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1. Introduction

This paper emphasizes certain technical problems involved in the
modelling of air flow over topography. Only those models which consider
resolutions on the gravity wave scale will be discussed. These models
are designed to explicitly model the dynamics of mountain wave drag and
can be used as one basis for the parameterization of wave drag in larger
scale models.

An important consideration in the design of such models is that of a
proper representation of the nomnlinear surface boundary condition. Miles
and Huppert (1969) presént analytical formulae showing the effect of a
finite amplitude obstacle in two spatial dimensions. More recently this
work has been extended to consider a wider range of conditions by Lilly
and Klemp (1979). It has become well known that the finite height effect
of the topography can have a first order effect on the predicted wave
amplitude even prior to supercritical (wave breaking) conditions. By far
the most popular approach of representing the nonlinear effects of the
lower boundary condition has been to use a vertical coordinate transfor-
mation of the governing equations. Except for the pressure gradient
terms, it is relatively easy to write a code that maintains the conserva-
tion characteristics allowed in a finite-difference Cartesian system.
Certain aspects of such an approximate set of equations will be presen-—
ted. The transformation approach eliminates the high frequency excita-

tions associated with fitting the topography to a pattern of steps.

1The National Center for Atmospheric Research is funded by the National
Science Foundation.
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Finite element techniques provide an attractive alternative to the trans—
formed models but this method is in itself complicated and has seldom
been used in general small scale modelling of airflow over topography.

An interesting approximate method of treating the nonlinear surface boun-
dary condition was used by Mason and Sykes (1978) who represent the
topography in a Cartesian system of equations as regions of arbitrarily
high viscosity and density. The range of application of this method
appears to be somewhat limited. ‘

Some of the rationale forChoosing between hydrostatic and non-hydro-
static filtered equation systems will also be presented. A particular
implication for the design of a multi-domain or grid nested calculation
will be described. Issues of accuracy and computational efficiency will
be only briefly considered. _

Two major issues in the modelling of small scale mountain air flow
are initialization and the upper boundary condition. A general categori-
zation of the type of initialization schemes employed is presented in
Section 4. The upper boundary condition treatments will be outlined in
Section 5.

Sections 6 and 7 present an outline of some of the modelling results
that relate to the severe windstorm event. ‘These sections emphasize non- .
linear cases with supercritical Froude number flow in which wave breaking
effects are believed to be of major importance. With the exception of a
simulation by Clark and Farley (1984) the numerical simulation of severe
windstorm events has been confined to two-spatial dimensions. It seems
worthwhile to consider the effects of such an idealization on some of the
important features of the simulated event. Comparisons will be presented
between the two— and three-dimensional simulations from Clark and
Farley's work.

An exhaustive, in-depth treatment of the physical and numerical con-
siderations of modelling airflow over topography is not possible a single
paper. As a result many aspects of the problem will be only briefly men-
tioned or altogether ignored. The role of moisture (Barcilon and Jusen,
1979 or Durran and Klemp, 1983) and the specification of lateral boun-
dary coﬁditions are two important areas not dealt with in this paper.

2. Coordinate Transformed Models

There have been a large number of hydrostatic models discussed in
the literature. Only a few of these models have focused their efforts on

a detailed understanding of the physics of forced gravity wave/mean flow
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interaction or the problem of mountain drag. Some models base their
vertical coordinate on potential temperature, 6, surfaces. A weakness of
this approach is that the system of equations becomes indeterminate under
conditions of neutral stability such as boundary layer flow or breaking
waves. Deaven (1976) recognized such problems and designed a model based
upon a combination of a 6 and a sigma pressure coordinate transforma-
tion. His model was able to consider diabatic surface heating. Klemp
and Lilly (1978) used a 6 coordinate framework throughout the atmosphere
to simulate the severe Boulder windstorm event of 11 January 1972 of
Lilly and Zipser (1972). Diabatic surface heating was not treated and
wave breaking problems were circumvented by employing a large eddy mixing
coefficient in the region of wave breaking. Hoinka (1985) used the model
of Mahrer and Pielke (1977) to study the same event. This hydrostatic
model uses the sigma~z transformation

n = s(z-h)/(s-h) (L)
where N is the transformed vertical coordinate. s = s(x,y,t) is the
model's upper lid and h = h(x,y) is the height of the topography. The
results of Hoinka (1985) suggest that this type of model is useful for
genéral studies of the hydrostatic aspects of mountain drag.

