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1. Introduction

The possible existence of multiple weather regimes within large-scale atmospheric flows has
been the subject of a number of recent theoretical works. The observational evidence of such
regimes relies on much less material and is essentially based on the subjective impression that
large amplitude persistent anomalies, such as the blocking pattern which invigorates the mid-
latitude winters, require a specific explanation. Although this appears sufficient to initiate a the-
oretical investigation, it is also desirable to possess a better characterization of weather regimes
which does not only encompass extreme cases and to establish their separability. Most of the
present observational work on anomalous flows is based on the use of scalar indices that are a
priori chosen. The sole case from which a clear bimodality emerges is a study by Hansen and
Sutera (1986) using a maximum penalized likelihood (MPL) technique applied to the estimate of
an index that is a combination of the amplitudes of zonal wavenumbers 2 to 4. This index how-
ever does not seem to be directly related to blocking. There is indeed a very small hope to cap-
ture the complex structure of the atmospheric phase space through an arbitrary univariate ap-
proach. Whatever is really the large-scale dimension of the climatic attractor, EOF analysis tells
us that at least ten independent modes are required in order to describe 50% of the low-fre-
quency variance. It would be in principle possible to generalize the MPL technique to a multi-
variate problem but we then have to face unrealistic computational costs and the requirement of
a much larger dataset than observations or even general circulation models can provide. Thus
strictly objective nonparametric techniques are hardly applicable to our problem.

Two alternate routes are offered: The first one is to incorporate some dynamical information
and to require that weather regimes are solutions of an equilibration problem. This approach has
been developed by Vautard and Legras (1987) (see also Legras and Vautard, 1987) and has
been successfully applied to the regimes of a baroclinic channel model. It however requires the
a priori knowledge of the relevant dynamical scales which has to be established independently
and remains a rather heavy tool. A second route uses cluster analysis techniques, in an attempt
at the recognition of preferred patterns. Such methods are widely applied in many fields in
which they provide useful exploratory tools. They have been seldom used in general circulation
studies but are employed in synoptic meteorology to relate synoptic maps to local weather ele-
ments (Key and Crane, 1986; Yarnal and White, 1987; Kalkstein, Tan and Skindlov, 1987).
The aim of this article is to show the potential of this approach in analyzing large-scale circula-
tion but also to discuss its difficulties.

Section 2 introduces to cluster analysis; a few general notions are given and the algorithm
used in following sections is presented. Section 3 describes the application to the baroclinic
channel model previously mentioned from which the qualities and the drawbacks of the method
can be discussed. Section 4 presents a preliminary study of the 500hPa geopotential over the
Atlantic region and Section 5 contains conclusions and further discussion.
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2 . Cluster analysis

Classification problems occur as one tries to identify patterns within a multi-dimensional
dataset for which each dimension corresponds to one of the measured variables. In our case,
the variables may be the amplitude coefficients of the geopotential at some sampling locations or
a truncated series of the associated principal components. If no obvious organization of the data
emerges but if an underlying structure is expected, there exists a wide set of techniques which
can help the investigator in partitioning the dataset. No attempt to compare the various methods
will be made here and we refer to Gordon (1981) and references herewith for a recent compre-
hensive review; see also Silverman (1986) for additional references. All methods first require
the definition of a dissemblance measure d between two points or between two groups of
points. For instance, one may use the the squared norm of the difference between two
geopotential fields. The main classification algorithms fall within two groups, the agglomerative
methods that generate a partition by a hierarchical sequences of grouping, and the iterative relo-
cation methods that generate an optimal partition by moving elements from one group to anoth-
er. The method used by Mo and Ghil (1987) and ours are of the second kind. Our algorithm is
fully described in Diday (1972) and in Diday and Simon (1976). It contains a stage of properly
so called cluster analysis and a second stage of typological grouping. The first stage consists in
a series of iterations trying to optimize an adequation criteria between a partition and its repre-
sentation. It can be summarized in the following way:

1] K kernels N; are generated and each one contains P points taken at random from the data

2] The barycenter GN; of each kernel is computed and the classes CL; are generated by
associating each data point to the closest kernel. The distance of an element x to a kernel N;
is defined as d(x,N;) = d(x,GN;) + var(N;) when d is a quadratic measure.

3] The barycenter GC; of each class is computed and the new kernels are generated by taking
the P points of the dataset that are the closest to GC;.

The steps 2 and 3 are repeated until the classification has converged. In the process a class is
suppressed when its cardinal is less than P after completion of step 2. If this happens, the ele-
ments of the suppressed class are attributed to the remaining ones. The representation of the
classes is given by their kernels and the algorithm can be shown to reach a local optimum of the
quantity

K
W =Y Card(CL;) [ var(CL;) + var(N;) + d(GC;,GN;) 1. | 1
i=1

So doing, we try to obtain classes that are as compact as possible but there is no warranty that
the optimum W is global. Starting from different seeds, the final number of classes may vary
and for the same final number, they may possess different boundaries from one classification to
another. A first improvement is to define a strong class as being the intersection of all the real-
" izations of the same class for a set of independent classifications. By realization of the same
class, we means the classes that are sufficiently close from one classification to another but dif-
fer in their details. Two classes CL; and CL; taken from two independent classifications are
found similar if

