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ABSTRACT

The field of objective analysis for numerical weather prediction is enjoying
rapid development because of theoretical advances in analysis methods coupled
with progress in observing and computing technology. This review considers
current and projected work on objective analysis under three main headings:

theory, verification and practice.

Recent developments in the theory suggest that there are close links beﬁween
all analysis methods based on optimality principles.. Moreover, simpler
analysis methods such as successive correction can be modified to converge to
an optimal method in simple circumstances. The basic job of any analysis
algorithm is to filter random observation error from the data and then
interpolate the filtered data to a regular grid. A new viewpoint on o/1
shows the algorithm in a simple light with an intimate connection between the

filtering and interpolation capabilities.

Verifications of observations, forecasts, and analyses are reviewed, using
statistics on one-point and two-point height and velocity correlations. The
two-point correlations are inter-related through the kinematic equations of
two-dimensional turbulence. In the limit of vanishing spatial lag they
degenerate to the one-point correlations. These diagnostics offer a means to
compare the error characteristics of different observing systems. When used
to verify short-range forecasts, they provide a complete description of the
structure of the forecast errors. Phillips' simplé theory of forecast errors
can reproduce many of the features of the empirically determined structures.

- New results indicate that there may be a need for anisotropic and

non-separable correlation functions for analysis.

The correlation diagnostics offer new and rigorous ways to estimate analysis
error at observation points. They provide a quick and easy measure of the
efficiency of an analysis system. They will prove useful in identifying the

reasons for system dependence in the results of observing system experiments.

In reviewing current and future research we consider the special problems of
analysis in data rich areas over land and near mountains; the problems of

analysis over the mid-latitude oceans; and then the problems of tropical



analysis. Extensions of 0/I offer new approaches to these problems which will
be explored in the near future. In the slightly longer term, new developments
in the theory of 4-dimensional analysis may well supersede current methods.
Finally we consider developments in data quality control, an area of great
importance for all other developments. New developments here, using Bayesian

methods, offer promise.



1 INTRODUCTION

In recent years we have seen the advent of successful global_qperational
forecasting (Bengtsson 1985); we have also seen the successful production of
the FGGE ITI-B data, providing global analyses for 1979 from a vast and
heterogeneous observational database. The development of objective analysis
and data assimilation methods up to the completion of the main FGGE analyses
is discussed in the review by Bourke, Seaman and Puri(1985). Their discussion
pays particular attention to the many simulation studies that were undertaken
to prepare the observational plan for FGGE. Objective analysis of the FGGE
data has been the subject of a number of extensive reviews (National Research

Council, 1985, ECMWF 1984).

There has been notable progress in understanding the kinematics, statistics,
and mathematics of analysis methods in recent years. A theoretical framework
is available which connects the many apparently unrelated methods which have
been developed for meteorological analysis. The basic starting point in all
methods is that the observations are insufficient to determine the continuous
(or discrete) fields of interest. One must use additiondl a-priori
information £o resolve the under-determinacy. The a-priori information may be
a forecast and the statistics of its errors, or constraints of continuity
and/or differentiability on the solutions. The a-priori information and the
observational information are combined in a Bayesian (maximum likelihood) or
minimum-variance calculation which minimises a functional of the unknown
solution; the advantage of the Bayesian methods is that they can handle

non-gaussian statistics.

The method of optimal interpolation (0/I, Gandin 1963, Eliassen 1954) has an
important role in establishing links between the many different analysis
methods in existence. (The method is also called statistical interpolation
since the optimum statistics can never be known exactly). The muitivariate
theory of O/I has been developed (Hollingsworth and Lonnberg 1986a, Lonnberg
and Hollingsworth 1986, hereafter called HL/LH) using the kinematics of
two-dimensional turbulence. These kinematic methods extend the capabilities
of the 0/I formalism in large scale, synoptic scale and meso-scale analysis
and in tropical analysis. In addition they provide powerful diagnostic

tools.



Assimilation systems have improved to the point where the 6-hour forecast is
as accurate as the observations in data-rich areas of the Northern Hemisphere
(Hollingsworth et al 1986). This offers new possibilities for improving the
WWW data through long term monitoring. It also places new demands on that
data since the noise to signal ratio is now approaching 1, if both noise and
signal are measured relative toc the first-guess. Improved communication
between data producers and data users would be useful as the users know a lot

about errors in the data.

The utilisation of available data over the oceans is still far from
satisfactory. In the O/I context there is a need for more extensive
documentation of forecast error statistics over the ocean. Further efforts
are also needed to simulate the oceanic data distributions over land so that
one may use independent data to define the three dimensional structure of the
oceanic forecast errors. The extensive operational experiment planned by WMO
for 1987/88 in the North Atlantic will be a particular stimulus to such

efforts.

Analysis methods in the Tropics have improved through the imposition of
physical balance requirements (Krishnamurti et al 1983, 1984) and the
recognition of the importance of treating the very largest scales in the
analysis (Cats and Wergen 1982, Daley Cats and Wergen 1986); further gains may
come from improvements in the synoptic-scale wind analysis to take account of
divergence (Daley 1985). In conjunction with improvements in model
resolution, parameterisation and orography, the analysis improvements that
have been implemented so far have led to marked improvements in the quality of
operational forecasts in the Tropics. Despite these improvements, the

over-riding problem remains the lack of observations in the Tropics.

To maximise the utilisation of the available observations, more effective
methods will be needed to incorporate the time dimension in the analysis
algorithm. The adjoint method broposed by Le Dimet and Talagrand (1986)
appears to offer a sound mathematical foundation for tackling this problem.

As pointed out by Lorenc (1986), the more explicit use of an accurate model in
the assimilation also offers the possibility of including in the analysis
non-linear aspects of balance, such as strong fronts in balance with a

large-scale fronto-genetic field.



The plan of the paper is as follows. We begin in section 2 by reviewing the
structure of current assimilation systems, emphasising the need to use the
most accurate model possible in the data assimilation; this has only recently
been achieved at some centres. We also discuss the need for accuracy in the
multivariate interpolations of the background field from the model grid to the

observation position.

Theoretical work establishing connections between many different analysis
methods is discussed in section 3, together with experimental work on

comparisons of the accuracy of analysis methods.

The basic task of any analysis system is to filter as much error as possible
from the observations and then to make an interpolation of the resulting
information to a regular grid. The intiméte connections between the filtering
capabilities and the interpolation capabilities of O/I are discussed in

section 4.

Section 5 reviews recent developments using the kinematics of two=-point
velocity and geopotential correlations, and discusses how the capabilities of
observing systems may be evaluated by comparison of atmospheric spectra
observed by the different systems. Section 6 discusses progress in the
determination of the correlation structure of forecast errors. Theoretical
explanations of the empirically determined structures are also considered.
One-point velocity correlations are used to survey the anisotropies in the
forecast errors. Section 7 reviews the many different methods which have been
used to estimate analysis error. Particular attention is given to new methods
which permit a proof that all useful information has been extracted from the

observations.

Section 8 considers current and future research in operational objective
analysis including the problems of high resolution analysis in data-rich land
areas and in the presence of mountains, the problems of analysis over the
mid~latitude oceans, the problems of analysis in the Tropics, and new
developments in quality control. The main themes of the paper are summarised

in the concluding section.



Inevitably, there are modest overlaps with the companion reviews by
Machenhauer (1986), and Puri and Gauntlett (1986), but we have tried as far as
possible to avoid duplication. Inevitably also, most attention is given to
the work of present and former colleagues. Our viewpoint has been described

as EC-centric, but it is hoped that it is nonetheless useful.



2 THE STRUCTURE OF CURRENT ASSIMILATION SYSTEMS

The basic structure of most current assimilation systems is similar. A
forecast model generates a 6-hour or 12-hour forecast to provide a background
field for the next analysis; the background field is interpolated to the
observation position; the differences between observation and first-guess are
filtered, interpolated spatially, and added to the background field to form

the analysis, and the process is repeated.

Current operational analysis systems at the larger centres use one of two
forms of 4-dimensional assimilation, either a continuous insertion or an
intermittent insertion (Bengtsson 1975, Miyakoda 1985, Lorenc 1981, Bergman
1979, McPherson et al 1979, Kistler and Parrish 1982, Dey and Morone 1985,
Baker 1982). 1In both of these approaches the methods of Non-Linear Normal
Mode Initialisation (NNMI, Machenhauer 1977, Baer 1977, Temperton and
Williamson 1980, Williamson and Temperton 1980) can play an important role.

In the intermittent insertion method used at most of the major Centres
(Gustafsson 1981) NNMI plays a vital role in assuring the balance of the
background field which is essential in quality control (Van Maanen pers.

comm. 1982) and for the validity of the basic multivariate assumptions

(Lorenc 1981,1986). One goal of research on intermittent assimilation is the
unification of the analysis problem and the assimilation problem (Williamson
and Daley, 1983). Variational formulations of the problem are amenable to
solution by direct methods and by adjoint methods. 1In continuous assimilation
schemes (Bengtsson 1985, Lyne 1982, Miyakoda 1985, Miyakoda et al. 1986) the
differences between observation and background may be inserted in the model in
a repetition of the last forecast, and in the forecast which generates the

background for the next analysis.

Success in data assimilation requires accuracy in all four phases of the
calculation: the forecast (para 2.2), the forward interpolation, (para 2.3),
the analysis (section 3 et seq.) and the initialisation (para 2.4). There
have been substantial improvements in most of these areas in recent years. To
set the scene for these discussions, it is useful to review recent progress at

one institute chosen as an example.



2.1 Impact of Model and Analysis Changes on Forecast Skill at ECMWF

To get an overall impression of the impact of analysis improvements and model
improvements we consider the ECMWF forecast performance for a four year
period, June 1982 to April 1986. Fig 1 (from Shaw et al 1987) shows the rms
500mb geopotential forecast errors for the eleven months from June through
April in the four successive years 1982/83 - 1985/86, for each hemisphere
between latitudes 20 and 80. The May data were excluded because some of the

more important model and analysis changes discussed below occurred in May.

The 1982/83 forecasts, for the first of these periods, were made with the N48
grid point model (Burridge and Haseler 1977, Tiedtke et al 1979, Hollingsworth
et al 1980, Bengtsson and Simmons 1983). Between the first and second period
there was an important model change. The forecasts for the second period,
1983/84, were made with a T63 spectral model using the same physical
parameterisation package. This spectral model had been shown to have superior
forecast performance (Girard and Jarraud 1983) and replaced the grid-point
model as the operational model in late April 1983. At the same time the
orographic representation was modified to an envelope orography (Wallace et al

1983).

Between the second and third periods there was a major change in analysis and
some changes in the model. The changes in the analysis system in May 1984
(Shaw et al 1984) affected many aspects of the system including quality
control, data selection algorithms, and structure functions. In addition an
important changes was made to the vertical interpolation scheme in Nov 1984
(Unden 1985). The forecasts for the third period, 1984/85, period were made
with the same model as in the 83/84 period except for two changes in the
radiation scheme. The first change, in May 1984, was the introduction of a
diurnal cycle (Tiedtke and Slingo 1984). The second change, in December 1984,
modified the representation of the transmission functions and led to a
substantial reduction of the forecast error biases in the tropical

temperatures in the medium range (Ritter 1985).

Between the third and fourth periods there were major changes in the model.
In May 1985 the resolution of the spectral model was upgraded to T106
(Jarraud, Simmons and Kanamitsu 1985). At the same time there were major

changes to the parameterisation package. A new representation of shallow
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convection was introduced, the partitioning of moisture convergence between
heating and moistening in the convection scheme was changed substantially, and

the cloud parameterisation was radically revised (Tiedtke et al 1987).

There were clear improvements at all forecast ranges in the Southern
hemisphere (Fig 1a) between the first and second periods, after the
introduction of the T63 spectral model in May 1983, and again in 1984/85 after
the introduction of the analysis modifications in May 1984. There were
further gains resulting from the introduction of the T106 model with improved
physics in 1985; these improvements were somewhat larger than expected from
increases in resolution alone (Jarraud Simmons and Kanamitsu 1985, Tiedtke et
al 1987) and may be partly attributable to the physics changes and partly to
the gradual build-up in the number of drifting buoys for TOGA from late 1985
onward. Over the four year period the largest improvement in the southern

hemisphere forecasts clearly came from the analysis improvements.

In the Northern hemisphere, Fig 1b, the results are quite different. The
introduction of the T63 spectral model in 1983 led to a modest gain in
forecast skill, as expected (Girard and Jarraud 1983). The analysis changes
in 1984 also gave a modest improvement in medium range forecast skill; we
shall see below that the 6-hour forecasts, and therefore the analyses, were
clearly better. The introduction, in 1985, of the T106 model with improved

physics led to a marked improvement in Northern hemisphere forecast skill.

The Northern Hemisphere and Southern Hemisphere results can be interpreted in
different ways. Improved analysis methods led to a clear improvement in
forecast skill in the data-sparse Southern Hemisphere in 1984/85, before the
build up in the number of TOGA drifting buoys from late 1985 onward. The
modest impact of the high resolution model on Southern hemisphere forecast
skill may be attributable to the still large analysis uncertainties (Jarraud
gimmons and Kanamitsu, 1985). 1f this is true then analysis error rather than
model error is still the dominant contributor to forecast error in the

southern hemisphere.
In contrast, on the basis of experiments with FGGE data and the 1982 model,

Arpe et al (1985) suggested that model error rather than analysis error was

the main source of forecast error in the Northern Hemisphere in the range from
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two days out to six days and perhaps even further. The relative effects of
improving the analysis in 1984 and improving the forecast model in 1983 and
1985 suggest that this conclusion was well founded for the 1982 model.
Similar experiments with the 1985/6 model would be of interest. This
interpretation should be tempered by the fact that the more accurate 1985/6
model probably improved the analyses through the data assimilation cycle
(Leith 1984), as is clearly implied by the marked improvement in the one day
forecasts. It would be interesting, but costly, to estimate how much of the
improvement in the medium range is due directly to the improved model and how

much is due to its indirect effect on analysis quality.

2.2 The Forecast Model

The importance of an accurate forecast model for data assimilation cannot be
over-emphasised. Accuracy of the forecast model is the key to success, as it
justifies the simplifying assumptions used in the other three phases: forward
interpolation, analysis and initialisation. The smaller the forecast errors, -
the more linear will be the multivariate relations between the mass field and
the wind components, the smaller will be the changes made by the analysis, and

the more reliable will be the linearisations used in the initiaiisation.

From the point of view of Numerical Weather Prediction it is desirable to use
the same model for data assimilation and for the main production forecast so
as to minimise shocks to the model. This is easier to arrange for global
models than for limited area models, because of the boundary conditions. The
advantages are substantial: the background field for the analysis is as
accurate as possible, the effects of the forward interpolations are minimised,
and the adjustment between physics and dynamics at the start of the forecast,

the 'spin-up', is minimised or eliminated entirely.