The most obvious drawback of the hydrostatic model is that it does
not treat problems correctly where the vertical momentum budget is impor-
tant. Grid points where w?u? isvpnly one aspect of this problem.
Linearly resonant lee waves, Scorer (1949), are totally filtered from
these equations. Thus, the train of trapped lee waves moving downstream
from a mountain source cannot be captured by such models. This weakness
is probably of only minor significance to the mountain drag problem as
these waves provide little vertical momentum transfer. The hydrostatic
framework is not a particularly computationally efficient one once the
horizontal grid size becomes relatively small. The Courant—Friedrichs—Lewy
(CFL) condition is dominated either by Lamb waves or by the fastest moving
external gravity wave. Thus, the time step must be kept relatively small
since these modes travel at speeds near 300 m s~ L. There are some
semi~-implicit treatments which allow for mixed time steps. On the other
hand, non-hydrostatic models are typically limited by the CFL criteria
determined by the fastest moving internal gravity waves. These move at
~30 m s~ *. Thus, the non-~hydrostatic models can be much more effi-
cient for smaller scale problems in spite of the added overhead required

by the solution of a diagnostic elliptic equation. Cotton (personal
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communication) estimates that the non-hydrostatic code is always more
efficient for grid sizes < 20 km. There is ome further reason for
considering the non-hydrostatic model which is associated with
multi-domain or grid nesting. This point will be discussed later. The
remainder of this section will consider technical aspects Qf only the
non-hydrostatic models. _ .

The two common types of non-hydrostatic model ére the elastic and
the anelastic codes. The elastic codes consider sound waves semi-impli-
citly as in Tapp and White (1976) and Carpenter (1979) using the
techniques of Kwizak and Robert (1971). A diagnostic Helmholtz equation
must be solved each time step in this case. Tripoli and Cotton (1982), and
Durran and Klemp (1983) use the time splitting techniques of Marchuk
(1974). The anelastic models such as that of Clark (1977), and Clark and
Farley (1984) filter the sound waves according to Batchelor (1953),
Dutton and Fichtl (1969) and Ogura and Phillips (1962). Both methods
appear to have about the same level of efficiency since the small time
step in the elastic time splitting codes consumes about the equivalent of
the pressure solution. To date there is no evidence indicating that the
sound waves are important for typical meteorological problems. There is
some evidence indicating problems with the time splitting elastic code
for cases of extreme topographical gradients. Cotton (personal
communication) is currently converting to an anelastic framework because
of problems he encountered in some recent studies. The inconsistent
definition of divergence between the two time scales may be associated
with this problem.

Conservation of momentum and energy have been considered to be of
significant importance in meteorological modelling. This stems from com-
putational and physical reasoning. It should also be recognized that
conservation is not a necessary condition for the order of accuracy. For
example, fourth order finite difference models do not conserve energy.
Nevertheless, it seems worthwhile to outline some model design considera-
tions which optimize conservation in a transformed coordinate model. Two
sigma-z type transformations will be used for purposes of demonstration.
Similar analysis should apply to other sigma—z choices.

The two coordinate transformations under consideration here trans—
form from the usual (x,y,z) orthogonal Cartesian system onto the non-
orthogonal (§,§,E) system. These transformations are §=X, §=y, and

z = H(z-h)/(d-h) (2)
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as in Gal-Chen and Somerville (1975) and Clark (1977) or

z=h-z (3)
as in Carpenter (1979). H is the height of the model 1id and h=h(x,y) is
the terrain height. Both of these transformations map an irrégular lower
boundary onto a regular grid. The deformation of the Cartesian grid is
maximum near the surface in (2) whereas it is uniform with height in
(3). Following Gal-Chen and Somerville (1975) the following tensor

notations will be used.
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As shown in Clark (1977) the momentum equations can be transformed
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and cast into numerically approximate forms as
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where no = (6(mHAn/2) = o(n-an/2))/pn and 3" = (¢(m+an/2)

+ ¢(n=M/2))/2 are Schuman (1962) type operators. These equations assume
a staggered grid framework. Coriolis and subgrid scale mixing terms.are
not shown in (5) - (7) but are typically included in the codes. The
conservation equations for © etc. are also not shown as they do not
directly relate to the discussion at hand. Now (5) - (7) are the origin-
al Cartesian momentum equations and as such will conserve all three com-
ponents of momentum irrespective of the topography. If we had gone
straight to the tendency equations for d = (dz/dt) as in Gal-Chen and
Somerville (1975) or Carpenter (1979) then Christofel terms would be
evident. They are not yet evident in (5) - (7) because they occur as a
result of the combination of these three equations plus the relationship

between wand u,v,w, and h when forming the &)equation. Applying the -
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numerical approximations at the last stage (é equation) can result in
lack of conservation of vertical momentum as well as energy unless an
extensive stencil is employed.