Card(CL; N CLy)/ Card(CL) =X , @)

where X is a given threshold. If a bijection exists between the two classifications based on this
criteria, we say that they are two realizations of the same partition and the set of strong classes
associated with these two classifications consists in the intersection of the K couples of similar
classes. Otherwise, we reject the classification that possesses the largest value for W. The
strong classes associated to N classifications result from the intersection of N-1 similar classes.
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We may remark that the classification with reduction of the number of classes are automatically
rejected and that the reference classification is the one among N with the best optimization crite-
ria W. The number of rejected classifications increases with X which has to be adjusted for
each particular problem. In the sequel, X will generally be equal to 60%. When they are
sufficiently big, the strong classes are representative of the core of the average classification. A
measure of the stability of the strong class SC; is given by

S =N Card(SC)) / Y, Card(CL(), 3)
TN

where CL;(j) is the j-th realization of the class CL;. In practice, S tends to a limit when N is
sufficiently large (from 30 to 50 in the sequel). The largest is S, the more stable is the strong
class. When S is zero, we say that the class is mobile.

This approach however exhibits a few drawbacks which requires further developments :
- The number of strong classes is directly linked with the initial number of kernels.
- The rejection of a part of the classifications missuses the available information.

- The set of strong classes is not a partition of the dataset. In particular, the clusters of points
always grouped together but in different classes following the classification are lost.

A more elaborate typology can be based on the analysis in strong patterns. A strong pattern
SP; is a set of elements that have been always grouped together over N classifications. The set
F of all strong patterns thus results from the successive intersections of the whole N classifi-
cations and is a partition of the dataset. But this partition is now too fine for most practical pur-
poses and we need an ultimate stage of grouping. At this point, we define the dissemblance

5(SP1-,SP]-) between two strong patterns as the number of times they have not been grouped in
the same class. We then link in the same group all the strong patterns that possess a neighbor

within the group that is closer than g as measured by 6. For each g a partition of F is so defined
and it can be shown that these partitions all together form a hierarchy. The weak patterns WP;
are defined as the particular partition of F corresponding to a chosen level g of the hierarchy!.
We choose the value of g in order to obtain some sets that are as close as possible to the strong
classes . The homogeneity of a weak pattern can be measured by three quantities:

-The average distance between the strong patterns belonging to the weak pattern:
A(WP) = ) &SP;,SP)) / n(n-1), )
>

where SP;, SP; € WP and n is the number of strong patterns within WP.
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-The percentage of cases for which two strong patterns of the weak pattern are more than g
times in different classes:.

B(WP) = zb(SPi,SPj) / n(n-1), )]

i>j
with b=0if S(SPIJSPJ) < 4d0
and b =1if 8(SP;SP)) > qp.

B measures the chaining effect of the algorithm which mziy group in the same pattern some
elements being far apart but connected by a chain of close neighbors.

-The degree of weakness of the weak pattern

CWP)= 2  >{I-8(.SP)IN} [ n Card(WP). ©6)
,:.-‘,H:.'-‘
xe WP
The weak pattern will be the more homogeneous when C is large. The maximum value C=1
is reached when the weak pattern is a strong pattern.

The three measures are complementary but C bears the advantage of taking into account the
size of the strong patterns belonging to the weak pattern.

3. The regimes of a baroclinic channel model

3.1 Generalities

The model to be used here is fully described in Vautard, Déqué and Legras (1987). It con-

sists in a two-layer baroclinic S-channel forced by a localized baroclinic jet superimposed to a
uniform shear. Fig. 1 shows the mean flow in the upper layer, averaged over a long integration
of 15000 days, in which the jet is visible in the first fourth of the channel. Figs. 2a and 2c
show that the instantaneous flow exhibits a number of propagating disturbances. In Fig. 2c,
they are superimposed to a large-scale dipole downstream of the jet. These two states are
respectively taken from two periods of zonal and blocking regimes. The two large-scale
patterns shown in Figs. 2b and 2d can be either obtained as solutions of a large-scale equili-
bration problem including the feedback from nonlinear transients (Vautard and Legras, 1987) or
by compositing the states with higher probability of persistence (Vautard, Legras and Déqué,
1987). Fig. 3 shows the two-dimensional histogram of the first two principal components of
the streamfunction of the large-scale part of the flow! and the location of zonal and blocking
regimes in this diagram. The first two EOFs, not shown, respectively exhibit a modulation of
the jet and a downstream dipole; they cumulate 50% of the large-scale variance.

1 The large-scale flow is défined by the spectral truncation of longitudinal wavenumber < 3 and of transverse
wavenumber < 2.
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Fig. 1: Contours of the upper-layer streamfunction averaged over 15000 days of simulation.