A most important test of an analysis, for practitioners of Numerical Weather
Prediction, is the quality of the ensuing short-range forecast. Apart from
operational considerations, this test has the important advantage that the
errors of forecast and observations are statistically independent, unless the
observations are biased. This test also provides a good evaluation of the
internal balance of the analysis because a large gravity wave component in the

first guess error is easily detected by the methods discussed in section 6.
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There is an appreciable interaction between the quality of the analysis and
the quality of the forecast model. Fig 2a shows the perceived, or measured,
forecast errors in the wind field over N America in the three 3-month periods
Jan-Mar 1983, Jan-Mar 1984, and DecB84-Feb85 as measured by rawinsondes (Shaw
et al. 1987). There is a clear reduction in the magnitude of the perceived
forecast errors as we progress from one year to the next. Between the first
and second winter there was an important model change. The forecasts for the
193 winter were made with the previously described N48 operational grid-point
model. The forecasts for the 83/84 winter were made with the T63 spectral
model using the same physical parameterisation package and envelope orography.
This spectral model had been shown to have superior forecast performance
(Girard and Jarraud 1983) and this is evident already in the six hour

forecasts, from Fig. 2a.

Between the second and third winter there was the major change in the
analysis, and some changes in the model already described. The forecasts for
the 84/85 period were made with the same model as in the 83/84 period except
for the introduction of a diurnal cycle a modified representation of the
radiative transmission functions. It is unlikely that either change had much
effect on 6-hour wind forecast errors over North America, and so the gains in
forecast skill between the second and third winter were mainly due to the

analysis changes.

There is a clear implication from the results in Fig 2a that both the
introduction of the spectral model in 1983, and the analysis revision in 1984,
had important benefits for the accuracy of the short term-forecasts. To
document this conclusion more clearly, Fig 2b shows the estimates of wind
prediction error for each of the three periods, calculated as in HL/LH. The
improvement in the gquality of the 6-hour forecast errors is quite evident, and
demonstrates clearly that both model improvements and analysis improvements
can contribute to short range forecast improvements. As a check on the
results, Fig 2c shows the observation error for wind for each of the three
periods, estimated in same way. There is substantial agreement between the

estimates of observation error for all three periods.
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2.3 The Forward Calculations

In the language of geophysical inverse theory (Menke 1984), the interpolation
of the background field to the observation point may be referred to as the
'forward' problem, and the interpolation of the observations back to the model
may be referred to as the 'inverse' problem. Historically, most attention in
meteorological assimilation has been given to the inverse problem i.e. to the
analysis. The perception of the forward problem as a trivial interpolation to
the observation position needs to change, because it is critical for a

successful analysis, and it is difficult.

- For a univariate problem Franke (1985) demonstrates the importance of accuracy
in the interpolation of the first-guess to the observation position by showing
that the advantage of 0/I over competing methods can be completely negated if
the 0/I algorithm uses an inferior interpolation scheme for the forward

calculation.

Bourke, Seaman and Puri (1985) note that two features of prediction models
which influence assimilation systems are the use of terrain-following
sigma-coordinates, and the use of temperature as the thermodynamic variable.
They comment that 'in multivariate analysis a sigma coordinate system does not
readily allow application of the geostrophic wind law, and temperature is less
easily used than is geopotential. Accordiﬁgly the analysis component of the
assimilation is frequently implemented in pressure coordinates. The model
prediction is thus interpolated from model to pressure coordinates, corrected
by available data, and the resultant increments or changes interpolated back

to the model sigma domain'.

The importance of accuracy in the forward calculation is much greater in such
a multivariate problem, since considerations of balance are of central
importance in multivariate analysis. The theory of 0O/I assumes that the
first-guess is in balance; it then calculates (linearly-) balanced increments
from the differences between observations and first-quess. It is quite
difficult to make univariate interpolations of the mass and wind components,
and still preserve subtle properties such as approximate geostrophy or
non-divergence. Wergen and Simmons (1986) have shown that serious
consequences can arise when error in the forward calculation generates an

unbalanced first guess. The imbalance in their study arose because mass and
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wind were interpolated univariately from the model's coordinates to provide a
first guess on standard pressure levels. Even though the model was balanced
on sigma surfaces, the first-guess on pressure surfaces was seriously
unbalanced due to a substantial mis-match between the model's vertical
resolution and the set of standard levels on which the first guess was needed
for the analysis. In their case the background field was needed at 10, 20,
30, 50, 70 and 100 hPa in the stratosphere, and the original model had wind
and temperature levels at 25, 75 and 130 hPa. They compared the first guess
generated at 50 hPa from this assimilation, with the first guess from an
assimilation where the revised model had levels at approximately 10, 30, 50,
70, 100 and 130hPa. The balance of the first guess was seriously defective in
the one case, and quite good in the other. If the first-guess is unbalanced
and the observations are balanced, then the observation minus first-guess
deviations will be unbalanced, and will be heavily filtered (section 4). As a
result, much useful information will be rejected by the assimilation, because
of errors in the forward interpolation. When they ran an extended
assimilation with enhanced vertical resolution in the assimilating model,
Wergen and Simmons found that there were important improvements in the medium
range forecasts as well as in the short range forecasts. They showed that the
medium range improvements were largely attributable to the improvement in the

initial data.

The work by Wergen and Simmons is the latest of a series of developments at
ECMWF aimed at improving the vertical interpolation algorithms. The first
implementation of the ECMWF analysis system (Lorenc 1981), interpolated the
first guess from model coordinates to pressure coordinates, evaluated the new
analysis fields in pressure coordinates and then interpolated these ‘
univariately to model coordinates. A revision to this scheme was introduced
by Talagrand in 1980, whereby the analysis increments were interpolated
multivariately from the data points to the horizontal projection of the model
grid in pressure coordinates. The analysis increments were then interpolated
univariately from pressure coordinates to model coordinates in the vertical.
This procedure has since been adopted at NMC Washington (Dey and Morone 1983)
and at NASA's Goddard Laboratory for Atmospheres (Baker et al, 1984) and

elsewhere.
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Unden (1984) implemented an algorithm where the analysis increments can be
interpolated three-~dimensionally and multivariately from the observation
points to model coordinates, taking account of the usual constraints of
near-geostrophy and near non-divergence of the increments. This requires the
use of continuous positive-definite representations of the vertical
correlation functions, ensuring that all correlation matrices generated with
these functions are positive-definite. Implementation of these ideas has

improved the multivariate properties of the analysis.

Improvements in the multivariate aspects of the forward interpolation can come
both from improving the resolution of the prediction model, so that the
interpolation to observation position is over a shorter distance, and by
improving the order and accuracy of the interpolation. The importance of
errors in the forward problem will be highlighted again when we discuss

developments in the retrieval of information from the satellite sounders.

2.4 Convergent Evolution in Assimilation and Initialisation Technigues

It has long been recognised that some concept of balance is essential for
meteorological analysis. If the concept is ignored then the introduction of
new data may generate noise in the assimilation, resulting in the rejection of
very expensive information. The techniques of intermittent assimilation and
continuous assimilation both address this problem, but the methodologies of
the assimilation methods were initially rather different in several

important respects (Bengtsson 1975).

On the whole, the intermittent methods use more elaborate spatial
interpolation methods for the observational data. The methods are often
multivariate, they use more observational data in the calculation for a given
point, and they use fairly simple concepts of balance, a linear concept in the
analysis and a linearisable concept in the initialisation. The continuous
insertion methods avoid the explicit imposition of balance concepts, and
typically use fewer observational data in the calculation of updates for a
given point. The continuous method relies on the model's dynamics and physics
to spread out the observational information in such a way as to achieve an

accurate and balanced analysis.
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As a result of the availability of the FGGE datasets, extensive and detailed .
comparative studies of the response of analysis systems to particular types
of data have been undertaken (Hollingsworth et al 1985, Barwell and Lorenc
1985, Baede et al 1985, Bromley et al 1985, Kashiwagi 1985, Uppala et al 1985,
puri et al 1985, Atlas et al 1984). These studies served to underline the
relative strengths and weaknesses of the different methods. As the studies
have been extensively reviewed already (ECMWE 1984, National Research Council
1985) , there is no need for great detail here, and a few general comments

will suffice.

There is evidence of convergence in the evolution of the assimilation systems
(Williamson and Daley 1983). As discussed in a companion review, Machenhauer
(1986), the intermittent assimilation systems are trying to incorporate more
of the model's physics in the initialisation. Many studies have shown tﬁat
the adiabatic normal mode initialisation had a seriqus damping effect on the
tropical divergence field. This can be overcome by eliminating some of the
damping through selective filters (Puri 1983, Kitade 1983), or through the
incorporation of the large-scale and slowly varying components of the model's

diabatic tendencies in the initialisation technique (Wergen 1982).

At the same time, it has been found desirable, in some continuous assimilation
schemes, to be more explicit in the way in which wind data is spread out in
the vertical and balanced with height in the horizontal (Miyakoda et al. 1986,
Barwell and Lorenc 1985). The availability of advanced assimilation systems
with different design philosophies has been a valuable stimulus to deeper

understanding of the problem as a whole.
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3 THEORETICAL AND EXPERIMENTAL COMPARISON OF ANALYSIS METHODS

Not only has there been convergence in practical aspects of assimilation,
there has also been a growing understanding of the close theoretical relations
between many of the methods used for the analysis step of the assimilation.
Theoretical work has shown that analysis methods based on optimality
principles are closely related to each other, and a synthesis of the theory of
analysis methods is now emerging (para 3.1). The theory of 0/I has an

important role in this synthesis.

The adjoint technique discussed in para 3.2 is also based on optimality
principles. It offers the prospect of a more effective exploitation of the
time history of the atmosphere. The value of a better use of the time history
will occur at several points in our later, more practical, discussions.
Experimental work éonfirming that the theoretical advantages of O/I can also

be realised in practice is discussed in para 3.3.

3.1 The Theory of 3-dimensional Multivariate Analysis

Phillips (1982) argued that a multivariate O/I analysis using all the
available observational data is 'complete' in the sense that no further
information can be extracted from the data through a variational analysis with
balance constraints. The underlying continuous multivariate analysis (see
section 4) defines the slow mode components (Leith 1980) of the mass and wind
field increments completely, subject to the requirements that 1) the
covariances used are appropriate for slow modes, and 2) the forecast is
sufficiently accurate that it represents the fast modes to a reasonable
degree. Phillips (1982) argues that one should use as much data as possible
in a single calculation, and that one should analyse as large an area as
possible with that data, ideally the whole globe. The box technique developed
by Lorenc (1981) therefore finds solid support from theoretical arguments.
Lorenc (1986) comments that a limited or restricted data selection is
appropriate when the background field has little useful prior information.
When the background field is accurate, then there is much to be gained from an
extensive data selection, provided the statistics of forecast error are

reasonably well known.
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Tkawa (1984a,b,c) has made a detailed investigation of the relationship
between variational analysis as proposed by Sasaki (1959,1970) and the
multivariate O/I algorithm. He confirms Phillips' result on the essential
equivalence of the slow-mode O/I analysis and the variational analysis. Ikawa
first shows how weak and strong constraints can be be formulated in
essentially similar ways (Ikawa 1984a). He then shows that the slow-mode
covariance matrix as used in O/I has the same sort of filtering properties as

the variational analysis (Ikawa 1984b,c).

Lorenc (1986) has taken the synthesis of analysis methods a stage further by
demonstrating that O/I can be derived by variational arguments, as also shown
by Ikawa, and that O/I can be derived by Bayesian methods, provided the
statistics are gaussian. We therefore have three independent demonstrations
of the equivalence of O/I and constrained variational analysis. These results

are extensions of earlier work by Kimeldorf and Wahba (1970).

Lorenc (1986) formulates the analysis problem in a very general way. The
observations, of themselves, are incapable of defining the state of the
atmosphere. Prior information in the form of model equations, or a model
forecast, or climatology, or requirements of smoothness, or some combination
of these, is needed to resolve the under-determinacy. The analysis problem is
posed as the minimisation of a penalty function consisting of terms depending
on the distance of the analysis from the data, and on the distance of the
analysis from the prior information, each distance being weighted by the
accuracy of the corresponding information source. A particular feature of
Lorenc's derivation is the way in which any number of weak constraints can be

incorporated into a single penalty function.

Lorenc goes on to demonstrate the relationship between O/I and the smoothing
spline, or thin-plate spline, approach of Wahba and Wendelberger (1980). 1In
the latter approach no information on the mean field (or its first few
derivatives) is taken from the first guess. Both the curvature of the
interpolating function and the noise level of the observations are adjusted by
Bayesian calculations which maximise the likelihood of the final solution.
This method is most applicable when no first guess is available, or when the
first-guess has little useful information on the larger scales. As shown by
Hollingsworth et al (1986) the first guess produced by a good forecast model

has much valuable information.
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The main difference between the results using continuous correlation functions
on the one hand, Phillips (1982) and section 4 below, and those presented by
Ikawa (1984) and Lorenc (1986) on the other, is that the latter authors have
used a discrete formulation for the spatial dependence of the correlation
functions. The use of a discrete formulation has theoretical and practical
advantages, since finally the continuous representations used here and in
Phillips' discussion must be discretised for the forecast model. As noted by
Hollingsworth (1984) the difference between the differential gradient and the
finite-difference gradient can be large. However it is not clear from the
work of either Ikawa or Lorenc how to determine the discrete correlation
representation from observational data. This is likely to be a tricky problem

in the multivariate case.

3.2 More Effective Incorporation of the Time Dimension

There are a number of outstanding problems in analysis which will probably
yield only to methods which make more effective use of the time history of the-
atmosphere. Examples include situations where the state of atmospheric
balance is strongly non-linear, as it is near sharp fronts, and the
determination of the planetary scales in the Tropics from scattered sparse

observations.

The general analysis framework proposed by Lorenc (1986) can accommodate
4-dimensional as well as three dimensional analysis. When the forward problem
is linear, Lorenc shows that the optimal 4-dimensional analysis reduces to a
sequence of 3-dimensional analyses, using the forecast from each to provide
the background for the next analysis. This is the Kalman-Bucy filter (Ghil et
al 1981). There is a close analogy between approximations to this process and
the implementation of many operational intermittent-insertion assimilation
systems. The process of initialisation can be incorporated explicitly in the
Kalman-Bucy formalism (Ghil et al 1981). Alternatively, it can be imposed
implicitly through a linear weak constraint that the analysis should mainly

consist of slow modes.