The conservation principles of Arékawa (1966) have been used in the
derivation of (5) - (8) so that the nonlinear advection terms also con-
serve kinetic energy for arbitrary topography except for the usual
temporal truncation errors. A momentum and energy conserving w tendency
equation can be derived by combining (5) - (7) through a definition of W

such as

]
¥

VG p2w = Bzw + /G g3 Exu + /¢ ¢*3 Eyv . (9

Such a procedure will result in a horribly complicated but conservative
numerical form for the Christofel terms. The models of Gal—-Chen and
Sommerville (1975) and Carpenter (1979) did not follow this procedure and
as a result do not conserve momentum or kinetic energy as prescribed by
the equations of motion. The models of Tripoli and Cotton (1982), Durran
and Klemp (1983) followed the conservative formulation of Clark (1977)
although other aspects of their models differ.

In order to solve equations (5) - (9) the tendencies are eliminated
to form a diagnostic pressure equation. The semi-implicit elastic models
comBine (5)-(7) and (8) plus a pressure tendency equation to form a
diagnostic divergence equation. This results in a rather complicated
elliptic equation where some special techniques are useful. This
equation can be solved using block iteration, successive over relaxation
or multi-grid techniques. The pressure equation in Clark (1977) results
in a 25 point stencil by treating all terms involving h explicitly.
Carpenter (1979) retained a 15 point stensil by treating all terms
involving h explicitly.This is essentially equivalent to a single block
iteration in Clark's scheme. Serious problems have occurred in Clark's
model in cases of very steep slopes (>40°) using the block iteration
scheme. Recently, Clark (1986) introduced an under relaxation approach
to his model. After each block iteration, except the last, only a
fraction of the diagnosed pressure solution correction is accepted. This
under relaxation compensates for any over predictions caused by retaining
only half the pressure gradient terms in the direct (or block iteration)
portion of the pressure algorithm. As a result of this procedure, slopes

~40° could be modelled using two block iterations and slopes > 52°
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could be modelled using three block iterations without having to reduce
the time step. This difficulty in the anelastic system may relate to the
problems discussed earlier in the elastic system of Tripoli and Cotton.
Furthermore, it would be interesting to see if there is a similar
topographic slope limitation.to the Carpenter (1979) model where again
only half of the appropriate pressure gradient term is treated in his
diagnostic equation. '

There does not appear to be any currently used scheme that allows
for precise conservation of kinetic energy in these non-hydrostatic
models because of the pressure gradient terms. Clark (1986) shows that
the truncation error production of kinetic energy by the pressure
gradient terms in ﬁwo—dimensions, PTRE, using (2) is

A %2
A

A ———
PIRE = =7— 6 [2(8 h u") 5P~ Z]

8 [h uz §_P
X X

%z (10)

where Z = (E/H—l) and Py = constant. The error is typically maximum near
the surface and decreases to zero at the domain top (E=H). This decrease
is usually much faster than linear because of the associated field struc-~
tufe having maximum gradients near the surface. The error structure
using (3) in Clark's model is obtained by putting Z = -1 in (10). Thus,
a linear decrease with height of this comservation error associated with
Z is lost when using the transformation which has uniform deformation of
the Cartesian coordinates with height. Reasonable choices of resolution
with respect to the topography typically result in (10) being negligible
as shown in Clark (1977) for the case of (2) and these results should
also apply to the case of (3). One should be careful to monitor (10) or
its equivalent form in three-dimensions when using significant slopes in
the orography. It was also shown in Clark (1977) that a significant
reduction in (10) was accomplished by subtracting the horizontally ‘
uniform portion of buoyancy from (7). Such subtractions reduce the
magnitude of P.

3. Grid Nesting Considerations

The necessity for multi-domain (or grid nesting) simulations may
also influence ones decision in choosing between an hydrostatic or an-
elastic code. For example, increased resolution may be desirable in the
boundary layer or in a convectively unstable wave breaking region.