3.2 Classification

We first tried to classify individual maps that were each described by a small number of
principal components but we soon realized that weather regimes are also characterized by their
temporal evolution. We then decided to consider elements which incorporate both spatial and
temporal information. Each element of our dataset, called point-duration, is a series of principal

components taken at regular intervals 7 over a period of length T. In the sequel, we discuss

more specifically the case with two components, T = 13 days and 7 = 4 days. Thus each point-
duration is a vector with 8 components. The chosen metric is the Euclidian distance in the space
of point-durations. Fig. 4 shows the projection of the strong classes onto the plane of the two
first principal components at day 7 for a partition in two, three and four classes using N=50
classifications. The characteristics of the strong classes are detailed in Table 1. The partition in
two classes is done along the direction of the first principal component which dominates the
total variance; only 4% of the points are lost at this stage. Passing from two to three classes
and from three to four classes, the new class is generated in the friction zone of the previous
ones. The fourth class combines a small cardinal and a weak stability. The instability increases
in the partition in five for which the fifth class is mobile. On the other hand, the cumulated
stability is almost stationary from 2 to 4 classes and then drops abruptly for five classes. We
retain the classification in four as a compromise between the stability of the description and its
capacity to resolve different structures. Comparing with Fig. 3, it is clear that the strong classes
tend to be rejected on the periphery of the cloud and that the central region is badly covered.
Maximizing the inter-class distance induces a stable grouping of strongly anomalous fields. On
the contrary, the point-durations of the central zone are submitted to a competition between the
different classes and may change their assignment from one classification to the other.
Consequently, they are almost surely not contained in any strong class.

Since about 42% of the classifications are rejected in the partition in four, we only use 25
classifications in the calculation of strong and weak patterns in order to keep a comparable
amount of information. Then the number of strong patterns is 1564, 58% of which,
corresponding to 6% of the dataset, contains only one point-duration. In order to reduce the
level of grouping and the computational costs, we suppress these unitary classes before
building the hierarchy. In addition, we also put a threshold on the weak patterns by considering
only those containing more than 300 point-durations. Comparing the results for gp=5 and
qo=8, we see that the covering of the strong classes by the weak patterns is better with gg=8
(96% against 85% ) but that the weakness C is smaller for gy=5 which thus combines a good
coverage of the strong classes and good homogeneity. Choosing gp=5 in the sequel, we obtain
9 classes with more than 300 point-durations. Their characteristics are detailed in Table 2 which
shows that they considerably differ by the number of included point-durations but that they
possess rather uniform properties of homogeneity except for WPg. Fig. 5a shows a schematic
representation of the weak patterns in the factorial plane. In reality, their shape is not circular
but they remain rather homogeneous, at least for the largest ones. This diagram allows to com-
pare the respective positions of the weak patterns and the strong classes. We thus notice a clus-
ter formed by the first four weak patterns and another one formed by the last two. This obser-
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2 CLASSES

3 CLASSES

4 CLASSES

5 CLASSES

SC1SC2

SC1 SC2 SC3

SC1 SC2 SC3 SC4

SC1 SC2 SC3 SC4

PC1 D1
PC1 D7
PC1 D13

PC2 D1
PC2 D7
PC2 D13

0.882 -0.531
1.004 -0.644
0.873 -0.538

0.020 0.000
0.020 0.002
0.080 0.005

CARD SC 5408 8960

LINE 1

LINE 2
LINE 3.
LINE 4
LINE 5
LINE 6

5626 9324

218 218
96.1 96.1
192.2
49
4%

1.306 -0.882 0.311
1.451 -0.964 0.218
1.367 -0.875 -0.005

-0.094 -0.061 0.119
-0.127 -0.238 0.327
0.025 -0.322 0.408
2740 4915 2251

3482 6740 4728

576 744 324
788 729 47.6
199.2
34

34%

1.447 -0.912 0.348 -0.435
1.542 -1.045 -0.215-0.448
1.246 -0.833 -0.663-0.828

0.083 -0.226 0.631 -0.682
-0.037 -0.518 0.847 -0.710
-0.155 -0.685 0.559 -0.350

1848 3384 2386 371

3141 4538 4838 2442
270 373 481 327
588 746 494 15.2

198.0

29

46.7%

1.595 -0.992 -0.130 -0.866
1.713 -0.913 -0.480 -0.438
1.350 -0.795 -0.642 -0.358

-0.398 -0.604 0.601 -1.302
-0.592 0.932 0.804 -1.200
-0.244 -0.784 0.551 0.007
717

1864 1434 300

2550 3646 391 2413
240 632 462
28.1 36.6 124
128.2
32
71.2%

352
51.1

6 first lines: centers of gravity of the strong classes on the first and second principal components at days 1, 7 and
13; units are normalized by the variance of each principal component

CARD SC: cardinal of the strong class

LINE 1 : average cardinal of the intersecting classes

LINE 2 : rms of the cardinal of the intersecting classes

LINE 3 : % of stability

LINE 4 : cumulated % of stability

LINE 5 : number of intersecting partitions

LINE 6 : % of nonclassified points

Table 1: Characteristics of the strong classes for K varying from 2 to 5, with 2 principal com-
ponents and T = 13 days '

Cs

C1 c2 C3 C4
WP1I 633 12 3.0 2.1 0.917
WPII 360 22 7.7 3.23 0.884
wpP I 781 18 9.2 3.20 0.890
WPIV 209 28 13.8 3.57 0.891
WPV 744 25 17.7 3.63 0.866
WP VI 1021 49 46.2 5.61 0.791
WPVI 3062 28 11.9 341 0.900
WPVII 335 12 7.6 3.15 0.896
WP IX 1622 27 54 3.28 0.906

C1: number of elements in the weak pattern

C2: number of strong patterns belonging to the weak pattern
C3: % of violation of the threshold, criterion B

C4: average distance between strong patterns, criterion A
C5: degree of weakness, criterion C