Implementation of the full Kalman-Bucy formalism is prohibitively expensive
because one needs to deal with matrices whose order is given by the model's
degrees of freedom. The minimisation of a four-dimensional penalty function

which includes the model equations as a constraint poses formidable problems.
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ILe Dimet and Talagrand (1986) propose integrating the model forward in time
for N time-steps, remembering the model's trajectory at each time level, and
then integrating the adjoint model backward in time, using the remembered
trajectory in the adjoint calculation. One can then determine the direction
of descent for minimisation of the penalty function. Iteration of this
procedure gives an optimal trajectory over the period of assimilation. If one
wishes to start a forecast at day 0, with an assimilation period of 1 day
beforehand, then the starting analysis at day -1 is repeatedly adjusted so as
to bring the model evolution as close as possible to the observed evolution
during the assimilation period. In this way not only will the atmospheric
state at day 0 be well analysed; its tendency, or time derivative, will also
be well represented. 1In a sense the method is a rigorous way to achieve the
goal of the simpler forward—-backward schemes of the late 1960s, (Miyakoda and

Moyer, 1968).

Talagrand (1985) and Courtier (1985) have applied the method to a one-level
primitive equation model with encouraging results; Lewis and Derber (1985)
have made similar calculations with filtered models. Extension of the work to
multi-level models will undoubtedly follow. A major difficulty will be the
treatment of non-differentiable processes, such as convection, for which a
suitable adjoint cannot be defined. Nevertheless, the preliminary results are
so encouraging, and so many interesting possibilities exist for approximate

treatment, that this will be an area of much interest and activity.

On a much simpler level, synopticians make considerable use of the surface
pressure tendency field for analysis and forecasting. Extension of the O/I
formalism to include tilted structure functions for mass and stream-function,
coupled with the divergent wind field, may permit an effective use of pressure
tendency data within the O/I formalism. The potential value of such data has
been discussed by Bengtsson (1978) in the context of analysing developing

systems.

3.3 Experimental Comparison of Methods for Univariate Analysis

Seaman(1983) and Seaman and Hutchinson (1985) have compared the accuracy of
different univariate analysis algorithms using a 20-year record of surface
pressure reports in S.E Australia, with climatology as a background field.

They investigated Statistical Interpolation, The Successive Correction Methods
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of Cressman (1959), and Barnes (1964), Laplacian Spline Fitting with
Generalised Cross-validation (Wahba and’Wendelberger 1980), and Statistical
Interpolation with Generalised Cross Validation to determine the noise to
signal ratio of the observations being analysed. They found that the best
results were obtained by statistical interpolation using appropriate forms of
correlation function. However the Cressman successive correction method was
only slightly less accurate than statistical interpolation with the best
functions, and was better than statistical interpolation with a Gaussian
correlation function. They also found some suggestion that when the ‘
covariance structure is not well known, a modest improvement in statistical
interpolation accuracy may be achievable by changing the 'noise to signal’

parameter from case to case, using generalised cross validation.

Franke (1985) has examined the errors in objective analysis arising from two
sources, the interpolation of the gridded first guess to the observation
position, and the interpolation of the observation minus first guess
information from the observation points back to the grid. BHis results on the
second question, the observation-point to grid interpolation, are in general
agreement with those of Seaman (1983) and Seaman and Hutchinson (1985) in
showing that the O/I approach has an edge over most other methods in
univariate problems with uniform observation errors. Franke's results on the
importance of the forward calculation have been noted already. The final
point made by Franke is that O/I is more successful at making an analysis
than at estimating the analysis accuracy. The reason is that the calculation
of the second moment of the analysis error makes no allowance for error in the

assumed covariances of forecast error.

These extensive tests show that 0/I is better than competing methods on
univariate problems, with observations of uniform quality. In operational
analysis one deals with more complex problems of multivariate analysis with
data of variable quality. The theory of statistical interpolation suggests
that a properly tuned O/I analysis would do even better than the competing
methods in such circumstances (Seaman 1977). The methods for analysis
verification discussed in section 7 provide a framework in which to compare
the performance of different analysis methods in a multivariate context;

comparative studies of this kind have yet to be made.
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4 0/I AS A FILTER AND AN INTERPOLATOR

The basic task of any analysis method is to filter as much noise as possible
from the observations, and to interpolate the information to a model grid as
accurately as possible. Since the 0/I algorithm plays a central role in
theoretical discussions of analysis method, it is worthwhile to present a
simple interpretation of the filtering and interpolation properties of the
algorithm. It is always helpful in scientific problems to have an intuition
about how the solution will look, and it is not easy to develop intuitiog

about the inverses of large matrices; the results presented below may help.

The O/I algorithm is a filter of the observations, relative to the
eigenvectors of the weight matrix £(£+2)—lr followed by an interpolation with
a set of continuous functions which are interpolators of the eigenvectors of
the prediction error correlation matrix P, where P and the scaled observation
error covariance matrix D are defined below. In many cases of practical
importance the eigenvectors are identical, and the algorithm then has a

particularly simple representation (Egs A.3~A.5).

The results of para 4.1 provide a complete description of the response
characteristics of the O/I system when all available data has been used by the
algorithm. This is normally impractical. An approximation to the ideal data
selection was introduced by Lorenc (1981), based on a box method. The
response characteristics of this algorithm are discussed in para 4.2 following
the work of Daley (1985). The effect of correlated observational error on the

0o/I filter is discussed in para 4.3.

4.1 The Connection Between Filtering and Interpolation in o/1

As demonstrated in many papers ( Gandin 1963, Rutherford 1972, Schlatter 1975,
Bergman 1979, Lorenc 1981) the 0/I analysis equation may be written in the
form

*
= =1
a(rk) [p(rk,ri)] (B+D ) -[d(ri)] 4.1

where ri indexes the position and the observed variable at the observation

points;

T indicates the position and variable at the analysis point (it is usually

convenient to treat the spatial dependence as continuous);
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[d(ri)] is the vector of differences between the observed and background
values normalised by the standard deviation of the background error; we shall
speak of these quantities as the observation minus first-guess (Ob-Fg)
differences; the notation [ ], or a single underline, will be used for a

vector;

a(ri) is the difference between the analysed and background values normalised

by the standard deviation of the background error;

[p(rk,ri)] is the vector of background error correlations between the observed

variables at points r, and the analysed variable at point r and the asterisk

kl
indicates transpose;

P is the correlation matrix of the background field error for the observed

variables at points r.i a double underline will denote a matrix;

D is the corresponding observational error covariance matrix, normalised by
the variance of the background field error; and all variables are assumed to

be unbiased.

We may write the vector of analysed values at the observation points as

[a(r.)] =P .( P + D )-l.[a(r.)] 4,2
i = = = i

so that Eq 4.1 may be rewritten as
*
= -1
alr, ) = [plr,r )] (B )7 . [a(r,)] 4.3

Thus the analysis calculation may be thought of as a linear filter (Eq 4.2) of
the observed values to produce the analysed values at the observation points,
followed by an interpolation (Eq 4.3) of the filtered observations to the

analysis points.

The nature of the filtering and interpolation are discussed in the appendix.
Here we discuss the special case where P and D commute. This is a good
approximation to many cases of practical importance, such as D = ¢ I, vhen the

observation errors are random, uniform, and independent.
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When the matrices P and D commute, the relation between the filtering and the
interpolation is very simple. As shown in the appendix, if the original

vector [d(ri)] is expanded in eigenvectors of P as

N .
[d(ri)]= ; cj gj A.3

then the analysed values at the observation points are given by

N

latr, )] = ) ¢, —
1 1 J

. . . . s . .th
where vj is the ratio of observational error to prediction error in the j

component. The analysed value at the point r is given by

' k
alr,) = 1Zc. _.l_.ﬁj(rk) . AS

where the functicmxej iiterpolates the vector gj according to Eq. 4.3. The
simple relation between the data representation (Eq A.3), the representation
of the filtered data (Eq A.4) and the representation of the continuous
multivariate analysis (Eg A.5) is aesthetically pleasing, and provides a
simple insight into the way the O/I analysis algorithm works. For a scalar
field with a gaussian correlation, the filter has simple scale dependent
properties (Daley 1985). If one introduces constraints of non-divergence or
geostrophy, the multivariate filter will selectively damp divergent or
anti-geostrophic components in the data, as well as retaining its general
scale-dependent character (Daley, 1985). The existence of observational error
correlations can substantially modify the écale selectivity properties. These
topics will be discussed presently. The continuous multivariate fields of
analysis increments produced by the analysis A.5 have all the properties of
differentiability, scale dependent geostrophy and scale dependent
non-divergence that one wishes to impose. When the analysis increment is
evaluated on a finite difference mesh, or in a truncated spectral
representation, these desirable properties may be retained only in an

approximate fashion.

4.2 Scale Dependent Response of the O/I Algorithm

An implementation of the 0/I system using all the data available at a given
time would provide a multivariate and three-dimensional interpolation of the
observational data satisfying all the requirements of differentiability,

linear balance and near non-divergence one wishes to impose. This ideal will
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remain a dream for some years, and it is necessary to make intelligent
approximations to the ideal. One such approximation was devised by

Lorenc(1981), using a box method for the analysis.

The results of Phillips (1982) and Lorenc (1986) provide theoretical support
for the box approach to O/I analysis introduced by Lorenc (1981). Seaman
(1977), Lonnberg (1982), Andersen (1982) and Daley (1983, 1985) addressed
theoretical and practical questions concerning the response of the box-based
analysis system to data for different variables, and to data on different
scales. Early experience with the ECMWF system indicated that the system had
difficulty in analysing small scale rapidly developing disturbances. It was
not clear which features of the system were responsible for these defects. It
has since emerged that several aspects of the system needed refinement,
including both the horizontal and vertical resolution. A good theoretical

basis and a statistical database were needed to address these questions.

As formulated by Lorenc (1981) the analysis algorithm selects data on mass and
wind for up to 9 levels within and around each analysis box of about 660km on
a side. A multivariate analysis is then performed for mass and wind at all
the grid-points and levels within the box. A refinement to the algorithm
known as the 'box overlap' was introduced by Andersen in 1981. In this
refinement the analysis for each box is evaluated for a region extending
outside the box to the centre of the neighbouring boxes. This provides
several additional estimates of the analysis for each box. These are combined
in a simple weighted mean. It was this version of the analysis that was

examined by Daley (1983, 1985).

To study the scale dependence of the response, Daley sampled simple sinusoidal
functions with a regular array of observing points, and examined the magnitude
of the response as a function of the observation spacing and the scale of the
disturbance. For these experiments the geopotential auto-correlation was a
gaussian with a length scale of 600km, the geostrophic coupling coefficient

was 0.95, and the wind structure function was strictly non-divergent.

Fig 3 summarises his results. Fig 3a shows the response (ratio of output
amplitude to input amplitude) in the geopotential field to geopotential
observations. There is a marked sensitivity of response to both the scale of

the input and the observation spacing. For observation spacings larger than
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200km the response is less than 10% for planetary wave-numbers higher than 35
(quarter wave-length=285km); for observation spacings larger than 300km the
response is less than 30% for planetary wave-numbers higher than 25 (quarter

wave~length=400km) .

The non-divergent wind response to non-divergent wind observations in Fig 3b
is rather better than the height response, with improved response at all
wavenumbers between 10(quarter wave-length 1000km) and 35. However there are
clear indications of problems in the analysis of the very largest scales.when
the observation spacing is equal to or larger than the length scale of the
gaussian. This has been remedied by recognising that the correlation function
must include a representation of forecast errors which are of such large scale
that they are essentially constant over the region for which analysis
calculations are made (HL/LH). The square of the normalised observation error
was 0.25 in both Fig 3a and Fig 3b so the extra response on synoptic scales in
the wind field must come from the non-divergence constraint and the fact that

two wind-components are analysed simultaneously.

The effect of analysing height or wind using both height and wind observations
is shown in Fig 3d. Comparing Fig 3d with 3a shows that the presence of the
wind data improves the height analysis on short scales, while the presence of

the height data improves the wind analysis on large scales.

In general terms one may think of Fig 3d as the mid-latitude response to
height or wind data, Fig 3a as the tropical response to height data, and

Fig 3b as the tropical response to non-divergent wind data. The reponse to
divergent wind data at any latitude is shown in Fig 3c. Although the
structure functions are non-divergent, they are only applied in local
calculations with non-global data selection. As discussed by Lorenc (1981,
1986), it is then possible for the system to respond to divergent wind fields
which are representable on a 6-degree grid, and so have a minimum wave-length
of 12 degrees. These arguments are borne out by Fig 3¢, which shows that the
response is negligible beyond wavenumber 25. For wave~number 5 or lower
there is a response in excess of 30% provided the observation spacing is

closer than 600km.

These results are dependent on the width of the gaussian correlation function
used for the calculations. The spectral representation of forecast error

discussed in section 6 offers a general approach to the problem of improving
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resolution at small scales while maintaining good response characteristics at
large scales. Simple calculations provide a valuable check on the properties

of any proposed revisions of the correlation function.

4.3 The Effect of Correlated Observational Error

In many applications the observations have correlated errors (Schlatter 1981).
A correct treatment of these errors can change the filtering effect of the 0/I
algorithm. Once the filtering step is complete, the observation error
correlations have no further effect on the interpolation step. The role.of
correlated observational error has been discussed by Bergman and Bonner (1976)
and by Seaman(1977) who argue that the presence of correlated error in
mass-field observations can effectively improve the resolution of the analysis
on small scales. Hollingsworth, Lonnberg and Andersen, 1987, show that one
may gain useful insight on the problem by considering the filtering step of

the O/I algorithm. As noted previously
[al] =2 ( P +D )~Ll.[a] 4.2

where [a], [4], 4 and D are as defined earlier. Suppose first that the

observation errors are uncorrelated and of uniform magnitude

no

=G£

where I is the identity matrix. If the original data and the filtered data

are expanded in terms of the eigenvalues of P, then the response Ri to the ith

component is

Ai 1
Ri=xi+o=1+o 4.4

X,
i

where Ai is the ith eigenvalue of P. This gives a simple filtering of the
observations depending on the ratio of o to Ai. For a scalar field like the

mass field this translates readily into a scale-dependent filter.

Suppose now that the observations have a correlated error, and that the error
can be represented as the first two terms in a power series expansion in P:

D= oI+ €P

where we shall speak of the terms on the right as the un~correlated and
correlated parts of the observation error respectively. Empirical support for
such a representation of the vertical error correlation of TOVS data can be

had by comparing the results of Schlatter (1981) with those of LH for
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. . .th
thickness forecast errors. It follows that the response in the i component

in this case becomes
A,
R =_—J_-._———-—
i (1+€) A, +0
i
1 1

1+e -~ 1 + o
(1+E)Xi

4-5

The presence of correlated observational error has two effects. Firstly it
damps all components uniformly by an amount T%E‘ Secondly it reduces the

scale-selective damping of the algorithm by reducing the term-%—, which

1
controls the scale selectivity in Eq. 4.4, t°'T?F§TX“' If there is no
i

. . . 1
uncorrelated error as defined above, then the response 1S 51mply-T:E. The
filter is no longer scale- selective, and all components of the data are

treated equally.