Following concepts of the multi-grid literature it is desirable to have

the finer mesh domains consistent with the coarse mesh domain model over
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their equivalent computational domain. This consistency means that if
one appropriately averages the fine mesh equations onto the coarse mesh
resolution, then the averaged fine mesh and coarse mesh equations are
identical. Under such conditions the substitution of fine mesh solutions
into the coarse mesh solutions becomes redundant. Consistent multi-
domain codes should avoid many of the numerical problems familiar to the
meteorological community in the interactive nesting of finite difference
mesoscale models. The ability to write a consistent multi-domain code
depends upon the form of equations. Hyperbolic equations are initial
value in nature where the solutions follow characteristics. Hyperbolic
equations do not seem to allow for the ﬁriting of a consistent multi-
domain code because of their local nature. The parabolic terms are also
local in nature. The shallow water equations are hyperbolic and in
general the hydrostatic models tend to be hyperbolic in the horizontal.
The hydrostatic model of Kurihara et al. (1979) provided a consistent
matching of the continuity equation by using a comsistent (or reversable)
set of averaging and interpolation formulae but this model cannot have a
consistent treatment of the momentum equations. The anelastic model of
Clark and Farley (1984) had a similar level of consistency. More recent-
ly Clark (1986) has shown that the anelastic model has a sufficient
degree of ellipticity through the diagnostic pressure equation that a
consistent treatment of the momentum equations is also possible with a
negligible increase in computational cost. This version of the code 1is
currently undergoing testing. It appears that the hydrostatic model
equations have applied too much filtering to the original equations to
allow for such consistent multi-domain simulations. Although possible in
principle in the elastic codes this procedure appears to be more compli-
cated even when the full pressure gradient is considered in the diagnostic
Helmholtz equations. Thus, from a multi-domain simulation viewpoint

the existing anelastic codes appear to have an advahtage at the present
time.

4. Initialization or Start-Up Procedures

This is one of the major problem areas for small scale limited area
modelling of airflow over mountainous terrain. There is a real need for
much more systematic work on procedures to initialize hydrostatic and
particularly non-hydrostatic models on the small scale. The ad hoc pro-
cedures in use can be categorized into three general areas. A subcriti-

cal Froude number initialization scheme is one that approaches the final
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value of Fr~ ' (=Nh/U) starting from subcritical values. Examples of sub~
critical Fr initialization are the "diastrophism” of Deaven (1976) where
the mountain is slowly built up with time. A variation of this approach
being tested on Clark's model is surface boundary relaxation where the
flow is initially allowed to flow through the mountains. Slowly with

time the boundary condition is relaxed to w=0 at z=0. A supercritical Fr

initialization is one that approaches the final value of Fr starting from

supercritical values. Building the mean flow with time as in Peltier and
Clark (1979, 1983) or Durran and Klemp (1983) is an example of such an
initialization procedure. In both of these time dependent initialization
schemes, the results are sensitive to the choice of initialization time
scale. Intuitively, supercritical initialization should be by far the
most sensitive because one is starting with blocked flow until Fr)>l is
achieved. Thus, the very purpose of a smooth start-up to avoid high
frequency solution effects (e.g., see Fig. 3 of Peltier and Clark, 1983)
by choosing a long time scale might be offset by the too long duration of
supercritical conditions if too large a time scale is chosen. There does
appear to be a fair degree of sensitivity of the early time (first few
hours) results depending upon the choice of this time scale. Fig. 12
from Durran and Klemp (1983) shows a comparison between the 2-D mountain
drag solutions and those of Peltier and Clark (1979). There appears to
be an underdamped character to both of these drag curves for these two
supercritical Fr initialization schemes. Neither of these experiments
were integrated long enough to reach a "steady-state" wave drag as
occurred in Clark and Farley (1984). This required about 140 min in

their case but using a stationary Fr number initialization scheme.

A statiomary Fr number initialization scheme is one in which the

initial flow assumes the flow field far upstream of the mountain that
equals the final desired Fr forcing for the problem under considerafion.
Examples of stationary initialization are those of Carpenter (1979),
Clark and Peltier (1984), and Clark and Farley (1984). Carpenter used a
combination of Ekman layer equations, interpolation from a large—-scale
model and Richardson's equation. One problem noted with this approach
was that of an imposed net mass inflow through the lateral and upper
boundary. Clark developed a stream function initialization which can be
applied only in cases where the mountain has a two dimensional structure
such as a uniform ridge. The vorticity of the flow is assumed equal to

the far upstream value which allows the formulation of a Poisson equation
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for the stream function of the flow in the plane normal to the mountain.
This is not a potential flow initialization because of the allowance for
vorticity and more importantly because the isentropes are not initialized
such that 6 = 08(x,z). Instead 0 = 6(z) which means that the initial
horizontal gradients of buoyancy are zero resulting in the first time
derivative of vorticity being zero. This procedure appears to work
reasonably well but again no detailed analysis has been performed.

Fig. 11 from Clark and Farley (1984) shows some drag plots versus time
using this scheme where the response shows an underdamped character.
There is as much early time difference between the drag plots from Clark
and Farley and Peltier and Clark (1979) as there was between Peltier and
Clark and Durran and Klemp for the Boulder windstorm simulation.

