
. 3 <
' : s
5 Mot . 5 Mo 7
2 3 4
H 3z ¢ 1t
2 E]
120 I s 120
100 1 1 L ! 1 1 t00 ! 1 | 1 1 i
100 120 140 160 180 200 220 00 120 4o 160 1o 200 220 -
Prrsistonca erar Pensistence srror
180 p— 180
c) 60'N-30°H  6O'W-30°W d [- GON-30°N  120°E-150°E
160 |- 180 |-
51 . .
5 . 2 §
H 4 1
3 M40} FRad od
2 7 a H
E z
6
2
1204~ 120 ]~
! 7 6
3 5 ‘/
100 L 1 I I 1 ! 100 1 41 I 1 1 ! v
100 120 140 180 180 200 220 100 120 140 160 0’0 200 220 N
Persisience error - - Persistanca error
80 -
[ 60°N-30°N 0360
160 -
H
H
< Mol-
] 1 2
H
4 5 -
7 3
1203~
6
j00 1 1 L 1 H -
1w 120 140 160 180 200 220

Perslsienca siror

Fig 6 Scatter plot of winter mean day 9 500 mb height RMS error against the
day 2 500 mb height RMS error of a persistence forecast. 1 = 1980/1,
2 = 1981/2...7 = 1986/7.
a) 60-30N, 0-30E
b) 60~30N, 180-150W
c) 60-~30N, 60W-30W
d) 60-30N, 120E-150E
e) 60-30N, 0-360E
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. Fig 8 As Fig 7 but for region 60-30N, 150-120W.
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Fig 9 Observed 200 mb streamfunction anomaly (x 1
1977 and January 1981. From Climate Analysis Center archives.

ECMWF/SAC(87)8

305

06 m2g~1) for January



Correlation

Day

Fig 10 Correlation between forecast skill and RMS observed anomaly (full
" 1lines) and between forecast spread and RMS observed anomaly (dashed -
lines) as a function of forecast time.
Bold lines: ZAM is used to measure forecast skill and spread.
Thin lines: RMS is used to measure forecast skill and spread.
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Fig 11 ~RMS forecast error - day 6 forecasts correlation with forecast spread
and previous forecast skill. 600 winter days (1980-81 to 1985-86).
Northern Hemisphere - No filter (top) — 5 day filter (bottom).

_ Diagnostic correlations are encircled. For explanation see text.
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Fig 12 RMS forecast error - day 6 forecasts correlation with forecast spread
and previous forecast skill. 600 winter days (1980-81 to 1985-86).

Limited areas 1 (top) and 8 (bottom) - 5 day filter is on.
- Diagnostic correlations .are encircled. - For explanation see text.
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Fig. 13 Correlation between day 1 and day 6 forecast skill (RMS error) with

~ and without 5-day mean filter as a function of longitude (limited
c ' area. The black dots on the left represent hemispheric values.
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Fig 14 Correlation between day 6 forecast skill and both prognostic (day
6-7) and diagnostic (day 5-6) forecast spread. Bold lines and large
dots: prognostic spread. Thin lines and smaller dots: diagnostic
spread. ‘Full lines and full dots: 5 day running mean filtered data.
Dashed lines and circles: unfiltered data. The dots on the left

represent hemispheric values.
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DAY 9 1880/5 FORECAST ERROR

Mean error of the day 9 ECMWF winter forecasts from 1980/1 to 1984/5

sample.

Fig 18
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h Fig 19 300 mb streamfunction basic states defined by subtracting (B-;
Fig 19a) or adding (B+; Fig 19b) onto a 300 mb stream function
climatology, the mode shown in Fig 7 associated with variability in

forecast skill.
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Fig 20 Perturbation streamfunction from integrations of a barotropic model
with the two basic states shown in Fig 19, and identical
perturbations positioned at 30N, 120E. The top diagrams are for
basic state B-, the bottom for B+. a) Day 2, b) bay 4, c) Dbay 9,
d) Day 30. For details see text ‘and Simmons et al (1983).
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