In this limiting case the data is treated as if it were exact, except for the
uniform factor T%E; this occurs because of the relative magnitudes of
first-guess error (normalised to 1) and observation error, given that both
have the same spatial correlation. This result indicates that care is needed
in the specification of the observation errors. Polar orbiting satellites are
well known to have both vertically and horizontally correlated observation
errors, arising mainly from the retrieval techniques. Current estimates of
forecast error structure and observation error structure for satellites

indicate that the associated length scales are not too dissimilar, so the

simple example is relevant for practical work.
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5 A FRAMEWORK FOR VERIFICATION OF OBSERVATIONS, FORECASTS AND ANALYSES

The particular strengths of the 0O/I algorithm are the ease with which it can
handle heterogeneous observations, and the simplicity of the multivariate
formulation. If constraints such as near-geostrophy or non-divergence are
imposed on the covariance functions, they will be satisfied by the continuous
analysis. The ability of the 0/I system to cope with correlated observational
error is important in practice. The central role played by the error
characteristics of the observations and of the first-guess in the 0/I
filtering and interpolation indicates that one must determine these staﬁistics

as accurately as possible.

In the next few sections we discuss a general approach to the determination of
the statistical structure of atmospheric fluctuations, of forecast errors and
of analysis errors. The kinematics of two-dimensional turbulence provide the
connecting link between all three discussions. Having outlined the basis of

the techniques we discuss

i) the statistical properties of atmospheric fluctuations as seen by

different observing systems (section 5.2)

ii) the statistical structure of short-range forecast errors (section 6),

and

ijii) the verification of analyses (section 7).

Most of the results are concerned with the isotropic component of the
statistics; the anisotropic components of the statistics are briefly discussed

in section 6.3

5.1 Two-point Correlations and the Kinematics of Two-Dimensional
Turbulence

The kinematic theory of 2-point velocity correlations in homogeneous
conditions was worked out in the 1930s and 1940s by workers on turbulence
theory. The results are summarised in standard texts (Batchelor 1954, Panchev
1972). These results were used by Hutchings 1955, Buell 1972, Brown and
Robinson, 1979, in discussions of the statistical structure of Ffluctuations

about the climatological norm.
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Daley (1985) used the kinematic equations of 2-dimensional turbulence in a
Cartesian framework to formulate the O/I analysis problem for mass and wind in
a plane, with no constraint of non-divergence. HL/LH 1986 used the kinematic
equations in the coordinate system commonly used in turbulence theory to
estimate the three auto-correlations <¢, ¢>, <P, P>, <x, x> and the three
cross-correlations <¢,¥> <¢,X>, <Y,X>, where ¢, ¥, X represent the
fluctuations of geopotential, streamfunction and velocity potential.
Assuming homogeneous conditions, and defining

Flr,8)=v%y, P>

G(r, 8)=8%<x, x>

H(r, 0)=v86<y, x>
where =E /E ;

Y \,/ X

§=E /E ;
X 1

and Ew, EX and E1 are the standard deviations of the Y, X and velocity

component fluctuations, the kinematic equations for the winds may be written
—V2(F+G)=< 1, 1>4<t,t>
L1(F-G)-4Lp(H)=<1, 1>=-<t,t> 5.1
Lo(H)+L] (F=G)==<1,t>
where 1,t denote the velocity components along (longitudinal) and
perpindicular to (transverse component) the line joining two observation
points. Using polar coordinates (z,0) for the displacement between two

stations, the operators in Eg 5.1 have the form

V2=r2r24+2R+T2, R =

B

a 1
T

H|=-

Ly=r2RZ - 72

[4
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xr

Solutions of these equations may be found from empirical data on the velocity
correlations by least squares fitting procedures using expansions in

Fourier-Bessel series.

Only the isotropic terms have been studied by HL/LH, and by most earlier
investigators. In isotropic conditions the equations 5.1 simplify to

-(r?R242R) (F+G) = <1,1> + <t,t>
r?R2(F-G) = <1, 1> - <t,t> 5.2

-r?r% = <1,t>
If the turbulence is non-divergent then H=G=0, and the equations simplify to
-RF=<1, 1> 5.3
-(r?RZ+R)F = <t,t>
which implies a well known relation between the longitudinal and transverse
velocity correlations in homogeneous isotropic incompressible flpw (von Karman
and Howarth 1938). The equivalent relation between the longitudinal and
transverse velocity correlations in purely divergent flow were derived by
Obukhov, 1954, in his thesis. Obukhov commented that he could not imagine an

application which would need to consider flows which were partly divergent!

HL/LH found empirical expressions for <y,y>, <yx,Xx> and <Y, x> by substituting
spectral expansions for these quantities in the left hand sides of Eg. 5.2,
and making a least squares fit of the resulting expressions to the empirical

data on the right.

The determination of the cross—-correlations of mass and wind is rather
simpler than the wind=-wind correlations, as it involves the solution of a
pair of coupled first-order linear partial differential equations rather than
a set of three coupled second-order PDEs. If I(r,6), and J(r,0) are defined
by

I(r,0)= v <, P>

J(r,8)= § <9,
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then for homogeneous conditions

1
I+ d5= <> 5.4

1
I, = Ig= =<¢ 1>

If conditions are isotropic then the equations are especially simple:

Ir = -<¢,t> 5-5

J
r

-<d, 1>

These last equations have a simple physical interpretation if we considér the
correlation of the geopotential at one radiosonde location with the radial and
transverse wind components at surrounding stations. The height/streamfunction
correlation is defined by the correlation between the geopotential and the
swirl velocity component about the geopotential observing point, while the
height/velocity-potential correlation is defined by the correlation between
the geopotential and the radial velocity component. The <¢, ¢> correlation is

determined directly from observations using the methods of Rutherford (1972). -

5.2 Intercomparison of Observing Systems

There have been extensive studies of the analysis of atmospheric fluctuations,
using climatology as a background (Gandin 1963, Rutherford 1972, Buell 1971,
Buell 1972a,b, Panchev 1971, Julian and Thiebaux 1975, Brown and Robinson
1979, Buell and Seaman 1984, Rinne and Jarvenoja 1985). Several of these
studies have used the simplified non=-divergent form of the kinematic equations

to investigate atmospheric fluctuations.

There is however a further application of the methods which is suggested by
Wylie et al (1985), who raise the important question: Do different observing
systems see the same atmosphere? They studied the spatial correlation
structure of the fluctuations of the tropical wind field about the long term
mean, using the vector wind correlation <1, 1>+<t,t>, the spatial correlation
for wind speed, and Gandin structure functions for wind speed. They compared
the statistics derived from rawinsondes, aircraft, and cloud track winds.

Fig. 4 shows an example of their results for the vector wind speed in the
tropical upper troposphere. It shows that there are some striking differences

between the statistics of atmospheric fluctuations as derived from different
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observing systems, indicating that the observing systems sample quite
different scales of motion (cf. the correlations for autcmatic aireps and
radiosondes). The very broad correlations for the cloud track wind data
suggest that the data sample only large scales. Relative to radiosonde winds,

the cloud track wind data therefore have correlated sampling errors.

Further work along these lines would be valuable. Comparison of spectra from
observation sYstems with uncorrelated errors (e.g. rawinsondes and aircraft)
would determine a spectral band where they both have equivalent response. It
should then be possible by cross comparison with satellite data to quantify
the structure of spatially correlated observation errors, giving a different
approach from Schlatter (1981). One could, for ekample, also address the
question of 'Do different wind observing systems have the same response to
divergent flow?' by examination of the statistics on divergent flow resulting
from solutions of Egs 5.1 or Egs 5.2, where the empirical data is derived from
different observing systems. Such information would be quite important for

tropical analysis.

5.3 Data Monitoring

Besides the elaborate methods just discussed for evaluation of observing
systems, there are much simpler techniques which are also valuable. As
discussed in section 8, every operational system needs quality control
algorithms to reject data which may be corrupt for one reason or another.
Studies of the interaction of data with the assimilation system can be

valuable in identifying systematic defects in data.

d) Real Time Data Monitoring

An operational data assimilation system needs defences against data which has
been corrupted for one reason or another. These defences serve a useful
purpose by indicating the data which have problems, and need examination.
Several tools besides rejection lists are available to identify data which
need ekamination; maps of analysis increments and regional plots of the rms
fit of the analysis and first guess to the data are both heavily used

(Delsol 1985).
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In cases of real time problems there is a typical sequence of investigations.
The first concern is to make sure that the data has been correctly treated in
the pre-analysis phase ( correct decoding, proper climatological tests, etc.)
Next there are checks that the differences between the data and the analysed
fields are reasonable from the synoptic point of view. An analysis scheme
designed for models with mesh sizes of 150-200km cannot resolve the core of a
hurricane; data indicating the central pressure of an intense hurricane will
then be rejected on the reasonable scientific grounds that it represents
something the analysis and the forecast model cannot resolve. Similarly, data
may receive little weight in the analysis if it is contradicted by adjacent

good quality data and by the background field.

In many cases it can take just a short time to establish that either the
assimilation system or the data has real problems. In other cases it can take
several days to establish whether or not the treatment of a particular piece
of data or type of data was correct. Depending on the outcome of the
investigation, action will need to be taken, either by liaison with the
builders of the assimilation system, or by liaison with the data producers in

case of a new bug in an observational system.

e) Long Term Data Monitoring

The system of near real-time data monitoring at ECMWF has developed over the
years and is very effective in detecting errors in the data, and weaknesses in
the assimilation system. However it has been possible to refine the system
even further by considering monthly or longer term statistics on the
differences between the observations on the one hand and the back-ground and

analysed fields on the other.

Hollingsworth et al (1986) demonstrated that monthly or longer term statistics
on the treatment of data in the assimilation can reveal weaknesses both in the
data and in the assimilation system itself. Calculations to partition 6-hour
forecast errors, as perceived by rawinsondes, into spatially correlated
prediction errors and spatially uncorrelated observation errors (which include
sampling errors) indicated that the two components of perceived forecast error
are of comparable magnitude when good quality data is regularly available,

Fig 5.
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There are three components of the assimilation system: the 6-hour forecast,
the analysis, and the initialisation. If the forecast error and observation
area are comparable in data rich areas, then most of the atmospheric evolution
from one analysis time to the next must be accomplished by the forecast step.
Hollingsworth et al (1986) demonstrated this by comparing the RMS changes made
by each of the three steps in the assimilation from 0600GMT to 1200GMT in
October 1983. For 500 hPa geopotential they found the northern hemispheric
rms changes to be 21.6m for the forecast, 12.5m for the analysis and 6.5m for
the initialisation. This state of affairs has come about because of many
developments in the techniques of analysis assimilation and forecasting.

Fig 6 compares the perceived 6-hour forecast errors over N America in the fall
of 1974 (Hollett 1975) and in summer and winter 1983 (Hollingsworth et al
1986), which shows clearly the extent of the improvement in technigue over the

last decade.

The reliable quality of the analyses and 6-hour forecasts is exploited in a
number of ways. Delsol (1985) has presented monthly means of the bias and
standard deviations of the differences between the forecasts and retrieved
thickness temperatures from the TOVS systems on the,NOAA satellites. These
have been helpful in identifying the areal distribution of biases,

particularly at low levels, in the retrieved temperatures.

Delsol has also demonstrated that near mid-latitude jet-streams there are
substantial biases in the differences between cloud track wind reports and the
first-guess, while the equivalent biases for radiosondes are much smaller.
Pierrard (1985) and Kallberg and Delsol (1986) have used rawinsonde, aircraft,
and cloud-track winds in collocation studies which show clearly that there are
indeed substantial speed-dependent biases in the operational Cloud Track wind
data. Several possible solutions are under consideration. For the
re~processing of the FGGE data it was decided to use the collocation studies
to calibrate some of the cloud track wind data near the jet-streams of the

Southern Hemisphere.
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6 THE STATISTICAL STRUCTURE OF SHORT RANGE FORECAST ERRORS

As emphasised in this and every other paper on O/I, the statistics of the
first-guess error play a central role in the O/I analysis algorithm, both in
determining the relative weights of first-guess and observation, and in
determining the response characteristics. The assimilation uses the
observations to correct forecast errors, and it does this most effectively by
spreading out the information in the observations to the extent indicated by
the forecast error correlations. Given that the O/I algorithm has been
adopted for operational use at many different centres (Gustafsson 1981) it is
surprising that so little has been published on the determination of the
structure of forecast errors (Hollett 1975, Balgovind et al 1983, HL/LH, 1986,
Thiebaux Shantz and Mitchell 1986}, as distinct from the statistical structure

of departures from climatology.

6.1 Horizontal Structure Functions for Mass and Wind

The papers by HL/LH used the formulation of the last section to study short
range (6-hour) forecast errors in the ECMWF assimilation, using North American
rawinsonde data for verification. The first step was to partition the
perceived forecast error into horizontally correlated predictioﬁ error and
horizontally uncorrelated observation error. The technique used, the
extrapolation of horizontal lag correlations to zero lag, was introduced by
Drozdov and Shepelevskii (1946}, and has been widely used since then. The
horizontally correlated prediction errors in height and wind are each
partitioned into a large scale part, which is essentially constant over a
large area, and a synoptic scale part. The synoptic scale wind components are
partitioned into a rotational part and a divergent part. The Bessel
expansions used for the extrapolation were truncated at a scale corresponding

to planetary wave-number 68.

Forecast error and radiosonde observational error are of comparable magnitude
for both height and wind over land areas of the Northern Hemisphere, and
indeed in the Tropics in those areas where good quality data is available,
Fig. 5 (HL/LH, Hollingsworth et al. 1986). The mid-latitude wind forecast
errors on synoptic scales are mainly non-divergent and geostrophic. The
Rossby number of the forecast errors is about 0.4, and the geostrophic
coupling coefficient between geopotential and stream-function is about 0.3.
The spectra of the correlations are well behaved, with spectra being

flatter,or whiter, at lower levels than at higher. This indicates that
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the length scales of the forecast error are shortest in the lower troposphere.
The <y, x> correlation is practically zero. There is a marked correlation
(0.25) between ¢ and .x, corresponding to excessive convergence in the lower
troposphere when a low is forecast too deep. A similar feature is noted in

the behaviour of the NMC regional model (N.A. Phillips, pers. comm.)