There is a real need to understand the existing schemes and develop
new schemes for initialization. Both the early time and so—called steady
state solutions, and the time required to relax onto steady state,need to
be accessed. Presently it is impossible to differentiate between effects
of resolution, other model dependent assumptions, and initialization for
certain aspects of the simulations of severe mountain drag cases. From a
parémeterization viewpoint, initialization could be an important consi-
deration because the large scale forcing is continually changing on a
supposed long time scale. Whether the mean flow is accelerating or
decelerating into a severe event may require some consideration of the
type of initialization employed. It may be advisable to consider coup-
ling the small scale models to much more extended areal extent models so
that far upstream influences as noted by Pierrehumbert and Wyman (1985)
can be considered, i.e. the assumption of steady forcing could be
addressed on a range of scales. Nesting as discussed in Section 3 might
be appropriate for such studies.

5. Radiation Boundary Condition

A major problem in forced gravity wave simulations is that the
models have a limited vertical extent. The atmosphere allows wave energy
to escape to very high levels far exceeding those of the tropopause.
Thus, is is necessary to devise methods where the upper 1lid of the model
appears as z = + ®to the lower level waves. The oldest and most common
approach has been to use an absorber region where vertically propagating
waves are damped either by Rayleigh friction or by a large eddy mixing

coefficient. Klemp and Lilly (1978) use a horizontal mixing coefficient
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and they provide an analysis of the upper level reflection characteris-
tics. Clark and Peltier (1977, 1984) and Peltier and Clark (1979) used
an eddy mixing coefficient which was active also in the vertical direc-—
tion. Clark (1977), Clark and Farley (1984), and Durran and Klemp (1983)
used a Rayleigh friction absorber. It has been shown that an absorber
must be at least one vertical wave length deep to be effective, where the
vertical wave length is usuélly taken as that corresponding to the hydro-
static wavelength, 2 U/N. The advantages of the absorber approach is
that it is easy to implement, does not invoke a linearization assumption,
and works as well for transient problems as for steady state problems.
The major disadvantage is that it is computationally expensive, particu-
larly for a non—nested simulation.

Another approach which has certain attractions is based upon the use
of a linearized time dependent wave equation. Beland and Warn (1975)
employed this approach in their study of horizontally propagating Rossby
waves but also considered extension of the method to the case of verti-
cally propagating gravity waves. In their system of equations, which is
similar to that for vertically propagating internal waves, they discussed
both the steady state and transient problems. The time dependent problem
requires the retention of a history term which adds considerable computa-—
tional cost to the boundary condition. Furthermore, the inverse Laplace
transform can only be obtained by numerical methods except, as in their
case, for very simplified environments. They did not test their steady
state condition in their simulations. Klemp and Durran (1983) applied a
slightly different radiation condition than Beland and Warn's steady
state equations where pressure and vertical velocity are related at the
model top. The form of Klemp and Durran equations and a comparison with
those of Beland and Warn suggest that this particular form of the normal
mode boundary condition should work well only for steady state problems.
Nevertheless, this type of boundary condition is attractive due to its
computational efficiency for many of the mountain drag problems of
interest to the community. The influences of tramsients which occur in
three-dimensional simulations such as Clark and Farley (1984) and which
occur in the transient initialization phase have yet to be established.

Another problem associated with all of the above radiation
treatments 1s an instability resulting from physical approximations made
when invoking this radiation condition. The radiation condition assumes

that all the wave energy is propagating vertically and that the
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disturbance above some interface in no- way interacts with those below.
This is an approximation. Clark and Peltier (unpublished manuscript)
found that their long term wave drag solutions for some subcritical flows
continued to slowly grow with time. The reason for such behaviour, at
that time, was not understood. More recently, Klemp and Durran (1983)
.shed light on the problem by producing similar results and attributing
them to the radiation condifion itself. Their Fig. 7 shows quite clearly
the sensitivity of the results to the location of the absorber. These
results support Klemp and Durran's interpretation. Sensitivity
experiments suggest that this instability is considerably weakened by
raising the levei of the absorber well beyond one vertical wavelength.
This presents an interesting dilemma for model design in certain experi-
ments. How high should one really place the model 1lid particularly for
subcritical flows? If the 1lid is placed "high enough” then does it
really matter whether one uses a local radiation condition or an
absorber? For many of these problems it is much easier to design a
computationally stable, efficient, and generally applicable experiment
using multi-domain methods. The upper boundary condition problem is
easier to deal with in supercritical flows because of the large amount of
“wave energy that is reflected from the wave breaking region. There is,
thoﬁgh, still the amount of wave energy associated with the critical
stream line steepening propagating beyond the wave breaking region as
discussed by Peltier and Clark (1983).