Table 2: Characteristics of the weak patterns for K =4 ,2 PC ,T =13 days and gg = 5.
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Fig. 2: Contours of the upper-layer streamfunction for a) an instanteneous flow taken
from a zonal sequence b) the zonal composite ¢) an instantaneous flow taken from a

blocking sequence d) the blocking composite
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Fig. 3: Two-dimensional histogram of the first two principal components of
the streamfunction of the large-scale part of the flow. B and Z marks show
the location of blocking and zonal regimes as established from the two

articles referred to in the text.
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Fig.4 : Density contours of the projection
of the strong classes onto the plane of the
two first principal components. First
component: horizontal axis. Second
component: vertical axis.

a) classification in two classes

b) classification in three classes

¢) classification in four classes
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vation agrees with the fact that the weak patterns 2, 3, 4 and 8, 9 are respectively grouped to-
gether for gp=8. Fig. 5b shows the same result for a multivariate red noise which possesses the
same covariance matrix and the same correlation at one-day lag than our original data. Here we
obtain 5 weak patterns with more than 300 elements which are grouped in a much more com-
pact way than previously. This is expected since the cloud of points (without time) is isotropic.

3.3 Persistent regimes

Two of the strong classes, the first and the second, are particularly stable (cf. Table 1). They
are respectively associated with the ninth and the fifth weak pattern. Fig. 6 shows the
composite of the point-durations at day seven for the ninth weak pattern. The flow is
characterized by a a strong stationary blocking dipole downstream of the jet. From one
sequence of point-durations to the other, the phase of the structure is very similar but the
amplitude varies. Fig. 7 shows the histograms of the first and second principal components at
days 1, 7 and 13 for all the point-durations of the weak pattern. It shows how stationary and
homogeneous the pattern is on the first direction and how badly localized it is on the second
one. The homogeneity is more visible on Fig. 8 which shows the evolution of the two first
components over normalized sequences! with a confidence interval containing 60% of the
population?. For the first principal component, the interperiod variance contains only 18% of
the total variance while it contains 35% for the second principal component. It is also interesting
to consider the composite of the first and the last five days of a sequence, shown in Fig. 9a.,
and to see the rather rapid onset and decay of the blocking. How the observed behavior differs
from a random noise can be tested by comparing with the fifth weak pattern of the multivariate
red noise. Fig. 9b shows the corresponding composite of the beginning and the end of a
sequence and establishes that the features of Fig. 9a are relevant. On the other hand, the average
of the composite is found significantly (95% level) more intense than for the red noise but the
variances of the two weak patterns cannot be distinguished at the same level. In other words,
the blocking pattern is a well defined local stationary structure with fast onset and decay, but its
variability does not differ from a red noise. A second class, the fifth, which is close to the
seventh on Fig. 5a, exhibits a stationary blocking pattern located slightly downstream of the
previous one.
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Fig. 6: Compoite of th sevent day of the point-durations belonging to WPg

A similar study that we are not going to detail can be conducted on the seventh weak pattern,
the composite of which at day 7 is shown in Fig. 10. The relative intraperiod variances of the
first two principal components are now 18% and 16% respectively, showing that the second
principal component contributes more effectively to the characterization of this zonal pattern
than it does for the blocking pattern. It differs also from the previous case by being less
stationary. Indeed, a slow eastward propagation can be detected on the second principal
component and can be proved to be significant. When the third principal component is

1 A sequence is a series of consecutive point-durations belonging to the same weak pattern.
2 The 95% confidence interval of the average is here approximately five times smaller.
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Fig. 7: Histograms of the first a) and the second b) principal components at days 1, 7 and

13 for all the point-durations of WPg. Mixed line: day 1. Solid line: day 7. Dashed line: day
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Fig. 8: Evolution of the first a) and the second b) principal components over a normalized

sequence of WPg. Solid line: average evolution. The confidence interval containing 60% of
the population is shown as the dotted domain.
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Fig. 9: a) Evolution of the first principal component sﬁdwing the fifteen days which preceed
and follow the sequences of WPq and the first and last ten days of the sequences. b) The
same for the fifth weak pattern of the red noise. '
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Fig. 10: Composite of the seventh day of the point-durations belonging to WP

Fig. 11: Same as Fig. 7 but for the

first component of WP,

2.0 g

1.0 peanien

b
a3 o

AT

0.0 poeixey

- i 1+ = ¢ it tn

R
o T
:

Fig. 12: Same as Fig. 9 but for the
first component of WP,

/
%
|
\
\
11

LA T R L N A A W S
v

Fig. 13: Composite of the begining (solid line) and the end (dashed line) of

the sequences of WP,

135



introduced in the analysis, the blocking pattern remains a fixed point of the classification while
the zonal pattern breaks into several patterns each corresponding to a different stages of a wave
propagation superimposed to the mean zonal flow.

3.4 Evolving sequences and temporal chaining

The temporal dimension of point-durations allows the capture of nonstationary events. Fig.
11 shows the histograms at days 1, 7 and 13 of the first principal component of the fourth weak
pattern. This pattern is the last one to be associated with a stable strong class. It is characterized
by a strong evolution of the average over the duration of the sequences. The composites of the
beginning and the end of the sequences, Fig. 12, shows that the interval containing 60% of the
population is particularly small and consequently that the feature is well defined. From the
corresponding streamfunction fields, cf Fig. 13, it appears that the pattern is an eastward
damped propagation which is suggestive of an intermediate situation between blocking and
zonal regimes. The first weak pattern exhibits a similar behavior.