A substantial part of the forecast error in both height and wind is on
horizontal scales larger than planetary wave no. 8; we shall call this the
large scale error. The large scale wind error changes phase between the‘lower
stratosphere and the lower troposphere. The large scale geopotential error is
nearly barotropic, Fig. 7b. A study of the height and temperature errors of
the Canadian assimilation (Thiebaux, Shantz and Mitchell, 1986) shows
indications of a similar large scale error. These authors found that the
horizontal correlation length was much shorter for temperature than for
geopotential, and that part of the difference could be explained by a large

scale error in the height field.

6.2 Vertical Structure Functions for Mass and Wind

Provided the assumptions of homogeneity and isotropy are valid for vertical
differences of height or wind, the kinematic equations, Eq. 5.1, are as valid
for the vertical differences as they are fér the height and wind at a single
level. HL/LH used this result to determine the vertical correlation matrices

for forecast error and observation error in both height and wind.

Both Bergman (1979) and Lorenc (1981) formulated the 3-dimensional structure
function for height and wind in separable form as a product of a function
describing the horizontal dependence and a function (continuous or discrete)
describing the vertical dependence. With this formulation, the maintenance of
the geostrophic constraint required that the same vertical function be used

for height and wind.

Figure 7, from HL/LH, shows plots of the vertical correiations of the synoptic
scale and large scale height errors, and of the wind errors. The height and
wind data have very different vertical dependences, which is clear evidence
for non-separability. Moreover the vertical correlation structure of the

individual terms in the expansions for the synoptic scale height field showed
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marked variability from one term to the next, which was also inconsistent with

the presumption of separability.

An explanation of these results was suggested by Phillips (1986) who modelled
the forecast errors in a data rich area as an ensemble of slow modes with
random phases. Phillips assumed that the ensemble had a white noise spectrum
in the sum of potential and kinetic energy. Balgovind et al.(1982) had
earlier proposed a model which assumed that forecast errors had a white noise
spectrum in potential vorticity; neither spectrum quite fits the empirical
results. Phillips has shown that if his formulation takes account of the
vertical and horizontal resolution of the ECMWF model, he can reproduce many
important features of the results of HL/LH, such as the overall variation in
the forecast error amplitudes, and the sharper vertical correlation functions
for wind as compared with height. Most operational systems use the
separability assumption that a three dimensional correlation may be
represented as a product of two functions - one describing the horizontal and
the other the vertical dependence. Geostrophy then requires that the vertical
correlations for height and wind be the same. Phillips' model is inherently
non-separable, with a different vertical dependence for each horizontal
component of the turbulent ensemble; Fig 7 is cleér evidence for
non-separability in the ECMWF assimilation. As a further result of the
non-separability, Phillips' model of forecast error predicted that the
horizontal length scale for temperature should be much shorter than the length
scale for geopotential. This feature was found in the Canadian results and is

confirmed in unpublished ECMWF results.

Altogether we now have substantial theoretical and empirical evidence for the
existence of marked non-separability in the forecast error statistics of
operational data assimilations. One must now consider seriously the need to
use a non-separable correlation model to make an optimal use of data sources
like rawinsondes and satellite thicknesses. This will be expensive in
computer time, should it prove necessary, but the cost will be negligible

compared to the cost of the observations.

There are important features of the HL/LH results which are not explained by
the simple model of Phillips'. Notable amongst these is the maximum in
forecast error near the tropopause, both in height, Fig 8, and wind (not

shown). Advection of error from the oceans may be a contributing factor, but
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is unlikely to be the only one. The shape of the spectra found in HL/LH's
results also need explanation; they vary from about k-1'5 at low levels to
about k_3 at upper levels. The large scale errors also need explanation;
there is some indication that they may be partly tidal in origin. Thiebaux et
al found no evidence for tidal effects in their calculations. Accurate
treatment of the tides in an assimilation requires a good diurnal cycle in the
forecast model, Unden (1984), and a suitable initialisation condition, Wergen,

(1986).

Balgovind et al (1983) found a marked latitudinal variation in the magnitude
of mass-field forecast errors in their assimilation, which was larger than
simple f-plane theory would indicate (Phillips 1986); they proposed a
theoretical beta-plane model to interpret their results. Thiebaux et al
(1986) found a similar empirical result. VHL/LH did not pursue this line of
investigation because of known problems in their system in large scale
analysis in the tropics, in modelling of the tropics, and in assimilation of
tides. Given recent progress in the assimilation of tidal data (Wergen
(1986), and in the analysis and forecasting of large scale fields in the
tropics (cf para 8.3), a re-examination of the latitudinal dependence of

forecast errors would be interesting.

6.3 Significance of Forecast Error Structure in Data Rich Areas

It has been argued since Gandin (1963) that the structure functions have
little effect on analyses in data rich areas, and are only important in data
sparse areas; the comment was made in the context of analysis using
climatology as a background field. The results of Seaman and Hutchinson
(1985) however suggest that the correlation functions are indeed important in
data rich areas. We have some results which support their conclusion, rather

than Gandin's, in current operational work.

One of the major changes introduced in the ECMWF assimilation by Shaw et al
(1984) was an increase in the vertical and horizontal resolution of the
analysis, by using sharper structure functions; the changes were based on the
results of HL/LH. There were other important changes as well, affecting data
selection and quality control. The impact of these changes has been shown in
the verifications of the short range wind forecasts over N America in the
winter of 83/84 (after the introduction of the T63 spectral model) and in the

winter of 84/85 after the introduction of the analysis changes (Fig 2). The
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impact of the analysis changes has been very positive. One may conclude that
the correlation functions do indeed matter in the relatively data-rich area of

North America.

When using climatology as a background field (Gandin 1963) in an area such as
North America or Europe, the observations are very close to each other
relative to the width of the auto-correlation of background error. The larger
scales find a much better response than the smaller scales; as a result the
details of the correlation structure do not matter provided they represent the

main broad scale features well.

When one is analysing forecast errors in an area such as North America, the
scales of interest are much shorter than they are when analysing

climatological fluctuations. The data density relative to the correlation
length of the background field is correspondingly lower and as a result the

importance of the statistics of the background field increases.

6.4 One—gplnt Correlations, Anisotropy and Flow Dependence

A common cr1t1c1sm of operational G/I systems is that the correlatlons used
are isotropic and make no attempt to use functions elongated along the flow
direction. Some of this criticism is based on a mis-understanding of the fact
that an operational system analyses forecast errors rather than the entire
spectrum of atmospheric fluctuations. If the anisotropies have been captured
by the first-guess, then the first-guess errors may not be anisotropic, and

the analysis problem is therefore simplified.

Holopainen, (1978), Hoskins James and White, (1983), use the tensor of
one-point velocity covariances, or Reynolds stress tensor, to summarise
important aspects of the anisotropy of a two-dimensional velocity field. They
write the velocity correlation tensor in the form

ua'a' u'v' K O M N

u'v' v'v? 0 K N =M
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where K = (u'u' + v'v')/2
M= (u'u' - v'v')/2
N =uv"

The prime denotes the departure from the ensemble mean and the bar denotes
ensemble mean. The principal axes of the Reynold's stress tensor have
magnitudes K (M2+N2)%, and the major axis has an orientation % tan'lcg) to
the x-axis. In the northern hemisphere an orientation from South-West to
North-East indicates a poleward momentum flux. The 'anisotropy' vector V,
with magnitude (M2+N2)% and orientation along the major axis, gives a
convenient summary of the main properties of the anisotropy for the one-point

velocity correlations.

We now apply these concepts to the anisotropies of forecast error fields.

Fig 9a shows plots of the anisotropy vector for the 250 hPa wind forecast
errors at the North American radiosondes for winter 1984/85. The vectors are
oriented mainly North-South near the West Coast, and are oriented mainly
East-West in the East. The magnitude of the anisotropy VectorS'for the
forecast errors is about 1/25 of the atmospheric magnitude. Fig 9b shows the
ratio a=(M2+N2)%/K, which gives a non-dimensional measure of the significance
of the anisotropy in the wind forecast error. Typical values are 0.2-0.3.

K, the denominator of a, contains contributions from observation error and
forecast error since K is the energy of the measured forecast error. If the
observational error is isotropic, and is comparable with the prediction error,
the true anisotropy of the forecast errors may therefore be of order 0.5,
which is comparable with values for atmospheric fluctuations. Thus anisotropy
may be as significant a feature of the forecast errors as it is of the
observed fields. Preliminary investigations indicate that the analysis copes

with some but not all of this anisotropy.

The anisotropy calculations just discussed can only document the existence of
components of the correlation structure with azimuthal wave number m=2, if the
forecast errors are homogeneous. As discussed by HL/LH the components with
odd parity ( m=1,3, etc) occur in cross-correlations and may be important in

describing the baroclinic phase tilts in the forecast errors.
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Evidence for the existence of these components is forth-coming (A.M.Jorgensen

1986, pers comm).

A full investigation of the need for anisotropy in the forecast error
correlation model will need to consider the balance between the mass and wind
field. A convenient survey of the role of anisotropy and ageostrophy in the
mass-wind coupling of the forecast errors is provided by the vector of
one-point correlations (¢*'u’', $'v'). For atmospheric fluctuations this
quantity shows the mainly non-divergent pattern expected from
quasi-geostrophic flow (Holopainen 1978), with indications of the smaller
terms arising from correlations of ¢ with the divergent wind (Hoskins and
Sardeshmukh 1986) . Calculations of this vector for the forecast errors shows
that it is noisier than the anisotropy vectors. At some stations the
velocity-height correlations in the forecast errors are as large as 0.5. The
correlation model used at most operational centres assumes that this

correlation is zero.

These preliminary results suggest that there may be a need to take account of
anisotropy and divergence in the correlation models used for analysis, but the
question needs further study. The one-point correlations shown in Fig 9 are
the limits, in the case of vanishing spatial lag, of the two-point velocity
correlations discussed earlier, provided the forecast errors are homogeneous
and the observation errors are isotropic. Anisotropic componenﬁs of the
forecast errors can be incorporated in a correlation model using the same

formalism as the isotropic component.

The view that the correlation functions ought to be flow-dependent has often
been expressed. Operational centres have not given high priority to this
effort. An explanation may be that it is profitable to ensure that simple
things are done well, before tackling difficult problems. The use of
flow-dependent correlation functions for wind analysis in highly curved flows
is inherently self-referential, and therefore requires iterative solutions to
non~linear problems. The adjoint method offers a more complete approach to
the problem. Baker et al (1986) have approached the problem in a
straight-forward fashion by stratifying the correlation structures of analysis
increments according to the background vorticity, but using isotropic
representations for each of the vorticity categories. The results seemed to

indicate modest improvementse.
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7 THE MAGNITUDE AND SIGNIFICANCE OF ANALYSIS ERRORS

The analysis error field is, by definition, the difference between the
analysed field and the true field. Since the true field can never be known
exactly, the analysis error field can never be known exactly. It can
nevertheless be estimated, if only approximately. Many techniques have been
used to assess the magnitude and significance of analysis errors. Forecast
error was discussed earlier as a proxy for analysis error. Comparisons of
independent analyses and a=-priori estimation using the 0O/I technique are
discussed in para 7.1 and 7.2. BAnalysis verification using two-point
correlations of observation minus analysis differences is discussed in para
7.3; analysis verification using one-point correlations has been touched on

already in para 6.4.

For those with access to a good forecast model, the best estimate of analysis
accuracy comes from verification of short range~forecasts based on the
analyses. The advantage is that the errors of the verifying observations are
independent of the forecast errors, if the observations are unbiased. With a
2-day doubling time, analysis errors should amplify by less than 10% in 6
hours, and so the forecast errors are a very good estimate of the analysis
errors. Moreover the forecast verification provides an excellent measure of

the internal balance of the analysis.

7.1 Comparison of Operational and FGGE Analyses

With the availability in recent years of many different analyses of the FGGE
data, and, of several different operational analysis sets, there have been
numerous comparisons of the properties of different analyses. Many of these
studies are reviewed in Miyakoda 1985, National Research Council (1985) and
WMO (1985b). These investigations have used a variety of methods to compare
the analyses. Some have compared the energetics of the analyses, some have
examined the intensity of the diabatic processes implied'by the analyses;
others have studied the accuracy of forecasts made from different analyses,
and yet others have considered the internal balance of the analyses. Implicit
in all these studies has been an attempt to estimate the accuracy and
consistency of the analyses by establishing the range of uncertainty in the

analyses (WMO 1985b).

The simplest comparison method is a computation of the rms differences between
independent analyses of the same observations, Arpe (1980), Rinne and

Jarvenoja (1983), Lau(1984) and many other authors. If the analyses are
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assumed to be of equivalent accuracy, and if their errors can be assumed to be
uncorrelated, then the variance of the analysis differences may be attributed

equally to errors in both analyses. This method has been used extensively by

Rinne and Frisk (1979) and by Rinne and Jarvenoja (1983) to estimate analysis

errors of long series of operational analyses, and of analyses of the FGGE

data; their results demonstrate the high accuracy of the FGGE analyses.

In addition, Rinne and Jarvenoja (1984) developed an alternative technique for
estimating analysis error. They projected sets of 500 hPa height analyses
onto empirical orthogonal functions (EOF's). They then developed optimal
linear predictors for the evolution of the time series of the EOF
coefficients. These methods provide an estimate of the noise in the time
series of coefficients, which they attribute to analysis error. The results
they found with this method had many important similarities with the results

they obtained from computations of the rms differences.

7.2 The 0/I Estimate of Analysis Error

The 0/I analysis method provides an estimate of the second moment of the
analysis error (Gandin 1965). Seaman(1977, 1983) has shown that the analysis
error can be calculated in a similar way for any analysis method which defines
an analysis increment to a background field by a linear combination of the
observations. The estimated analysis error is used in quality control of data
(Lorenc 1981), in estimating the accuracy of short-range forecasts made from
the analyses (Lorenc 1981, Ghil et al 1981), and therefore in deciding on the
relative weights to be given to observations and the back-ground field. The
estimates appear to be rather reasonable in data sparse regions ( Rinne and

Jarvenoja 1984).

However the estimated analysis error appears to be over-optimistic if a great
deal of data is used in the estimation of analysis error in a data rich area.
Experiments have shown that if height data from a single radiosonde in
Central Furope is withheld from the analysis, then the estimated error in

500 hPa height is of order 2m, when the actual analysis error is between 5
and 8m, due allowance being made for observation error (Lonnberg and Shaw,
1984). As discussed by Seaman (1977) Franke(1983) and Lorenc(1986), the 0o/1
estimate of analysis error is probably much less reliable than the 0/I
analysis in these circumstances. The main reason is that the estimate makes

no allowance for inevitable errors in its own statistics, and the estimate
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tends to zero as the number of data becomes large. Since the estimated
analysis error is a monotonically decreasing function of the number of data
used, it will tend to give unrealistically optimistic estimates of analysis

error if large volumes of data are used.