6. éomparison of Two- and Three~dimensional Severe Storm Simulations

Two-dimensional numerical simulations have been extensively used to
stﬁdy the dynamics of severe downslope windstorms. Most of the studies
have concentrated on the observed case of 11 Jan 1972. Fig. 1 shows
inpgrpretations of O and u based upon aircraft observations by Lilly and
Ziﬁser (1972) of this Boulder windstorm event.

An early explanation for the severity of this type of windstorm was
based upon linear theory concepts. Klemp and Lilly (1975) hypothesized
that the thermal stability variations associated with the tropopause
caused\ﬁartial reflection of wvertically propagating wave energy. They
also considered the effect of the lower level inversion. Using a three
layer model of the atmosphere where the stability and mean flow were
idealized, they suggested a maximum response would be obtained when the
tropopause was XZ/Z above the surface for their symmetrical mountain

case. This "tuned" height corresponded to a case of constructive partial
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reflection. Klemp and Lilly (1978) introduced a much more realistic
environment for the 11 January 1972 case and obtained a severe downslope
event with their hydrostatic isentropic model. They interpreted their
results using the same linear theory concept.

A discriminating experiment to test this linear theory hypothesis
was designed by Peltier and Clark (1979). These -authors suggested that
the mechanism of enhanced wave drag was not due to partial reflection
associated with the linear response of the atmosphere but was due to the
partial reflection of wave energy associated with the non-linear wave
breaking region. The height above the surface, for symmetrical mountain
forcing, of maximum stream line steepening was shown to be 3/4 Kz which
differs from the earlier postulated A,/2 level. Thus, both the mechan-
ism and, as a result, the height of occurrence were being questioned.

The discriminating experiment designed was to simply run two experiments
with different stratospheric wind speeds. The observed case of ~20 m/s
stratospheric winds allowed for wave breaking whereas the ~35 m/s did

not allow for wave breaking at the first level of maximum stream line
steepening. The transmission/reflection coefficient characteristics of
both atmospheres should be very similar so that if the linear theory
interpretation were correct then both experiments should give similar
severe responses. Peltier and Clark found that only the wave breaking
case gave a severe response whereas the case with higher speed strato-—
spheric winds gave a dramatically weaker response. This experiment cast
considerable doubt upon the linear theory mechanism. More recently
Hoinka (1985) repeated this experiment where the stratospheric winds were
more gradually modified. His experiments showed a dramatic reduction in
surface wave drag between the 30 m/s and 40 m/s stratospheric wind speed
cases. There was approximately a factor of 3 reduction in drag intensity
between these two states. Thus, these experiments support the concept of
a bifurcation in solutions occurring which is due to the attainment of a
critical level of steepening of the streamlines overhead of the mountain.

The wave breaking hypothesis is also subject to a discriminating
experiment. Since this hypothesis does not rely at all upon vertical
gradients of the Scorer parameter, it should also occur for cases where
both the wind speed and static thermal stability are uniform with height.
The nonlinear wave breaking hypothesis should show a bifurcation in the

solutions between a subcritically Fr forced case and a supercritically Fr
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forced case. Peltier and Clark (1983) show results for such an experi-
ment. They performed a backoff experiment where a subcritical Fr flow
was initialized using a supercritical Fr initialization scheme. After
the maximum wave drag values were attained the flow speed was reduced to
produce a supercritically forced state. The result was that the wave
drag values linearly increased with time until they reached values ~ 2 times
Long's values would predict where the nonlinear lower boundary con-
dition is considered. Thus, the nonlinear wave breaking response hypo-
thesis was supported. Researchers might consider further refinements of
this type of experiment using different initialization procedures. One
strong advantage of the Peltier-—Clark backoff experiment is that it
allows inspection of the Reynolds stress profiles as a function of time.
Fig. 2 shows the wave drag, 'DW(O)" versus time for this experiment
whereas Fig. 3 shows the time history of the Reynolds stress profiles at,
a) 20 min intervals for a subcritical case and b) at late time for the
supercritical state of the backoff experiment. The Reynolds stress plots
for the supercritical case show the stress at first increasing with time
and finally reducing towards the expected constant with height values as
predicted by Eliassen and Palm (1960) for the Longs model. Fig 3b shows
a very different response for the supercritical flow. The stress is
linearly increasing with time in the cavity between the ground and z =
3/4 Az. Above this level the stress assumes that value obtained from
Long's model for the critical Fr~! = .86 case for this problem. This

idealized case suggests that a parameterization of wave drag for a
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'supercritically forced flow should equally deposit momentum throughout
the cavity which has been established between the ground and the wave
breaking region. Actual cases of severe mountain drag are typically com-
plicated by variations in stability, moisture, and tropospheric jets.