The temporal chaining of the weak patterns is further investigated by counting the number of
point-durations that overlap two weak patterns. From the result of this analysis a temporal chain
which is summarized in the following diagram can be detected between five weak patterns:

63% 47% 52% 77% 16% 71% 76% 78%

G’ R [N G, [ <
9% <- T% 3% <-- 4% 22% <-- 21% 17% <-- 18%

with A - > B X : % of sequences of A thatend in B
X% <-- y% y : % of sequences of B that beginin A

x": % of sequences of A thatend in B
y': % of sequences of B that begin in A

This chain is completed by a direct bridge between the fourth and the seventh weak pattern:

38% 53%
R
3% Lrmmmm 4%

On the other hand, the weak patterns 2, 3 and 4 are very linked together:
-92% of the periods of WP, overlap 40% of the periods of WP,
-100% ----------------- WPy 63%

but it is remarkable that there is no dominating direction in this case. The strong dependency is
simply due to the proximity of these weak patterns.

Thus, there is a preferred temporal evolution from WP5 to WPg_passing through several

regimes, among which the zonal pattern examined earlier, over an average duration of 50 days.
The underlying mechanisms is apparently the eastward propagation of a damped large-scale
wave during the transition between blocking and zonal flow. It is not possible to find a pre-
ferred chaining leading back to a blocking pattern. Consequently, we expect that the decay of
the blocking is more predictable than its onset in our model. It is interesting to notice that the
operational forecasts of the real atmosphere behave exactly in the same way (see Tibaldi in the
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same issue). The coincidence may be fortuitous and even misleading, see Section 4.3 below,
but it is clear that cluster analysis offers a way for further investigations.

4. Analysis of the geopotential at 500hPa
4.1 The dataset

The data used in this study are the daily records at 12H TU of the geopotential at 500hPa
from the analysis of the ECMWF and for the period 1980-1985. As usually done (Hoskins,
Simmons and Andrews, 1977) we have divided the geopotential by the Coriolis parameter in
order to work on an approximation of the streamfunction field. Having still in view the
blocking phenomenon, we have limited our study to a regional domain centered over Northern
Atlantic ocean. Fig. 14 shows the average field over this domain for the period 1980-1985. The
small central domain is the "ATL" zone where Dole and Gordon (1983) observe a large number
of persistent anomalies. Our domain encompasses also the jet area over North America and
Western Europe. In order to apply our analysis to a large enough dataset, the total year was
used after removing the seasonal cycle. We are aware that this is a rather questionable
procedure since the seasonal cycle computed over the six years is itself dependent of the
occurrence or the nonoccurrence of anomalous flows. as a matter of factour seasonal cycle
exhibits around ay 120 a rather large deviation from the previous and the following periods. We
do not apply any filtering to the data except an interpolation to a 5° grid.

Fig. 15 shows the pattern of the first EOF which describes 13.7% of the total variance and
is associated with a modulation of the jet. 50% of the total variance is contained within the five
first EOFs. They all show large-scale structures but their spatial configuration is largely due to
the imposed orthogonality, so that it is not useful to further comment upon them. Owing to the
relatively small amount of data, we have been able to take into account a large number of
principal components in our analysis, up to 30, but our similarity measure is always dominated
by the contribution of the first modes.

In the sequel we will use a representation of flow patterns based on the addition of the
anomaly and the average field shown in Fig. 14. This may introduces a bias if the anomaly only
results from the compositing of cases belonging to the same season. We have also used an
other procedure in which the plotted field is the average over the selected cases of the anomaly.
Because all our classes are well distributed around the year, we did not find noticeable visual
differences between the two procedures.

4.2 Spatial classification

We first describe the results of a spatial classification of individual weather maps without
using the temporal dimension. The grouping in strong classes and in strong and weak patterns
is obtained from a series of 50 independent classifications initiated with random seeds. The
unitary strong patterns have been eliminated and the threshold gg is chosen equal to 15. The
percentage of rejected classifications in the generation of strong classes is found minimum
(below 30%) for a classification in four and a number of principal components larger than 15.
We retain these parameters as optimal and the results of the classification in four with 15
principal components are shown in Table 3. The average duration is computed from the length
of the sequences of consecutive days included in the same class. Although the distribution of
sequence lengths does not show a preferred maximum but is rather close to an exponential
decay law, the average duration allows to compare the persistence of the various classes. Notice
that the stability of the strong classes is much smaller here than for the quasi-geostrophic
model. Another major drawback of this preliminary analysis is that the unitary strong patterns
contain about 60% of the total points. By eliminating them, we concentrate our analysis on the
strongly anomalous flow on the periphery of our dataset. A similar step was applied by Mo and
Ghil who defined a "nonrecurring cluster” taking about two thirds of all analyzed maps.
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Fig. 14: Average field over the study domain. The small central square is the "ATL"
region of Dole and Gordon (1983)

Fig. 15: First EOF of the geopotential after removing the seasonal cycle.
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A striking fact here is the agreement between the second strong class and the sixth weak
pattern (more than 90% of the elements of the former belong to the later). Furthermore, this
strong class is the one that possesses the longest average duration and the highest percentage of
stability, and this weak pattern is the most homogeneous (no chaining effect in spite of a large
cardinal). We may thus consider that this class is well characterized. The corresponding field,
Fig. 16¢, differs significantly from the average flow with a dipole located on Labrador and
South of Greenland and a southward displacement of the jet . The variance map, Fig. 16d,
shows that the Southern Greenland anomaly is the most typical feature of this class (a region of
the pattern is well typified when the variance of the class is small there).