7.3 Verification of Analyses using Two-point Correlations

Computations of rms differences between analyses and observations are a
standard verification tool. At best such comparisons can tell if the data
were used in the analyses, but there is little further information.
Hollingsworth and Lonnberg (1986b) have shown that a study of the spatial
correlation structure of the observation minus analysis (Ob-An) differences
can yield upper and lower bounds on the magnitudes of analysis errors, and on
the spectra of analysis errors, in much the same way as study of the
correlation structure of the observation minus forecast (Ob-Fg) differences

can quantify the magnitude and spectrum of forecast errors.

a) The Theoretical Covariance of Observatlon Minus Analysis Differences

To provide a theoretical context for the discussion of the
observation-minus-analysis (Ob-An) differences, Hollingsworth and Lonnberg

(1986b) show that in the case of a complete O/I analysis
a=p-p. (p+D)"'p | 7.1

where A represents the covariance matrix of the analysis errors at the
observation points. From this result one may derive an expression for the

covariance of the difference between the observed and analysed values

Cov<(d-a).(d-a)*>= D - 7.2

>

If the observations were not used in the analyses the covariance of the Ob-An

differences would be

+

no
lip

where A' is the analysis error covariance if the observations in question are
not used. If the observations were used but the analyses were less than ideal

one would expect to find that

Cov<(d-a).(d-a)*>= D + A -2 E*.R .E 7.3
-0 =o/a ~a
where Bo/a is the correlation matrix of observation error and analysis error

at the observation points, and Eo’ga represent the vectors of rms observation
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error and analysis error at the observation points. Consistency of this

result with Eq 7.2 requires that in the complete O/I analysis:

E*.R +.E_ = E*.R B = A 7.4
-0 =o/a =a -a =a/a -a ( =)
where Ba/a is the auto-correlation matrix for analysis error. Since Ba/a

tends to the identity matrix I at zero separation, Eq. 7.3 suggests that the

spatial correlation of Ob-An differences should be negative at short

separations, provided obgservation errors are spatially uncorrelated and
sampling errors are negligible. We shall now demonstrate this in some simple

calculations.

b) Two-point Correlations of Observation-Analysis Differences

Given a set of analyses and observations, the spatial variation of the
covariance of the Ob-An differences at points 1 and 2 may be written
Cov[(ob-an)1,(ob—an)2]

= 82 ) 2 € €

o 12 o a pa/ (r)

2
o(r) + Ea pa/a

where r is the separation between points 1 and 2
ob=observation error, with assumed zero mean and no spatial correlation,
an=analysis error, with assumed zero mean,
€ =rms(ob),
o
=rms(an),
a

(r )=correlation of observation and analysis error,and
o

Pa/

a(r y=auto~correlation of analysis error.

Pa/

612= Kronecker delta

Considering only the isotropic component of the Ob-An covariance statistics,
we may define the function b(r) by
b(r) = =[2 €_ € (r )= €2 (r )]
o a pa/o a pa/a

This function of station separation can be fitted in a least squares sense by
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a truncated series of Bessel functions of zero order. The truncated series

expansion may be extrapolated to the origin to give an intercept b(0).

We then have the relations

2

€°~[rms(ob—an)] =0 " b(0) 7.7
and

2

Ea -2 eo Ea pa/o (0) = b(0) =0 7.8

2
Defining e=€a/€0 and b=b(0)/€o, Hollingsworth and Lonnberg 1986b show that if
the intercept b is negative then

1 1
1-(1+b) %< € < (-b)?

while if the intercept is positive then
1

(b)*< £ < 1.
These bounds on the analysis error at observation points are instructive. The
analysis error at observation points is smaller when the intercept is negativé
than when it is positive. The closer to zero the negative intercept, the
smaller the analysis error at the observation points. Hollingsworth and
Lonnberg 1986b use these results to estimate the analysis error at observation
points. They also show that equivalent bounds on the spectrum of analysis
error may be derived. For example Fig 10a shows the spatial correlation of
their operational 500 hPa Ob-An differences in the height field. The negative
intercept at the origin is quite different from what one sees with Ob-Fg
differences (Fig 10b). The results in Fig 10a suggest that the analysis error
variance at observation points is about one gquarter of the observation error

variance, at most.

c) Diagnosing the Efficiency of an Analysis

Apart from their value in providing bounds on analysis error, the spatial
correlations of Ob-An differences provide a quick and powerful diagnostic of
the efficiency of an analysis system. As an example consider Fig 11 which
shows the correlation of the Ob~An differences for the vertical wind shear
between 200 and 150 hPa over N America in Jan-Mar 1983. This figure is
unambiguous evidence that the analysis at the time was not drawing effectively
for the vertical wind shear information (HL/LH, Shaw et al 4984). The latter
paper documents an extensive set of modifications to the system which were

implemented in May 1984. Fig 12 shows the same results as Fig 11 for the
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first winter after the implementation. There has clearly been a considerable
improvement in the vertical resolution of the wind analysis near the

tropopause, and there is still room for further improvement.

These methods enable one to determine if a three-dimensional analysis has used
to the fullest extent the data available to it. They therefore provide a
powerful diagnostic of the efficiency of an analysis by identifying those
areas where the analysis is inadequate. We hope that systematic application
of these ideas over the next few years will bring us to the stage where Qe can
prove that our analysis algorithm has used all of the available data, to the
full. At that point we will need the more explicitly four dimensional

approach of the adjoint method to make further progress.

d) System Dependence of OSE Results

These analysis verification methods provide a useful tool for evaluation and
interpretation of Observing System Experiments (OSEs), and of Simulated
Observing System Experiments (0SSEs). It has often been found that the
results of these experiments are system dependent (Gilchrist 1982, ECMWF
1984). This leads to difficulties in the interpretation of the fesults. The
verification methods discussed here could be quite valuable in reducing the
level of controversy. Experimenters should demonstrate that the analysis
system used for the experiments is using all the information available to it
from each of the observation systems, before beginning their experiments. if
this cannot be demonstrated then the outcome of an OSE must be interpreted

carefully, as the results will be system dependent.

7.4 Discussion

There is a satisfying symmetry about the way correlation studies can be used
to study observation quality, forecast errors and analysis verification.
Results of one-point correlations provide a rapid survey and summary of
forecast and analysis performance. Two-point correlation studies of
atmospheric fluctuations can be used to compare the performance of different
observing systems, Wylie et al (1984). Equivalent studies of the forecast
errors provide good correlation functions and good constraints for the
analysis. Finally, similar studies of the analyses can determine if the

analysis system has extracted all useful information from the observations.
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8 FUTURE RESEARCH IN OBJECTIVE ANALYSIS

We now discuss the areas of objective analysis where research is likely to be
concentrated to exploit new technological and scientific possibilities. It
has been estimated that machines which are 400 times more powerful than the
Cray-1A will be available by 1990. Today's commercially available machines
are about 10 times more powerful than the Cray-1A, ten years after its first
introduction. We are therefore in a phase when developments in computers are

accelerating rather than otherwise.

There is a steady improvement in telecommunications capacity which makes it
possible to disseminate greater volumes of satellite data, much of which is
not fully exploited in present operational systems. For example Julian (1985)
and Cadet (1983) indicate that cloud top temperatures have information on
humidity and divergence which is not exploited in current operational systems.
Given that there are now very encouraging prospects for NWP in the Tropics, we
can expect substantial developments in exploiting data which is ‘'available in .

principle' but not currently used.

New observational technologies are being introduced, such as the sounders
which some see as replacements for the rawinsondes in some areas. It is
expected that the Advanced Microwave Sounding System (AMSU), to be flown on
operational satellites soon after 1990, will provide as much vertical
resolution in cloudy areas as is currently available from the TIROS-N series
in clear areas. The potential resolution of this data is of order 80km in the
horizontal, and 200~300 hPa in the troposphere. 1In the early 1990s the
microwave scatterometers on ESA's ERS-1 satellite, and the U.S. Navy's NROSS
satellite will provide near global 50km resolution surface wind data. The
need to exploit new opportunities will increase the pressure to improve our

present methods, as well as raising quite new problems.

With these changes in mind, we may identify four fairly distinct growth areas

for research in objective analysis in the next few years:

i) High resolution analysis over land (8.1),

ii) Synoptic scale analysis over mid~latitude oceans (8.2)
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iii) Synoptic scale analysis over the Tropical Oceans (8.3) and
iv) Quality control of observations (8.4)

Each of the first three areas has different emphasis on the importance of
particular types of data, and presents different problems in assimilation of

that data. The topic of data quality control is vital for all three areas.

A common theme running through the discussions of each of these areas is the
need for more effective use of the time dimension or time history in the
analysis. A number of methods are under investigation, some more elaborate
than others. They all indicate that a closer meshing of the model and the

analysis is possible.

8.1 Analysis Over a Wide range of Spatial Scales

Short-range forecasts are still the most widely used products of the
meteorological services. Since global models with grid-sizes of 50km are
conceivable by 1990, models covering large regions with much higher
resolutions are also conceivable. It has been recognised since the 1950s that
objective analysis schemes must be capable of treating a range of spatial

scales (Bergthorsson and Doos 1954, Cressman 1959).

The method of O/I has been used to prepare analyses for the 80km Nested Grid
Model (Phillips 1979) at NMC Washington (DiMego 1985), but the assimilating
model which provides the background field is a global model of much lower
resolution. Meteorologie Nationale, Paris, runs a regional assimilation cycle
where the assimilating model is the 35km resolution Peridot model (Pailleux,
pers comm.). The method of continuous assimilation has been successfully
adapted to run with an operational model having grid spacing of 75km at the UK

Meteorological Office (Fugard 1985, pers. comm. ) .

Many questions are still open on what is the best way to approach the problem.
If the concept of 'slow' modes is valid in any way at the high end of the
spectrum, then Phillips' (1982) results suggest that O/I may be the best
approach. As implied by Phillips, 'distinguishable' might be a better word
than 'slow', since the main requirement for his results on the completeness of

0/I is that the components of interest be distinguishable in some way from the
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components which are not of interest. Even if 0/I were the optimal approach,
there are a number of sub-optimal approaches which might work quite as well in
practice, such as continuous assimilation (Fugard 1984 pers.comm., Lyne 1982,
DiMego 1984) or special forms of the Successive Correction Method (SCM) which

converge to O/I (Bratseth 1986, Lorenc 1986).

a) Scale Dependent Constraints in 0O/I

The general formulation for the correlation functions of forecast error .
discussed in section 6 has many aspects that may be of value in developing an
analysis system suitable for application over a wide range of spatial scales,
particularly if the dynamical constraints to be imposed on the motion are
stongly scale dependent. The spectral representation of the correlations
permits all the properties of the correlation model to be scale-dependent. It
is a simple matter to vary the geostrophic coupling as a function of scale.
This would permit the enforcement of a tight geostrophic coupling at synoptic

scales, and a zero geostrophic coupling at very short scales.

Similarly the wind-wind correlation model could permit more divergence at
either very large or very small scales than might be desired at.synoptic
scales, by suitable determinations of the expansion coefficients in the

<X¢ X> correlation. The coupling between the divergent and the rotational
winds can be made scale dependent by setting the coefficients of the <¢, x>
correlations appropriately. Manipulation of the <X, ¢> correlation might also
be useful in particular circumstances, since the correlation is observed to be

non—=zero.

There is solid empirical and theoretical evidence that the forecast errors are
non-separable. Non-separability and anisotropy in the correlation functions
‘may well become important as resolution is increased. It would be expensive
to use a non-separable correlation model in operational work. Such a decision
would have to be justified by evidence that the analyses were missing
important features of the observations. The methods of analysis verification

discussed in the last section would be of value in such a decision.

The spectral formulation requires the specification of a large number of

disposable parameters, but it also provides the means of determining those
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parameters, through spectral decomposition of the forecast errors. The
spectral representation can also be useful in deciding if the additional

refinements are necessSary.

b) Analysis of Phenomena having Non-linear Balance

As model and analysis resolution is increased, it becomes more and more
essential to provide an accurate description of strongly non-~linear phenomena
such as fronts. If the background forecast has a frontal position error of a
few grid-points, linear analysis methods such as 0/I may be incapable of
moving the entire non-linear structure to the correct position. Similar
comments may apply to phenomena where the non-linearity involves physical

processes in a vital way, as in hurricanes.

Fine mesh analysis for these phenomena will always be faced with a problem of
data scarcity. If a synoptician knows that a strong front is to be found in a
given area, a few surface reports can often give him an accurate position for
the front. To position a front accurately, while providing the forecast model
with the full non-linear balance needed for a good forecast, may well require
iterative non-linear methods using adjoint techniques {(Le Dimet énd Talagrand
1986). This approach may be more productive than trying to develop
flow—-dependent structure functions, where the mathematical formulation is

much less clear cut.

c) Analysis near Mountains

The study of the effect of mountains on the atmosphere has been given a
substantial impetus by the ALPEX experiment. Excellent reviews of the problem
together with summaries of observational, theoretical, and modelling studies
may be found in Speranza (1984) and WMO (1986). There have been studies of
static fine-mesh analysis of the ALPEX data (Reimer, 1984, Buzzi 1984,
McGinley 1984), but there is little published material on data assimilation
with the ALPEX data with a high-resolution system. This suggests that the

undertaking is not only expensive, but difficult as well.
The importance of high resolution models for forecasting near mountains such

as the Alps is underlined by the results of McGinley and Goerss (1985) and

Dell'Osso (1984). Operational analysis and assimilation systems to support
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such models will need to consider special features of the flow such as
blocking, with consequential in-homogeneity and anisotropy in the forecast
errors. Other areas needing consideration will be the structure of the
analysis grid, and the data selection strategies, which must also take account

of the anisotropies.

8.2 Analysis Over the Mid-Latitude Oceans

Analysis over the oceans is probably the most difficult and important of all
analysis problems, because of the scarcity of data over these enormous

regions. Apart from the TOVS data, and a few radiosonde reports from ships
and islands, all the remaining observation platforms provide information at

only one or two levels.

a) Use of Single level data

The problem of how to spread out single-level data in the vertical is one for
which there will never be a fully satisfactory solution. One does not know
how much of the information in the observation originates in the barotropic
component of the flow and how much in the baroclinic component. One
possibility is to treat the information as a delta-function in the vertical,
and not spread it out at all. Barwell and Lorenc (1985) have shown that this

is not a good approach.