The results from Clark and Farley (1984) will be used to address the
effects of the first and last of these complicatons. To date this paper
represents the only detailed three—dimensional simulation of a severe

windstorm event.
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Clark and Farley (1984) present both two~ and three-dimensional
simulations of the 1l January 1972 Boulder windstorm. Clark (1987) also
presents further analysis of the three-~dimensional simulation where a
turbulent kinetic energy budget analysis is presented. The mountain
forcing in the three-dimensional experiment was taken as a two-~dimen-
sional ridge so that, except for the turbulence modelling in the wave
breaking region, the three~ and two-dimensional simulations are physical=~
ly equivalent. Fig. 4 presents a comparison between the two—- and three-
dimensional Reynolds stresses obtained in these experiments.

Fig. 4(a) shows three time levels of the Reynolds stress for the
two—dimensional experiments and (b) shows seven time levels for the
three-dimensional experiments. The solid bars at z=0 denote the range of
surface wave drag. The stress plots are still rather transient in nature
in both cases. A rough eyeball fit to the curves suggests a nearly con-
stant average rate of negative momentum deposition between the mountain
top (h, level) and the tropopause (trop) level with a lesser amount of
positive momentum deposition between the ground and the mountain top.

The tropopause level corresponds with the upper levels of the wave
breéking or convectively unstable region of the calculations. In both
simulations a considerable amount of momentum is transmitted through the
tropopause implying a slowing down of the stratospheric winds in the lee
of the mountains.

The comparison between the two- and three-dimensional simulated
Reynolds stresses in Fig. 4 shows that they are in many respects quite
similar. A comparison of the field structures of the wind component
directed normal to the mountain (or ridge in three—-dimensions) and
fields will indicate the degree to which the two-dimensional simulations
might be expected to capture the basic dynamics for this particular
severe event as well as other cases. These plots can also be comparéd to
the observations shown in Fig. 1. Figs. 5 and 6 show the u and 8 field
comparisons between the two—- and three—dimensional simulations. The
plots for the three-dimensional simulations were obtained by taking a
cross—stream average. The model was assumed cyclic and contained only 10
grid points in this direction. The basic purpose of including cross—
stream points was to allow the fluid flow to become three-dimensional in
character where vortex twisting and stretching would become active.
Clearly, there is a need for further three-dimensional simulations of

this type where increased cross—stream domain and resolution are
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considered. Also, effects of the three dimensional character of the
topography need to be considered. Except in the highly nonlinear
convectively unstable or wave breaking region, the two simulations are
quite similar. A wind reversal and commensurate overturning region are
present at about the 8 km height overhead of the wountain in these
simulations. These simulations as well as those of the previously cited
authors compare quite favorably with the observations. Whether or not
there was a wind reversal in the actual observations is not clear (Lilly,
1978). The wind reversal appears to be somewhat over emphasized by the
two—dimensional models. This can be seen more clearly by comparing Fig.
1 of Clark (1987) with the present Fig- 5b for the same basic model. It
may turn out that increased resolution for the three—~dimensional model
may reduce such reversal effects even further. Nevertheless, the
two-dimensional models appear to perform quite faithfully for these
idealized cases.

Lilly (1978) analyzed the aircraft data for the 11 January 72
Boulder windstorm. He estimated the wave drag to be in the range of .7
to 1.6 x 10° Kg/sz. The numerical simulations predict values ranging
from about 1.4 x 10° for the moist calculations of Durran ad Klemp (1983)
and about 1.6 x 10® for the dry calculations of Durran and Klemp and
Peltier and Clark (1979). Clark and Farley obtained 3.0 X 10° for their
two-dimensional calculations and 2.5 X 10°© Kg/s2 for their three-dimen-
sional case. All of these estimates are surprisingly close in spite of
the weaknesses of the models in properly representing or resolving the
turbulence. It is not surprising that slight differences in the models
produce estimates differing by a factor of 2. The upstream boundary
conditions are probably much steadier in the Clark and Farley cases
because of their increased horizontal domain of 240 km and this may have
influenced their increased estimates. Hoinka (1985) obtained
~2.0 x10° Kg/s2 using a similar domain in an hydroétatic model.