Strong classes . Weak patterns
"% of stab. Cardinal  Var.(*10°6) Aver. duration B (% of violation of qg)
1 21.0 107 6.63 20 WP1:0.01 WP5 : 0.05
2 48.8 228 8.84 40 . WPZ 1 0.00 WP6 :0.00 .
3 18.4 95 6.03 16 WP3 : 0.07 WP7:022
4 322 225 730 24 WP4 : 0.00

Cardinals of the intersections WP/ SC

WP 1 2 3 4 5 6 7
scld Cad 171 41 87 102 91 258 87
1 107 14 58
2 228 212
3 95 : 38
4 225 62 41 54

Table 3: Results of the classification in 4 with 15 principal components.

The third strong class and the seventh weak pattern show a very different situation.
Although they only share common points together, the number of these latter is small. They
also exhibit the lowest stability and the weakest homogeneity. They thus appear to be much
less typified than in the previous case. The corresponding field, Fig. 16e, is a broad ridge over
the Atlantic inducing a northward displacement and a reinforcement of the jet. The trough is a
characteristic of this pattern, being associated with the smallest variance, Fig. 16f.

The first and the fourth strong classes possesses intermediate percentages of stability and ap-
pear as relatively homogeneous classes, the properties of which can be specified by the analysis
in weak patterns. The fourth class shows a strong ridge over Western Europe, Fig. 16g,
associated to a northward displacement and a well marked weakening of the jet. We may thus
denote this case as the blocking pattern. This class is the one for which the "averaging effect" is
the more visible: all the fields grouped in this class exhibit well defined ridges or isolated highs
but their location varies quite strongly (mainly in longitude from England to Eastern Germany)
and the intensity of the average ridge is somewhat underestimated. The three corresponding
weak patterns show this phenomenon: the field of WP, is a ridge oriented Germany-
Scandinavia, the field of WP, is an isolated maximum extending from Scotland to Sweden, and
WPs is a ridge from Southern Ireland to Scotland. The variance map, Fig. 16h, shows that the
characteristic part of the blocking is its oceanic and British component, the part located over
continental Europe being more variable.

The first strong class and its two weak pattern dividers possess an almost perfectly zonal

structure, Fig. 16a, extending across the ocean and Western Europe. The jet is reinforced
downstream of its climatological position. The striking point is the location of the minimum in
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the variance map, Fig. 16b, between Scotland and Norway. This feature might be due to the
fact that in this situation, the synoptic perturbations travel on the south of this region. .

A general property emerges from the variance maps: in all cases, the maximum is placed
over the Canada, in the North-West part of the domain. This area is a center of
high-frequency variability (Blackmon, 1976), but this latter does not induce a partitioning of
the atmospheric states since the various configurations of the atmospheric flow that have been
isolated by the classification are never characterized by typical values at this location. On the
contrary, the oceanic domain on the West of Ireland is always included in the area of small
variance and thus seems to be the best domain for the partitioning of atmospheric states. These
observations are consistent with the results of Dole and Gordon who found a large number of
persistent anomalies in the "ATL" region, cf. Fig. 14, and a small number over Northern
America. Although no temporal dependency is considered in our classification, it appears that
the properties of persistence are naturally conditioning the structure of atmospheric states.
Notice that the previous conclusions may look as contradicting the small average durations of
the sequences, cf. Table 3. Numerous long lasting anomalies are in fact interspersed with
~ transient bursts and are cut into several pieces by our analysis based on unfiltered data. The
difficulty was already mentioned by Dole and Gordon who applied a low-pass filter to their
original data. Finally there exists a domain of large variance over Southern Europe and Western
Mediterranea for the strong classes 3 and 4. A possible explanation lies in the Mediterranean
cyclogenesis which has been often linked with the occurrence of a ridge over the Atlantic or
North-Western Europe (e.g. Tibaldi and Buzzi, 1983).

4.3 Spatial-temporal classification

Point-durations are defined for the geopotential field in the same way as for the streamfunc-
tion of our quasi-geostrophic model. But the decorrelation times are now much shorter so that

we choose T=7 days and 1=2 days that are respectively the typical decay times of the large-scale
and the synoptic-scale autocorrelation function of the geopotential. The number of principal
components and the number of initial kernels are again adjusted to get maximum cumulated sta-
bility and minimum rejection in the generation of strong classes. The optimum was obtained
with the classification in four with 20 principal components.

Table 4 compares the strong classes obtained from the spatial-temporal classification and
from the spatial classification. Each strong class of one type intersects only one strong class of
the other type, thus showing that the same phenomena are identified in both analysis. However,
the intersection always contains less than 60% of the points of the intersecting classes. This is -
largely due to the effect of intermittent transients upon the classification.