In the RAustralian operational system (Bourke et al, 1985) a barotropic
interpretation for surface pressure data is adopted. Pressure changes are
balanced geostrophically in mid-latitudes, and are applied uniformly in the
vertical between 1000 hPa and 200hPa. McPherson et al (1979) and Lorenc
(1981) use vertical correlation functions which mean that surface pressure
data change the lower tropospheric temperature field. More recently HL/LH
have shown that about half the variance in the ECMWF height forecast errors at
6hours over North America can be accounted for by components which are of verf
large scale in the horizontal, and have an almost barotropic structure in the
vertical. The proportion of error accounted for by such deep structures:
probably varies between land and sea. Perhaps the choice of structure

function should depend on data coverage.
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An important point noted by HL/LH is that that it may be possible to get a
more balanced analysis in mid-latitudes by analysing wind scaled by the sine
of the latitude rather than the wind itself. This would give a more accurate
treatment of the variation of the Coriolis parameter, and would probably be

of most benefit in data sparse regions over the oceans.

b) = Satellite Temperature Retrievals

Temperature soundings from polar-orbiting satellites provide the only truly
global three dimensional observing system. This data is of crucial importance
to operational forecasting, especially over the oceans, Uppala et al. (1985),
Kashiwagi (1985). Considerable effort is devoted to improving the quality and
utilisation of the data, McMillin et al (1979,1982), Smith et al (1985). In
current operational practice the retrieval is based on statistical regression
of the radiances on collocated radiosondes. Each stage of the processing from
earth~-location, through calibration and cloud clearing, to the production of
the final retrieval is‘the subject of extensive development work as discussed
in the reports of the International TOVS study Conferences (Menzel and Lynch,

1985).

Current questions of most direct concern to Numerical Weather Prediction are
related to the vertical and horizontal resolution of the information in the
retrievals. We need to know how the spatial correlation of the errors in the
retrievals depend on the type of first guess used for the retrieval, either
short~term climatology or a forecast model; and whether the retrieval should

be one=-dimensional or three~dimensional.

The operational resolution of the NESDIS retrievals is approximately 250 km,
but only a subset of this, with a resolution of 500km, is currently available
on the GTS. Direct read-out of the radiances can provide average resolution
of 80km when the satellite is above the horizon. Examination of the radiance
data (Kelly 1985) suggests that there is considerable information on quite
small scales in the horizontal. However the vertical resolution of the data
is rather low. 1In clear sky conditions about 4 independent pieces of
information are available in the vertical in the troposphere, while in cloudy
conditions this reduces to about 2. Historically, data users have demanded

that the retrievals should look as much like radiosondes as possible, and the

55



data producers have responded by producing retrievals which appear to offer
more vertical resolution than is justifiable. This trend is being reversed as
data users become more aware of the real capabilities of the instrumentation.
If thicknesses for deep layers are the only reliable data in certain areas,

then that is all one should use.

Two critical problems in generating a detailed vertical retrieval are the
estimate of the surface temperature, and the estimate of the pressure of the
tropopause. Low level clouds or inversions complicate the estimation of the
surface temperature, particularly in the presence of snow or ice. Independent
estimates of land surface and sea surface temperature can be very useful in
anchoring the temperature of the lower layers. Hamon and Bell (1985, pers
comm.) have demonstrated how the use of a statistical retrieval method can
give rise to a very poor estimate of the upper troposphere and lower
stratosphere temperature structure, when the true tropopause is at a quite
different level from the mean tropopause of the set of sondes from which the
retrieval coefficients were derived. The mean radiosonde provides the
first-quess for the retrieval. Lorenc and Eyre (1985) have argued that if
both the retrieval and the first guess are known then one can iﬁprove the
retrieval if a better first guess becomes available (say from a forecast

model).

Much work is underway to establish more direct connection between the raw
radiance data and the assimilating model. Susskind (1985) and others have
used the assimilating model to provide the first guess for the radiance field
in a physical retrieval method. There is a danger in this procedure that the
whole assimilation may drift away from the truth in data sparse areas. Kelly
and Pailleux (1986, pers. comm.) have seen some evidence for this. Chedin
(1984) avoids much of this danger by only using the model's forecast of
surface pressure and, optionally, surface temperature. The first~guess for
the temperature in his approach is generated by an elaborate statistical
procedure which picks a good first guess from a large library of observed
atmospheric states. Durand (1985) has gone further than others in using the
observed radiances directly in the O/I calculation. The first gquess for the
radiances is generated by a radiative calculation from the first guess
temperatures. This approach amounts to a three-diﬁensional retrieval

algorithm.
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8.3 Analysis in the Tropics

The advent of operationally useful Numerical Weather prediction in the Tropics
has been slow. There have been scientific and technical reasons for the slow
rate of development. The availability of the FGGE data has provided a great
stimulus to this area, resulting in many studies of the phenomenology of the
tropical weather, and a deep study of the problems of objective analysis,
initialisation and forecasting in the Tropics (National Research ‘Council,
1985). Thege studies have had a beneficial effect on operational practice.
Taken with improvements in modelling, we expect continued improvement in the

skill of Numerical Weather prediction in the tropics.

a) Analysis and Data problems

Reed et al (1986) have examined the performance of the ECMWF system in
August-September 1985 in the West African - Atlantic sector. They found that
the analyses showed a reasonable level of skill when data was available. They
also found many aspects of the observing system and analysis system which
could be improved. The forecasts to two days showed good skill in the
initiation, evolution and propagation of African Waves. Subjective
evaluations of forecasts in the West Pacific between June and October 1985
(Pasch pers. comm. 1985 , WMO 1986b) also indicate that, in some instances,
there is useful forecast skill to 2 or 3 days at low levels and perhaps as

mach as 5 days at upper levels.

Gray et al (1986) report that the track-forecast is the most important element
in operational forecasting for tropical storms. Reed et al (1986) report that
forecasts for the vorticity maximum in tropical depressions and storms were
frequently successful at two days when observational data was available. They
also reported many cases when satellite imagery permitted an accurate fix of
storm position, even though cloud track winds were unavailable or gave little
indication of the presence of a storm. Kanamitsu (1985) reports that JMA use
satellite imagery to generate synthetic ('bogus') data to represent tropical
storms in a consistent way in their initial data. Extension of this approach

to other areas would be worth investigation.

A companion paper in this volume (Puri and Gauntlett 1986) reviews recent

progress on analysis of the mass and wind fields in the tropics. Lack of data
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is the main difficulty in tropical analysis, but that is outside the control
of operational centres. Of the problems that are within our ambit, the
formulation of a suitable mass-wind relationship for analysis in the tropics
is still unresolved, Daley Cats and Wergen (1986). Phillips (1986) has
calculated the statistics of an ensemble of slow modes in mid-~latitudes, and
shown that they provide a convenient vehicle to organise the statistics
necessary for 0/I. An equivalent calculation on an equatorial beta-plane
yields an ensemble whose statistics are inherently non—homogeneous, and
therefore difficult to use. Approaches using least squares Hough-function
fitting also have difficulties (Halberstam 1985, Daley 1983). Aliasing
between Rossby and Kelvin modes is therefore a continuing problem, Cats and
Wergen (1982), Daley, Cats and Wergen (1986). The problems of analysing the
large scale wind field, also discussed by Daley, Cats and Wergen (1986), are
much reduced if one incorporates large scale.terms in the correlation model to

allow for the occurrence of forecast errors on very large scales (HL/LH).

Reed et al (1986) and Julian (1980) both discuss cases where the analysis of
the divergent wind field in the tropics was defective. Two approaches to the
problem have been used in one~level calculations. Julian (1985) uses outgoing
long wave radiation as a proxy for the velocity potential field. Daley (1985)
uses the method of 0O/I with a relaxed non-divergence constraint. Both methods
show promising results, but have still to be tested in multi-level

assimilation.

b) Humidity and Initialisation of Moist Processes

The definition of the humidity field is one of the most important and
difficult problems in tropical analysis. The results of the analysis can be
critical for the success of forecasts or the success of diagnostic
calculations. The data coverage is as bad for humidity as for winds. Chen
(1984) studied the humidity fields in the ECMWF and GFDL analyses of the main
FGGE IIb dataset. He found substantial differences in the zonally averaged
humidity budgets derived from the ECMWF and GFDL analyses. The differences
were consistent with the known differences in‘the intensi;y of the Hadley
circulation in the two sets of analyses, arising from the use of adiabatic
normal mode initialisation at ECMWF but not at GFDL. More recently McGuirk et

al (1986) have studied the phenomenon of 'moisture burst' in the eastern
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Pacific, and has found good qualitative agreement between the FGGE analyses

and independent satellite imagery not used in the analyses.

Apart from the radiosondes, the most widely distributed data sources are the
humidity retrievals from the TOVS instruments; at best this can give two or
three useful numbers in the vertical. As discussed by Cadet (1983), this data
is not available in cloudy areas; he found it useful to introduce some
bogusing of data to upgrade the FGGE analyses in areas of persistent

cloudiness over the Indian Ocean.

The quality of the TOVS humidity data has been the subject of a number of
recent investigations (Johnson 1984, Illari 1986). Illari concluded on the
basis of a variety of collocation studies, that the TOVS data were not as good
as radiosonde data, but were at least comparable in quality. The TOVS
humidity data is used in the French operational system since 1984, and also at
ECMWF since early 1986. Some efforts to use other types of satellite data as
proxy data for humidity, including cloud top temperatures and histograms of
cloud-top temperature, have been reported. Kanamitsu (1984) reports a

beneficial impact of the use of the latter data.

The balance between the dynamics and the diabatic forcing is critical to
forecast success in the Tropics. The most elaborate and determined efforts to
achieve this balance have been reported by Krishnamurti et al (1984). They
used rainfall rate data and cloud-top temperature data to compile an estimate
of the field of precipitation at the initial time of a forecast. They then
made adjustments to the initial data in their model to ensure i) a balance
between adiabatic warming and radiative cooling in the extensive subsidence
areas of the tropics and ii) an initial rainfall rate in accordance with the
observations in the rain areas. The found a substantial benefit from this
initialisation of the diabatic forcing, a benefit which could be found in the
forecasts well into the medium range. fllari (1986) also indicates that
improvements in the humidity analysis have a distinct beneficial effect on

tropical rainfall forecasts.
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8.4 Data Quality Control

Improvements in Numerical Weather Prediction can come from improvements in
technique across a wide spectrum of problems in analysis and modelling
(Bengtsson 1985). A particularly critical problem is quality control of the

observations presented to the analysis systems.

A striking example of the importance of quality control is discussed in the
three-way analysis comparison in Hollingsworth et al (1985). 1In that study
the same set of FGGE II-b observational data was presented to advanced
analysis systems at ECMWF Reading, NMC Washington, and UKMO Bracknell. This
produced three sets of analyses which were used to initialise forecasts with
the models in all three centres, resulting in 9 sets of forecasts. In one
case the forecasts with all models from one of the analyses produced by day 3
a spurious low in the North east Pacific which was not found in the
verification, nor in any of the forecasts from the other analyses. The
critical difference was traced to an error in the quality control of aircraft -
data in that analysis. Quality control is clearly of vital importance for

forecast success.

a) The Variability of Operational Data Quality

Data can be corrupt for a wide variety of reasons. We have seen aircraft and
ships reporting position at 30E over Africa when the true position was at 30W.
Similar bugs can occur in earth-location of satellite reports. We have
received 1-day o0ld reports from a whole continent labelled as today's
reports,because of software problems. Radiosondes can have serious biases in
height or wind or both. Drifting buoys in isolated areas of the ocean can
report constant pressures if the instrumentation or the telemetry fails. An
operational centre has to develop a wide range of quality control tools to
monitor the quality of the data, and to identify systematic problems as
rapidly as possible. Random errors are always encountered, and real time
guality control algorithms must be capable of dealing with them. Improvements
in telecommunications are effective in reducing the number of errors due to

corruptions in transmissions.
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In operational practice, there are many different approaches to the quality
control problem, as evidenced by the report of a recent workshop (ECMWF 1984).
In some Centers there is a heavy reliance on manual intervention to detect and
correct errors, while others rely entirely on automated methods. The last
half hour before the main forecast run is a time of bustling activity in the
first type of forecast office. Workers from that environment who visit an
automated office just before run time can feel apprehensive at the eerie

stillness.

b) Automated Hierarchical Quality Control Algorithms

Most operational quality control systems have a hierarchical sieve structure,
which seek to identify and exclude data with successively smaller gross
errors, until the data finally used in the analysis calculation has errors
which are within the normal range of random error. The ECMWF system (Lorenc

1981) is typical in having such a hierarchical structure.

After a series of checks against climatology, the first-guess, and closely
adjacent observations, the main check in the ECMWF system is against the
combination of the other data and the first guess. The check begins with a
preliminary analysis for the value of each datum, using all other data in the
analysis volume except the data being checked. If the datum departs too far
from this estimate it is flagged. The worst flagged datum is then eliminated
and all the doubtful data re-checked. The process is repeated until all the
data are judged to be mutually consistent. By a clever choice of optimisation
criterion Lorenc (1981) was able to calculate all the preliminiary analyses by
making small corrections to the inverse of a single large matrix. The cost of

the algorithm is therefore quite modest.

The cross-validation approach has proved to be a very effective device for
deciding on rejection or acceptance of data. Wahba and Wendelberger (1980)
used a similar algorithm, which they called generalised cross validation (GCV)
for a related purpose. They examined the use of thin-plate splines which are
generalisations of smoothing splines for analysis purposes. They used GCV to
determine the setting of the observational noise and the setting of the

'yoll-of' (curvature at the origin) of the analogue of the auto-correlation

61



function, in order to get the best fit to the data which minimised a penalty
function on curvature. In a sense their algorithm and Lorenc's use the same
method to proceed in opposite directions - one uses the structure functions to
quality control the data, while the other adjusts the structure function to

fit the data.

The tuning of quality control algorithms requires reliable statistics on the
magnitude of first-guess errors, of analysis errors, and of observation errors
for all observation types. This information is easily generated from archives

of data assimilation results.

c) A _Bayesian Approach to Quality Control

An inherent difficulty of a strictly hierarchical approach to quality control
is that data which is rejected at an early stage in the processing is not
re-considered at a later stage, when more extensive calculations might suggest
that the datum is in fact free of gross error. There are many cases when it
would be desirable to poll a set of tests of equal importance rather than to

use the hierarchical approach (Gandin pers.comm. 1985).

Lorenc (1984), following Purser (1984), has proposed an approach to this
problem based on Bayesian arguments, and using the principle of maximum
likelihood. He begins by considering the probability distribution of the
observation errors of a set of data where the errors may consist of two types.
These are first the usual observation errors with Gaussian statistics and
small variance. There is also a finite probability of gross error; the
probability of such an error is constant across the range of climatologically

possible states.