7. Turbulence in the Severe Windstorms

The one main area where the two— and three-dimensional simulation
differ is in the modelling of turbulence. The observations show that
surface wind speeds downstream of the mountain peak are characterized by
a high degree of transients. Fig. 7 shows the observations for the 11
January 72 case. This figure shows a series of relatively low frequency
spikes superimposed upon a much higher frequency. The three-dimensional

simulations of Clark and Farley obtained a surface gustiness signature of
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a) two-dimensional field at t = 153.33 min,

b) three—-dimensional cross stream averaged field at
t = 155 min.
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(after Klemp and Lilly, 1975).

the lower frequency character without the high frequency component. Peak
gusts occurred on a frequency of about 10-15 min in their simulations,
e.g. see their Fig. 14. The two-dimensional simulations, on the other
hand, produce a steady surface wind speed.

Lilly (1978) estimated that shear production was the major source of
turbulence production in the elevated regions and that surface roughness
may have contributed to the lower level turbulence downstream of the
mountain peak. Clark (1987) performed a turbulent kinetic energy budget
analysis of the three-dimensional simulated case. He defined the turbu-
lence as that portion of the flow which differed from the cross—stream
averaged value. Fig. 8 shows the turbulent kinetic energy at
£ = 140 min. We see the turbulence occupying a large portion of the con-
vectively unstable wave breaking region. There is also a region located
downstream of the mountain extending from the ground up to about the 6 km
level. The approximate location of Boulder is marked on the figure. The
main source terms for the turbulence were found to be from the shear pro-
duction terms. Fig. 9 shows the distribution of the shear production
terms at t = 155 min. This time level shows most clearly how the source
is confined to the leading lower edge of the inflowing air near the
interface between the stable air and the convectively unstable region.
Source/sink terms associated with the convection itself ( w'0') were
about an order of magnitude smaller than the shear terms. The final
distribution of turbulence is established through shear production and

advection much in the way as discussed by Lilly (1978).

216



16.0 T T

2.8

ZInM}

Fig. 8 Turbulent kinetic energy at t = 140 min for a three~dimensional
simulation of the 11 January 1972 windstorm (after Clark,
1987). Contour interval is 16 Kg m~'s~2.

16.0 T T T T

FALL 1]

Fig. 9 Shear production terms of the turbulent kinetic energy budget.
Contour interval is .25 Kg m~'s~?.

217



8. Conclusions

This paper has discussed certain technological aspects associated
with the modelling of the wave dynamics of severe downslope windstorms.
Those areas were highlighted where there appears to be some degree of
misunderstanding in the literature as well as certain aspects where there
is almost no discussion in the literature. There appears to be an under-
emphasis in the literature discussing the degree to which initialization
affects the results. The typically used initialization procedures were
categorized with the idea in mind that this may aid in future assessments
of this problem area. It was suggested in the text that the domain
extent may have influenced the particular steady state wave drag response
obtained by various simulations of the 11 January 1972 Boulder windstorm
event. Resolution effects and equation filtering may have also influ-
enced these predictions. It appears that there is a need for further
systematic research on the response of air flowing over the major moun-
tain barriers where upstream effects and initialization effects are more
thoroughly considered.

A comparison between the two- and three-dimensional simulations of
Clark and Farley (1984) and between the two—dimensional case of Peltier
and Clark (1983) suggest that the Reynolds stresses for the severe wind-
storm event behave in a similar fashion to the supercritical homogeneous
atmosphere case. A near equal rate of negative momentum deposition
appears to occur between the mountain top and the nonlinear reflecting
region set up by wave breaking. This result is quite different from that
recently postulated by Lindzen (1981) and Holton (1982) based upon the
earlier work of Hodges (1969) where they suggest the deposition is con-—
fined to the nonlinear wave breaking region itself. Furthermore, in the
severe windstorm case there was shown to be a region of positive momentum
deposition below mountain top or flow speed up in the lee of mountain.
The differences in structure and amplitude of the stresses and mean
fields between the two— and three-dimensional simulations appear to be
minimal for the idealized severe windstorm simulationms. There appears to
be a need for much more extensive researéh in this area particularly for
the three-dimensional case where more realistic turbulence and barrier
effects can be simulated. The gustiness signatures obtained in the simu-
lations of Clark and Farley were only partially successful in reproducing
the observed gustiness. Resolution and/or idealizations of the surface

forcing seen to be the most likely candidates for further investigations.
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A significant emphasis was placed upon the advantages of using
multi-domain nesting procedures with the non-hydrostatic models. It is
believed that many of the current model restrictions can be greatly
reduced through this procedure. A more in depth study of many of the
previsouly modelled aspects of mountain drag should be possible using
this approach.
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