15pcld — 1 2 3 4
20pc7d 4 Card. 203 214 120 246
1 107 65
2 228 134
3 95 25
4 225 82

Table 4: Cardinals of the intersections between strong classes obtained from spatial-temporal
and spatial classifications.

The characteristics of the strong classes and the weak patterns are shown in Table 5. The
average duration of sequences (for which only the central day of each point-duration has been
considered) is roughly doubling for each strong class with respect to its value in the spatial
classification. The average patterns of the strong classes, not shown, closely resemble those of
the spatial classification, cf. Fig. 16. As previously, the weak patterns perform a more accurate
classification than the strong classes. The three weak patterns 1, 4 and 6 are all in exclusive as-
sociation with a single strong class but the weak patterns 7, 8, 9 and 10 seem to divide the
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Fig. 16: Geopotential fields and variance maps associated with the strong classes of the
classification in four with 15 principal components. :

a) and b) geopotential and variance of the first strong class

c) and d) geopotential and variance of the second strong class

e) and f) geopotential and variance of the third strong class

g) and h) geopotential and variance of the fourth strong class
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Fig. 18: Same as Fig. 17 but for the

Labrador anomaly (SP4)

(SP1) of the spatial-temporal classification

at days

Fig. 17: Composite of the zonal class

a)l,b)3,¢)5,d)7
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second strong class associated with blocking circulation. Two weak patterns are not associated
with any strong class.

Pe s : .
rcentage of stability of SPs l}ézgnal) é’lg-)iock) ggr.lgge) . ?%Zabrado;)
Criterion B for the WPs:
1 2 3 4 5 6 7 8 9 10 .
0.01 0.00 0.08 0.00 0.13 0.01 0.00 000 000 0.07
Intersections SP /WP :
N wWP—> 1 2 3 4 5 6 7. 8 9 10
spl Cad. 196 46 61 & 35 161 81 104 62 40
1 203 X 149
2 214 X 75 76 26 10
3 120 76 X
4 246 186 X

Table 5: Results of the spatial-temporal classification in 4 with 20 PC and T =7 days.

The zonal class (SP;/WPg), Fig. 17, is the more stationary: the composite at different times
of the involved point-durations can be superimposed without any visual differences except in.
the North-West of the domain. The Labrador anomaly (SP4/WP), Fig. 18, is slowly evolving:
the configuration is maintained but the value of the maximum slowly decays from 5500m to
5400m. Since the variance at this location is 18000m?2 and the number of elements is about 200,
the estimation is done with an error interval £20m at 95% confidence level. The trend is thus
significant. The Atlantic ridge (SP3/WP,), not shown, and the blocking anomaly (SP2), Fig.
19, are both amplified up to day 5 and damped at day 7 but this is not found significant with
the same criterion. Further details are available for the blocking anomaly owing to its separabil-
ity into several weak patterns. These latter show various stages of blocking: WPg and WPy,
Fig. 20, appear as developing ridges over England while WP and WP, not shown, appear as
developing ridges over Germany and Poland. In addition, the weak patterns WP; and WP3
which do not intersect SP, appear as ends of blocking. In order to investigate the possible links
of this multiplicity (we possess four different onsets) with different types of blocking, we build
a contingency table, cf. Table 6, in which each entry shows the number of times there exists at
least one day belonging to WP; within the 7 days following a sequence of WP;. The six weak
patterns 10, 9, 8,7, 3 and 2 are linked by a chain going from WPjq to WP3 passing through
the other patterns but there is no way to separate several branches. The blocking anomaly thus
appears as a unique phenomenon which may largely fluctuate in phase.

Transitions between regimes are better studied by returning to the strong classes. Table 7
shows the number of cases of transitions to SP; within the 7 days following the sequences of
SP;. When a smaller delay is considered, almost no transition occur (2 with a delay of 3 days)
but a longer delay does not change the tendencies (Table 7 also shows the contingency table for
11 days). Although the number of events is too small to give a level of confidence, we may
draw the following results:

-All transitions do not have equal probability.

~The most frequent transition is SPy ---> SP (zonal > blocking).

-The transitions "blocking <---> Labrador anomaly" do not show a preferred direction.

-There are few transitions from the Atlantic ridge.

These results are summaﬁzed in the following diagram:
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d d

Fig. 19: Same as Fig. 17 but for the Fig. 20: Same as Fig. 17 but for the ninth
blocking anomaly (SP3) weak pattern associated with the blocking
anomaly
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The preferred transition between zonal and blocking regimes does contradict the already
mentioned difficulty in obtaining good forecast of blocking onsets (and as a subsidiary effect
the results of our simple model). The present results are too preliminary to eliminate the possi-
bility of an artefact and further study is required to clarify this point We however remark that
the number of cases involved in this transition is only one third of the total number of blocking
sequences and that the unpredictability of the other two thirds might give an average bad skill.
On the other hand, the predictability of blocking may also be linked with the good
representation of some smaller-scale precursors developing on a given large-scale flow,
suggesting that the well-known deficiencies of baroclinic activity in forecast models (Klinker
and Capalo, 1984) might be the source of the problem.