Lorenc developed a maximum likelihood analysis algorithm which is exactly
equivalent to O/I when the statistics are Gaussian. This formulation can
however deal with non-Gaussian statistics. When applied to the quality
control problem, the Bayesian approach provides a rational method for polling
the results of many independent tests. In particular it is possible to use
the approach to pool, or ballot, the results of several individually
inconclusive tests in order to form a soundly based decision on quality, as

suggested by Gandin.
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9 CONCLUDING REMARKS

This review has considered current and projected work on objective analysis
under three main headings: theory, verification and practice. It is necessary
to mention also a basic requisite for practical work. As assimilation systems
have become more complex, it has been necessary to develop extensive archives
and diagnostic facilities to monitor the behaviour of the systems. At ECMWF
we keep a complete record of the processing of every single datum. This
archive has been an essential raw material, and a vital simulus, for the

development of new diagnostics of assimilation system performance.

Recent developments in the theory suggest that there are close links between
all analysis methods based on optimality principles. Moreover, simpler
analysis methods such as successive correction can be modified to converge to
an optimal method in simple circumstances. Applications of the theory to
four-dimensional analysis using the adjoint approach is likely to be an area
of great activity. The basic job of any analysis algorithm is to filter the
observation error from the data and interpolate the filtered data to a regular
grid. We have presented a new viewpoint on 0/1 which shows the algorithm in a
simple light with an intimate connection between the filtering and
interpolation capabilities. The abundance of new ideas, coupled with the
general awareness of the importance of analysis accuracy for NWP, augurs well

for productive work in the next few years.

Verifications of observations, forecasts, and analyses have been reviewed,
using statistics on one-point and two-point correlations of climatic
fluctuations, of forecast errors, and of the differences between observations
and analyses. The two-point correlations are inter-related through the
kinematic equations of two-dimensional turbulence; in the limit of vanishing

spatial lag they degenerate to the one-point correlations.

The kinematic diagnostics offer a means to compare the error characteristics
of different observing systems. They already indicate some sampling problems
with cloud-track wind data, and further work remains to be done. When used to
verify short-range forecasts, the diagnostics provide a complete description
of the structure of the forecast errors. A simple theory of forecast errors
can reproduce many of the features of the empirically determined structures.
New results indicate that there may be a need for anisotropic and

non-separable correlation functions for 0/1 analysis.
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The correlation diagnostics offer new and rigorous ways to estimate analysis
error at observation points. They provide a quick and easy measure of the
efficiency of an analysis system. They will prove useful in identifying the
reasons for system dependence in the results of observing system experiments.
In time they ought to enable one to prove that a three-~dimensional algorithm
has used all the data to the fullest extent of its capability. At that point
we shall need the more explicitly four dimensional adjoint method if progress

is to continue.

The review of current practice considered first the special problems of
analysis in data rich areas over land and near mountains. The problems of
analysis over the mid-latitude oceans were considered next, and then the
problems of tropical analysis. Extensions of 0/I offer new approaches to
these problems which will be explored in the near future. Some problems will
not yield to this approach because of their inherent unhomogeneity. In the
longer term, new developments in the theory of 4-dimensional analysis may well
supersede current methods. Finally we considered developments in data quality
control, an area of great importance for all other developments. New

developments here, using Bayesian methods, offer promise.

The field of objective analysis for numerical weather prediction is enjoying
rapid development as a result of progress in observing and computing
technology, and of theoretical advances in analysis method. The area is
interesting and challenging, as it is the meeting point of many different
areas of study: observational technology; statistical approximation theory;
initialisation theory; numerical methods; dynamics; and the parameterisation
of physical processes. The importance of accuracy in the analyses for

forecasting and for diagnostic studies adds zest to the work.

The application of quantitative method to all aspects of assimilation has
produced encouraging results. We may confidently expect progress to continue.
The growing recognition that objective analysis.is as exciting a challenge as
any of the more glamorous areas of atmospheric science will help attract new

workers for the problems to be faced over the next decade.
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APPENDIX
FILTERING AND INTERPOLATION IN STATISTICAL INTERPOLATION

As shown in Section 4 we may write the vector of analysed values at the

observation points as
la(r)] =2 .( B+ D )~lld(r,)] 4.2
l = = = l
so that Eq 4.1 may be rewritten as
* -1
alr)) = [p(r ,r )] (B )" .lalr,)] 4.3

Thus the analysis calculation may be thought of as a linear filter (Eq 4.2) of
the observed values to produce the analysed values at the observation points,
followed by an interpolation (Eq 4.3) of the filtered observations to the

analysis points.

a) The Filter

The nature of the filter in Eq. 4.2 is most conveniently discussed in terms of

the ratio of observation error to prediction error. Both P and D are

symmetric and positive definite. P may then be expressed in the form
p=E{A}E

where E is an orthogonal matrix whose rows or columns are the eigenvectors of

p, { } denotes a diagonal matrix and the Ai are the corresponding eigenvalues.

Define Q by

Since D is positive and Q is non-singular it follows that Q* D Q is symmetric

and positive definite, and may be written in the form
g* D9 =R {v} B*

where the eigenvalues vi are all positive and R is orthogonal. P and D may

now be diagonalised simultaneously:

R* 9* D Q R = {v}

a
3
o
no
[P-]
Il
ey
-
—
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With a little manipulation it follows that

- 1 :
fa(r )1= (&* @97 55 b (e gmrtatz )] A.1

This shows clearly the nature of the filtering. The data undergoes a
non-singular (but, in general, a non-orthogonal) change of basis R* Q*, the

.th . .
j component of the resulting vector is damped by the amount

and the
1+v,

change of basis is reversed.

If P and D are commutative with eigenvalues [Ai], [oi], and a common set of
g,
eigenvectors E , then R = I, the identity matrix, and v, = 73 . It follows

i
that

1

tatz 1= & { 37573

} E*lae ] . A.2

In the simplest case of uniform uncorrelated observational error, D=0 I and
then the interpretation of vi as a ratio of observational error in a given
component to forecast error in that component is quite obvious, as the damping

.th .
on the i component 1s

If the ratio of observational error to forecast error in a given component is
gmall the response is close to 1 and such components of the Ob-Fg differences
are well analysed; if the ratio of observational error to forecast error is
large then such components of the Ob-Fg differences are heavily damped. This
simple result suggests that in the general case, when B and D are
non-commutative, it is also reasonable to interpret vi in Eq. A.1 as a ratio
of observation error in a given component to prediction error in that

component.

b) Interpolation

The interpretation of Eq. 4.3 as an interpolation follows immediately from a
standard result. The function f(x) which interpolates a set of N data points
Fn with a set of N functions gn(x) is given by

N

f(x)= ) ¢ (x)
1

ngn
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where the coefficients c, satisfy

= =1
[ <, 1 =G [Fn]

and the matrix G is defined by

gij =qi(xj)

A familiar example of this result is the Lagrange interpolation formula, where

a clever choice of the functions gh(x) ensures that G = I.

c) Filtering and Interpolation

To see the intimate connection between the filtering and the interpolation,
consider the interpolated value a(rk) in Eq 4.3 when the filtered data vector
[a(ri)] corresponds to one of the eigenvectors Ej of P, the prediction error
correlation matrix. The function

E.j(rk)= p(r,r)1* B7L e,
then interpolates the eigenvector exactly and we may call it an
'eigenfunction' of the matrix, where ' ' indicates that we use the term in a
very special sense. The relatiop between the filtering and the interpolation
is now very simple if the matrices P and D commute. This assumption includes
many cases of practical interest such as the case D = ¢ I, where the
observation errors are uniform, random, and independent. For.then if the

original vector [d(r,)] is expanded in eigenvectors of P as

N
[a(r)] = 1ch e, A.3

then the analysed values at the observation points are given by

N
lalr,)]= )
i
1
where vi is the ratio of observational error to prediction error in the i

4 A-4

cj 1+v, Ej
J th

component. The analysed value at the point r is given by

k
N 1
a(rk) = % cj Tﬁ;gj(rk) A.5

where the function 6j interpolates the vector Ej according to Eq. 4.3.

80



Southern Hemisphere 500mb RMS Errors
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Northern Hemisphere 500mb RMS Errors
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Fig 1 RMS 500mb height forecast errors as a function of forecast range for
the Southern hemisphere (a) and the Northern hemisphere (b). The results are
shown for the months of June through April in 1982/83, 1983/84, 1984/85,
1985/86. The one day forecast errors are plotted twice (at day 0 and day 1)
to show clearly the effect of successive system changes. Between the first
and second periods the model changed from N48 to T63 with envelope orography;
between the second and third periods there were substantial changes to the
analysis; between the third and fourth periods the model changed to T106 with
extensive changes in the physics. See text for further details. (from Shaw
et al 1987) '
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PERCEIVED ERROR a) ESTIMATED PREDICTION ERROR b)
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Fig 2 Perceived wind forecast error (panel a) for 6-hour forecasts verified
against 1200 UT North American rawinsondes for Jan~March 1983, Jan~March
1984, and December 1984-February 1985. The perceived forecast error for each
year was partitioned into (spatially correlated) prediction error given in
panel b, and (spatially uncorrelated) observation error in panel c. Note the
stability of the estimates of observation error from year to year, and the
steady reduction in the prediction error. (from Shaw et al 1987)
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Fig 3 Response diagrams illustrating response of a box-type analysis to
regularly spaced observational data, as a function of input wavenumber
(abscissa) and observation spacing (ordinate). On the top of each diagram is
also shown the quarter wavelength (km). a) geopotential response to
geopotential observations. b) wind response to non-divergent wind
observations. c¢) wind response to irrotational wind observations. d) mass,
or wind, response to mass and non-divergent wind observations. The
auto-correlation functions are modelled by a gaussian with a 600km length
scale, and the non-dimensional observation error is 0.25 in all cases (from
paley 1985).
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HIGH LEVEL WINDS
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Fig 4 Tropical 250mb vector wind correlation of fluctuations about the climate
mean, as observed during FGGE by three observing systems The aircraft are
sampling much shorter scales than the radiosondes, and the cloud track winds
are sampling much larger scales. (from Wylie, Hinton Howland and Lord,

1985).

84



a) WIND / NORTH AMERICA b) WIND / EUROPE
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Fig 5 For each of the three areas North America (top left), Europe (top
right), and the tropics (bottom), the plots show the total perceived wind
forecast error for the vector wind, and the calculated observation error and
prediction error as indicated in the legend. The calculations are based on
6-hour forecasts for the first quarter of 1984 with the ECMWF system; the unit
is m/s. In all three areas the prediction error and observation error are
comparable in the troposphere. (from Hollingsworth et al 1986).
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Fig 6 The plots show the perceived forecast errors for height (left, unit m)
and wind (right, unit m/s) for verifications against North American radiosonde
The curves labelled CMC74 are from Hollett (1975), and the ECMWF
forecasts for Jan-Mar 1984 and Jun-Aug 1984 are indicated by EC W84 and EC S84
The substantial reductions in

data.
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respectively (from Hollingsworth et al 1986).

short range forecast errors indicate the strides that have been made in data

assimilation over the last decade.
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Fig 7 The plots show the vertical correlation (on a log scale) of
‘a) synoptic scale height forecast errors '

b) large scale height forecast errors

c) synoptic scale wind errors

as functions of the difference in the logarithms of the pressures for standard
levels below 150mb, using 6-hour ECMWF forecasts verified against radiosondes
over North America for the first quarter of 1983. If the errors were
separable and geostrophic then the curves a and ¢ would be identical. Panel b
shows the nearly barotropic nature of the large scale forecast error in
height. (from Hollingsworth and Lonnberg 1986, Lonnberg and Hollingsworth

1986). -
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Fig 8 Distribution of square root of height variance as determined for the
ECMWF forecast errors by Lonnberg and Hollingsworth, 1986, (LH), and for an
ensemble of idealised slow modes (A"). The overall similarity of the curves
indicates that the idealised ensemble can reproduce some properties of the
empirical results. (from Phillips 1986).
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ANISOTROPY (0B-FG) VECTOR WIND 250 HPA
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Fig 9 a) The anisotropy vector [magnitude (M2+N2)%, and angle % tan—l(N/M)
from latitude circle] of ECMWF 6-hour wind forecast errors verified against
North Amerlcan radiosondes for 1200 UT in December 1984~ February 1985 the
unit is (m/s) " The coherent patterns and the magnitudes of order 25(m/s)2
indicate that there 1s sgbstantlal anisotropy in the forecast errors.

b) The ratio a = (M +N )7/K for the vectors shown in a), plotted as a
percentage. If half of K is observational error, then these numbers may be
doubled, indicating that anisotropy is as significant for the forecast errors
as it is for the atmospheric fields.
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ANALYSIS ERROR 500 HPA

Z-7 CORRELATION

83 ;w00 110 2 1051 7
]

0.0 —

B ol7 857 039 g73

o!

L2+ T71" T T
o 500 1000 1500 2000
' DISTANCE (KM)

T T T T T T T T T

2500 - 3000

. ‘ 500 MB

ol
i
%
B

52
|

Ywe, L
R B T

F 09 109, yp6 g5 U7, 82 . 101, jose O
¥ 112% 131 , 1024 100 10D % » L] u 103% l. 5

Z-CORRELATION

£ 90 3 77

HD

~0 2

; - T T T T T 1
0 3IOO BIOO 9100 1200 11500 1800 2100 2400 2700 3000
DISTANCE KM

F/C ERROR CORR. 60 - 30 N 140 - SO W JAN - MAR 1883 12 GMT

Fig 10a) The spatial correlation of Ob-An differences in 500mb height for

1200 UT radiosonde data over North America in December 1984-February 1985.

The empirical data, averaged over bins of 100km, are shown by squares, and a
least squares fit to the data is shown by 'x'. The figures indicate the
number of station pairs in each bin. Each pair had a minimum of 60 reports
for the calculation. The negative intercept can be used to put an upper bound
on the analysis error at the grid points. b) As a) for the Ob-Fg differences
for the first quarter of 1983. (from Lonnberg and Hollingsworth 1986).
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ANALYSIS ERROR 200 - 150 HPA
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Fig 11 The vector correlation of Ob-An differences for the wind shear between
150mb and 200mb for 1200 UT radiosonde data over North Bmerica in the first
quarter of 1983. The empirical data, averaged over bins of 100km, are shown
by squares, and a least squares fit to the data is shown by 'x'. The figures
indicate the number of station pairs in each bin. Each pair had a minimum of
60 reports. The positive intercept indicates that the data has not been fully
used. The positive intercept can be used to put a lower bound on the analysis
error at the grid points.
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Fig 12 The vector correlation of Ob-BAn differences for the wind shear between
150mb and 200mb for 1200 UT radiosonde data over North America in December
1984~February 1985. The empirical data, averaged over bins of 100km, are
shown by squares, and a least squares fit to the data is shown by 'x'. The
figures indicate the number of station pairs in each bin. Each pair had a
minimum of 60 reports. The lower values near the origin, in comparison with
Fig. 11, indicate that lower bound on the analysis error was much lower in
1984/85 than in early 1983.
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