WP 1 2 3 4 6 7 8 9 10 ]
1 1 2 0 4 4 0 1 5
2 1 16 7 1 1 0 1 0
3 4 0 9 1 5 0 0 1
4 1 0 1 1 2 2 1 4
6 0 1 1 1 5 1 6 8
7 3 11 12 2 1 3 4 2
8 1 12 12 6 3 6 3 0
9 0 6 11 2 4 12 16 0
10 0o 7 4 1 2 13 11 13

i

T(i,j) = number of cases for which there exists at lest one day belonging to WPj within the 7 days following a
sequence of WP;

Table 6: Temporal chaining of the weak patterns

Tab. 7a : at 7 days Tab. 7b : at 11 days
SP 1 2 3 4 Sp 1 2 3 4
1(zonal) 13 3 0 1 15 5 3
2(block) 3 8 6 2 8 9 11
3(ridge) 1 4 1 3 4 7 4
4(Labrador) 7 6 0 4 13 10 2

Total number of periods: SP1: 35 SP2:42 SP3:29 SP4: 37

T(i,j) = number of cases for which there exists at lest one day belonging to SPj within the 7 or 11 days following a
sequence of SP; .

Table 7: Chaining of the strong patterns.

5. Conclusions

We have applied a method of cluster analysis to two different datasets. The first one was
generated by a simple quasi-geostrophic channel which has been extensively studied in two
other articles and here serves as a reference case. The second dataset is a 6-year series of the
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500hPa geopotential over a limited area of North Hemisphere centered on the Northern Atlantic
ocean. The analysis is based on the classification of individual daily maps and also of temporal
series of daily maps. The latter procedure allows the capture of recurrent nonstationary events.

The analysis of model data recovers the regimes that were identified in the previous studies
with different approaches. One interesting result is that the dynamical states are clustering in the
vicinity of dynamical statistical equilibria of the large-scale flow. Another information is the de-
tection of recurrent evolving clusters and of a temporal chaining between the various regimes. It
is also possible to see in which respect the dynamics differs from a pure random behavior with
the same covariance matrix and correlation at one-day lag. :

The analysis of 500hPa geopotential data shows that-about 40% of the atmospheric
situations cluster in four classes with well differentiated characters. The most stable shows a
high pressure center over Labrador and Greenland and a southward displacement of the jet
which remains zonal over the Atlantic ocean and Western Europe. A second zonal regime is
obtained, linked with a reinforcement of the jet downstream of its climatological maximum.
Among the two other classes, one exhibits an oceanic ridge but is not found sufficiently stable;
the other one groups blocking cases over Western Europe and separates into several subsets
apparently corresponding to different stages. However the temporal information does not reveal
as many striking features as for the model. A noticeable point to be confirmed by further studies
is the existence of a preferred transition from zonal to blocking regime. It must be stressed that
no low-pass filtering was applied to our data and that the atmospheric state is hardly
characterized by the sole geopotential field, so that the limited present results can be considered
as encouraging for the detection and characterization of weather regimes using more elaborate
dynamical data. It is doubtless that a systematic analysis of the distribution of isentropic
potential vorticity (Hoskins, McIntyre and Roberston, 1985) will contain much more dynamical
information than our study.

A related work has been conducted independently by Mo and Ghil (1987). These authors
study a 37-year records of the hemispherical 500hPa geopotential. Their classification of low-
pass data recovers most of the known features of the large-scale couplings within Northern
Hemisphere. It also supports our hypothesis of a regional rather than global basis for many
persistent anomalies. They investigate the transitions between clusters and find some preferred
paths, though there is less contrast than in our study, showing in addition that they can be as-
sociated with the classes of a band-pass analysis.

We believe that the present approach can lead to several useful developments. First it pro-
vides a convenient and effectual way to quantify the notion of weather regimes (without being
limited to stationary events) and to measure the transitions between these regimes. This quan-
tification, if enough precise, should be directly applicable to long-range forecast. We may also
expect a relation between weather regimes and the short and medium range predictability
(Legras and Ghil, 1985), the variations of which is a subject of current investigation (Palmer
and Tibaldi, 1986). Secondly, it provides an intermediate tool between the classical statistical
techniques (EOF, spectral analysis, teleconnection, ...) and the contemplation of plain atmo-
spheric data. Its flexibility allows to address rather sophisticated problems of pattern
recognition such as the identification of coherent structures within atmospheric flows (for
instance one may attempt to classify the local relationship between potential vorticity and
streamfunction (Haines and Marshall, 1987)). Thirdly, it allows a further step in the detailed
description of climate dynamics which should be taken in account by modelers when comparing
the simulated to the observed dynamics.

This optimistic view needs to be tempered by some warnings. Cluster analysis is not an ob-
jective method and the a priori arbitrarily chosen procedures or parameters may change the out-
come. It is thus necessary to be cautious in trying to remove the arbitrariness by some physical
arguments and in considering as established the sole results that are robust to variations in the
analysis. The comparison of several methods is also desirable because of the difficulty
encountered in the validation of a single method (Dubes and Jain, 1979). The one used here
basically resolves the large amplitude anomalies, it does not say much about 60% of the
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atmospheric states that are not classified. Although this proportion might be reduced when more
relevant dynamical quantities are considered, the simplicity and the usefulness of the approach
is likely to be lost when dealing with the central part of the cloud. We then need to turn towards
the equilibration methodss mentioned in the introduction. '
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